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Abstract—This paper describes a method of gait recognition
using multiple gait features in conjunction with score-level
fusion techniques. More specifically, we focus on the state-of-
the-art period-based gait features such as a gait energy image,
a frequency-domain feature, a gait entropy image, a chrono-
gait image, and a gait flow image. In addition, we employ
various types of the score-level fusion approaches including
not only conventional transformation-based approaches (e.g.,
sum-rule and min-rule) but also classification-based approaches
(e.g., support vector machine) and density-based approaches
(e.g., Gaussian mixture model, kernel density estimation, lin-
ear logistic regression). In experiments, the large-population
gait database with 3,249 subjects was used to measure the
performance improvement in a statistically reliable way. The
experimental results show 7% relative improvement on average
with regard to equal error rate of the false acceptance rate and
false rejection rate in verification scenarios, and also show 20%
reduction of the number of candidates to be checked under 1%
misdetection rate on average in screening tasks.

I. INTRODUCTION

Gait recognition [51] has recently gained considerable

attention as a promising biometric verification/identification

method for surveillance systems, owing to its ability of

ascertaining identity from a distance. In fact, the gait recog-

nition has been applied to CCTVs in the street and served

as a biometric evidence in the forensic science field [67],

[8]. The performance of the gait recognition is, however,

often degraded by various intra-subject variations caused

by views [26], [41], [31], walking speeds [43], [30], cloth-

ing [23], carrying status [66], surfaces [58], and elapsed

time [45].

In order to overcome such difficulties, information fusion

techniques have been brought into gait recognition. One of

typical approaches is combining multiple modalities. In par-

ticular, fusion of gait and face biometrics has been actively

studied [60], [27], [34], [80], [81], [22] because the both

modalities are acquired from the same device, namely, a

camera. These types of fusion approaches do, however, not

work efficiently when the image resolution of a face is too

small to be recognized.

Another way is combining evidences from multiple views,

which are acquired from multiple cameras [14], [75], [79]

or view variations in a single wide view-range camera [65].

The multi-view observations are also used for improving the

performance of view-invariant gait recognition [61], [42],

[29], [19]. It is, however, not always available the multi-

camera settings with sufficient view overlaps and/or long-

term image sequences with sufficient view variations.

On the other hands, in the context of a single-observation

matching, part-based gait recognition approaches could be

regarded as one of fusion approaches. In these approaches,

the whole body is divided into multiple parts based on human

model fitting or anatomical knowledge and scores from the

individual body parts are fused [14], [9], [35], [23].

Moreover, multi-algorithm fusion could be a potential ap-

proach, which has been widely studied in the other biometric

modalities (e.g., fingerprint [62], [10], iris [59], [73], and

face [15], [11], [55]). Although a variety of individual gait

recognition algorithms have been proposed [52], [48], [47],

[14], [74], [37], [18], [41], [4], [5], [33], [71], [21], to the

best of our knowledge, there are few studies on combining

these multiple gait recognition algorithms for improving

performance.

Therefore, we tackle with the multi-algorithm fusion on

the gait recognition in this paper. In particular, we focus

on multiple state-of-the-art period-based gait features [18],

[41], [4], [33], [71]. Moreover, whereas the existing fusion

approaches to the gait recognition employ relatively simple

techniques such as sum-rule and min-rule, we explore various

types of state-of-the-art score-level fusion techniques ranging

from transformation-based approaches [28] to classification-

based and density-based approaches [72], [49], [68], [1],

[39]. In experiments, all the combinations of the gait features

and the score-level fusion techniques are evaluated with

a large-population gait database with 3,249 subjects in a

statistically reliable way, and then the upper bound of the

gait recognition performance is pursued.

The reminder of this paper is organized as follows. Sec-

tion II gives a summary on related techniques on the gait

recognition and the score-level fusion, respectively. Brief

descriptions on the state-of-the-art gait features and score-

level fusion approaches used in this paper are given in

section III and IV, respectively. The experiments for all

the combinations of the gait features and the score-level

fusion approaches are conducted in section V and concluding

remarks and future work are given in section VI.

II. RELATED WORK

A. Gait recognition

Approaches to the gait recognition mainly fall into two

families: model-based and appearance-based (or model-free)

approaches. The model-based approaches usually fit articu-

lated human-body models to observed images and kinematic

parameters (e.g., joint angle sequences) as well as static

parameters (e.g., torso and leg lengths) are extracted as

gait features. For examples, while Bobick and Johnson [7]

extract torso and leg lengths as well as strides with the three-

linked model, Cunado et al. [13] and Yam et al. [76] extract



joint angle sequences of legs with the pendulum model in

conjunction with Fourier analysis. Urtasun and Fua [69]

exploit a 3D human model with volumetric primitives of

links, and Yang et al. [77] exploit a 3D human model with

cylindrical links. As a more mechanical model, Ariyanto

and Nixon [2] propose a marionette mass-spring model for

3D gait recognition. While the model-based approaches have

several advantages over the appearance-based ones in terms

of view invariance and clothing invariance, they often suffer

from model fitting errors and relatively high computational

cost. Therefore, the appearance-based approaches often out-

perform the model-based ones in general, which is the main

reason why the most of the gait recognition approaches adopt

the appearance-based ones.

The appearance-based approaches extract gait features di-

rectly from images, typically from size-normalized silhouette

images, without the model. Gait features used in this family

further fall into two classes: frame-based and period-based

gait features. The frame-based gait features are naturally ex-

tracted frame-by-frame and frame synchronization or phase

(gait stance) estimation follows in matching stage. Sarkar et

al. [58] propose a direct silhouette sequence matching as a

baseline method, while the Murase and Sakai [48] and Mori

et al. [46] employ a parametric eigen space to represent a

periodic gait silhouette sequence. Liu et al. [38] propose a

gait dynamics normalization by using a population hidden

Markov model to match two silhouettes at the same phase.

Beyond the raw silhouette sequences, Contour et al. [14]

project the silhouette into a width vector and Liu et al. [36]

project it into a frieze pattern, namely, combination of width

and height vectors. The frame-based features are, however,

relatively susceptible to silhouette noise and also frame

synchronization process is considerably time consuming.

On the other hands, the period-based gait features are

computed by integrating over all the frames within a detected

period, which makes the extracted gait feature robust to

pixel-by-pixel independent noise [18]. The simplest yet the

most prevailing one is a gait energy image (GEI) [18]

otherwise known as an averaged silhouette [37] which is

computed by just averaging the silhouette value pixel-by-

pixel over the gait period. Considering the periodic property

of gait, a frequency-domain feature (FDF) [41] is computed

as pixel-by-pixel amplitude spectra of zero-, one-, and two-

times frequency elements. As a variant of the GEI, a gait

entropy image (GEnI) [4] is computed as pixel-by-pixel

entropy of the GEI so as to focus on dynamic regions. A gait

flow image (GFI) [33] more directly focus on the dynamic

components, where the optical flow lengths observed on

the silhouette contour are averaged over the gait period. As

another way of motion representation, a chrono-gait image

(CGI) [71] assigns the color to the silhouette contour based

on phase (e.g., blue to single support phase and red to double

support phase), and average them over the quarter gait period.

Beside the above gait features, many of the gait features such

as a masked GEI [5], a Gabor filter-based feature [66], a

motion silhouette image [32], a self-similarity plot [6], and

a Fourier descriptor [47], have been also proposed to date.

There are, however, no attempts to combine the excellent

period-based gait features for improving the performance.

B. Score-level fusion

Approaches to the score-level fusion fall into three fami-

lies: (1) transformation-based approaches [28], [25], [64], (2)

classification-based approaches [20], and (3) density-based

approaches [49], [1], [16], [39].

In the transformation-based approaches, scores are first

mapped onto a common domain by normalization tech-

niques (e.g., z-normalization [3], F-normalization [54], EER-

normalization [17], log likelihood-based normalization [56],

or quality-based normalization [57]) and are then combined

using various rules (e.g., sum-rule and min-rule [28]) to

provide a fused score.

In the classification-based approaches, multiple scores

are treated as feature vectors and a classifier (e.g., neural

network [12] or support vector machine (SVM) [72]) is

constructed to discriminate each class. The signed distance

from the decision boundary is usually regarded as the fused

score.

While these two families of approaches do not guarantee

the optimality in terms of receiver operating characteristics

(ROC) in verification scenarios, the density-based approaches

guarantee the optimal fusion as long as the probability

density function (PDF) of the score given for each class is

correctly computed [50].

The density-based approaches are further categorized in

terms of two aspects of the distribution representation: (A)

parametric or non-parametric approaches, and (B) generative

or discriminative approaches. The parametric and genera-

tive approaches assume certain PDF models (e.g., Gaus-

sian mixture model (GMM)) for each class separately and

estimate the parameters of the model from the training

samples [49]. The parametric and discriminative approaches

bypass estimation of the individual PDFs and directly model

a function of the likelihood ratio or posterior (e.g., linear

logistic regression (LLR) of the likelihood ratio) [1]. These

parametric approaches work well if the assumed models

closely fit the actual distributions; otherwise they fail.

On the other hands, the non-parametric approaches repre-

sent the distributions using histogram bins or control points.

Some of the non-parametric and generative approaches as-

sume the independence of each dimensional score and rep-

resent a joint PDF as the product of each dimension of the

PDFs computed by kernel density estimation (KDE) [16].

The non-parametric and discriminative approaches usually

allocate lattice-type control points on the multi-dimensional

score space, allowing a function of the posteriors on the

control points to be estimated [39].

As seen above, although a wide variety of approaches

to the score-level fusion have been proposed to date, only

relatively simple approaches (e.g., sum-rule and min-rule

from the transformation-based approaches) have been applied

to the gait recognition. Therefore, it is worth investigating the

performance of the multi-algorithm gait recognition not only

by such simple transformation-based approaches but also
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Fig. 1. Gait features

by the other state-of-the-art classification-based and density-

based approaches.

III. GAIT FEATURES

A. Preprocessing

Given a input image sequence, a gait silhouette sequence

is extracted by background subtraction-based graph-cut seg-

mentation [44]. The gait silhouette sequence is then scaled

and registered so as to generate a size-normalized gait

silhouette sequence, whose width and height are W = 88
pixels and H = 128 pixels, respectively. The pixel value at
the position (x,y) at the t-th frame in the size-normalized
silhouette sequence is denoted as I(x,y, t), where 0 and
1 correspond to background and foreground, respectively.

Finally, the gait period P is detected by maximizing a

normalized autocorrelation of the silhouette sequence [41].

B. Gait energy image (GEI)

The GEI [18] (Fig. 1(a)) is simply computed by averaging

the pixel values over the gait period as

GEI(x,y) =
1

P

P

∑
t=1

I(x,y, t). (1)

C. Frequency-domain feature (FDF)

Regarding the gait period P as a base period for Fourier

analysis, the FDF [41] (Fig. 1(b)) is computed as amplitude

spectra

FDF(x,y,k) =
1

P
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where ω0 is a base angular frequency for the gait period P,

and FDF(x,y,k) is the amplitude spectrum for the k-time

frequency (k = 0,1,2) at the position (x,y). Note that the
amplitude spectra for the 0-time frequency (direct currency

elements) are identical to the GEI.

D. Gait entropy image (GEnI)

The GEnI [4] (Fig. 1(c)) is computed to emphasize the

dynamic areas as

GEnI(x,y) =−z log2 z− (1− z) log2(1− z), (3)

where GEnI(x,y) is Shannon entropy for z=GEI(x,y), that
is, the GEI value at the position (x,y).

E. Chrono-gait image (CGI)

The CGI [71] (Fig. 1(d)) is computed by averaging the

colored contour image, whose color is assigned based on

the phase, as

CGI(x,y) =
1

p

p

∑
i=1

PGi(x,y), (4)

where p is the quarter gait periods, PGi(x,y)=∑
ni
t=1C(x,y, t),

is the sum of the total ni colored contour images in the i-th

quarter gait period, and C(x,y, t) is the colored gait contour
value at the position (x,y) at the t-th frame.

F. Gait flow image (GFI)

The GFI [33] (Fig. 1(e)) is computed by averaging the

optical flow lengths over the gait period as

GFI(x,y) =
1

P−1

P−1

∑
t=1

‖v(x,y, t)‖, (5)

where v(x,y, t) is the optical flow from t-th frame to (t+1)-th
frame at the position (x,y).

IV. SCORE-LEVEL FUSION

A. Score normalization as preprocess

Normalizing the scale of each dimensional score is es-

sential part for the success of the score-level fusion. In this

paper, the z-normalization is applied to each probe so as

that the average and the standard deviation of scores over all

the galleries be 0 and 1, respectively. It is well known that

this kind of probe-dependent z-normalization dramatically

improves the ROC in a verification scenario (one-to-one

matching) [53].

B. Sum-rule (Sum)

The sum-rule [28] is the representative of the non-training

transformation-based approaches. Summation of the multiple

scores is provided as a single fused score.

C. Min-rule (Min)

The min-rule [28] is also frequently used in the context of

the transformation-based approaches. The minimum of the

multiple scores is provided as a single fused distance.

D. Support vector machine (SVM)

The SVM [72] is one of typical classification-based ap-

proaches. Once the multiple scores are concatenated into a

single feature vector, the SVM is learnt by using positive

and negative training samples in the feature space. In the

test phase, a signed distance to the decision boundary of the

learnt SVM is provided as a single fused score. In this paper,

linear and radial basis function (RBF) kernels are exploited

and the hyper-parameters are trained via cross validation.



E. Gaussian mixture model (GMM)

The GMM [49] falls into the parametric and generative

density-based approaches. The GMMs are trained for pos-

itive and negative samples separately by the EM algorithm

so as to maximize the likelihood. The number of the com-

ponents of the GMM is decided based on the minimum

description length (MDL) criteria. The likelihood ratio or

posterior is provided as a single fused score.

F. Linear logistic regression (LLR)

The LLR [1] falls into the parametric and discriminative

density-based approaches. The linear logistic function of

likelihood ratio is defined and its linear-term coefficients are

computed so as that a loss function be minimized. The value

of the linear logistic function is provided as a single fused

score.

G. Kernel density estimation (KDE)

The KDE [16] falls into the non-parametric and gener-

ative density-based approaches. PDFs of the positive and

negative samples are estimated for each dimensional score

independently by kernel density estimator, and the joint

distribution is computed as their product under an assumption

of score independence. A bandwidth of the kernel function

is automatically selected based on [70]. The likelihood ratio

or posterior is provided as a single fused score.

H. Lattice-type control point (LCP)

The LCP [39] falls into the non-parametric and discrimi-

native density-based approaches. The LCPs are allocated in

the multiple score domain, and the posterior on the LCPs are

directly estimated so as to minimize an objective function

composed of data and smoothness terms. The smoothness

coefficient λ is set to 1 in this paper. The posterior inter-

polated by the adjacent LCPs is provided as a single fused

distance.

V. EXPERIMENTS

A. Data sets

Because sufficient number of positive and negative sam-

ples are required for the success of the statistically reli-

able performance evaluation, we employed the OU-ISIR

Biometric Score Database, Set 4 with Protocol 1 (BSS4-

P1)1. derived from the large-population gait database [24]

was employed. More specifically, 3,249 subjects joined the

experiments and two walking image sequences were cap-

tured for each subject, which were assigned to a probe

and a gallery, respectively. The state-of-the-art gait features,

namely, GEI, FDF, GEnI, CGI, and GFI, were extracted from

each of the sequences and then Euclidean distances for all

the combinations of probes and galleries were computed as

dissimilarity scores, which constructed a dissimilarity score

matrix accompanied with probe and gallery IDs.

Thereafter, the whole set was randomly divided into two

disjoint subsets: a training (development) set with 1,625

1The OU-ISIR Biometric Score Database is publicly available at
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/BioScore.html

subjects and a test (evaluation) set with 1,624 subjects.

Subsequently, dissimilarity score sub-matrices were extracted

and the z-normalization [53] was applied to the training and

test sets, respectively. Dissimilarity scores for pairs of the

same and different subjects were extracted as positive and

negative samples, respectively, from each of the training and

test sets. As a result, while the training set contained 1,625

positive samples and 2,639,000 negative samples, the test

set contained 1,624 positive samples and 2,635,752 negative

samples. Thereafter, the training set was used for learning

each of the training-based score-level fusion methods, and

the test set was used for the performance evaluation.

Although we notice the existence of the other publicly

available gait databases [58], [63], [78], [40] with a variety

of covariates (e.g., view, walking speed, clothing, and shoe

variations), the number of subjects in such databases is at

most a hundred order and hence the statistical reliability

of the performance evaluation on the score-level fusion

could be significantly degraded. In this paper, we rather

focus on the statistically reliable performance evaluation

than the covariates, and then pursue the upper bound of the

performance without such covariates. Performance analysis

against the covariates is left as future work.

B. Score distributions

It is well known that the efficiency of the score-level

fusion is dependent on the correlation between the score

distribution. More specifically, the stronger the positive cor-

relation is, the less the efficiency of the score-level fusion

is. Conversely, the more independent the distribution is,

the more the efficiency is. Therefore, in this section, the

dissimilarity score distribution for all the combinations of

two gait features are investigated as shown in Fig. 2.

As a result, because the GEI, FDF, and GEnI are silhouette

region-based gait features, each combination of them have

relatively strong correlation (Fig. 2(a)(b)(e)). In particular,

the FDF completely contains the GEI as the direct currency

component, the score distribution for GEI-FDF is quite

strongly correlated (Fig. 2(a)).

On the other hands, the CGI and GFI are silhou-

ette contour-based gait features and capture more dy-

namic components, and hence the correlation between the

CGI/GFI and another gait feature is relatively weak (Fig.

2(c)(d)(f)(g)(h)(i)(j)). In particular, the score distribution

correlation for CGI-GFI (Fig. 2(j)) is the weakest among

all the combinations.

C. Performance evaluation in verification scenarios

In this section, performance in verification scenarios (one-

to-one matching) is evaluated. For this purpose, we employed

the ROC curve which indicate the tradeoff between the false

rejection rate (FRR) of the genuine and the false acceptance

rate (FAR) of the imposter when an acceptance threshold

changes. The ROC curves for all the combinations are shown

in Fig. 3. Moreover, an equal error rate of the FAR and FRR

and its relative improvement rate to the best of the two gait

features are summarized in Fig. 4.



(a) GEI-FDF (b) GEI-GEnI (c) GEI-CGI (d) GEI-GFI (e) FDF-GEnI

(f) FDF-CGI (g) FDF-GFI (h) GEnI-CGI (i) GEnI-GFI (j) CGI-GFI

Fig. 2. Dissimilarity score distributions between two gait features. Horizontal and vertical axes indicate z-normalized distance for the first and the second
gait features (e.g., GEI and FDF in (a)), respectively. Positive and negative samples are depicted by red and blue plots, respectively.

(a) GEI-FDF (b) GEI-GEnI (c) GEI-CGI (d) GEI-GFI (e) FDF-GEnI

(f) FDF-CGI (g) FDF-GFI (h) GEnI-CGI (i) GEnI-GFI (j) CGI-GFI

Fig. 3. ROC curves for score-level fusion of two gait features. Feature 1 and 2 corresponds to gait features denoted before and after hyphen (e.g., in (a),
Feature1 is GEI, Feature 2 is FDF). It can be said that the score-level fusion works well when the colored lines (fusion) are lower than both of the black
lines (single features).

As a result, it turns out that the score-level fusion improves

the performance little for the strongly correlated combi-

nation, namely, GEI-FDF, GEI-GEnI, and FDF-GEnI. On

the other hands, the score-level fusion clearly improves the

performance for the combination with relatively weak corre-

lation, namely, GEnI-CGI and CGI-GFI (relatively 20% w.r.t.

EER). In addition, some of the score-level fusion approaches

slightly improve the performance for the combination GEI-

GFI and FDF-GFI (relatively 7% w.r.t. EER), while they

little improve for the combination GEI-CGI, FDF-CGI, and

GEnI-GFI.

Focused on the performance difference by the score-level

fusion approaches, Sum and KDE sometimes fail (e.g., GEI-

GFI and FDF-GFI) and hence their averaged performances

are worse. On the other hands, SVM (Linear), LLR, and

LCP constantly achieve the good performance, and hence

their averaged performance are better, which demonstrates

the effectiveness of the use of the state-of-the-art score-level

fusion techniques.

Finally, while the best performance by the single gait

feature is 1.79% EER (GEI or FDF), the best performance

by the combination is 1.67% EER (GEI-GFI with SVM

(Linear) or LCP, and FDF-GFI with SVM (Linear), LLR,

or LCP). It is interesting that combination GEI-GFI or FDF-

GFI achieves the best performance due to its relatively weak

correlation, nevertheless the performance of the GFI is the

worst (4.0% EER) among the single gait features.

D. Performance evaluation in identification scenarios

In this section, performance in identification scenarios

(one-to-many matching) is evaluated. For this purpose, we

employed the CMC curve which indicates the rates that the

genuine subjects are included within each of ranks. The

CMC curves for all the combinations are shown in Fig.

5. Moreover, the rank-1 identification rate and its relative



Fig. 4. EERs (top) and its relative improvement rate to the best of the two
gait features (bottom). Feature 1 and 2 corresponds to gait features denoted
before and after hyphen. In case of GEI-GEnI, the performance of the GEI
is better than that of the GEnI, the relative improvement rate is measured
to that of the GEI.

improvement rate to the best of the two gait features are

summarized in Fig. 6. In addition, by considering a screening

task, rank over 99% identification rate, in other words, below

1% misdetection rate, and its reduction rate to the best of

the two gait features are summarized in Fig. 7. Note that

the rank here means the number of candidates to be checked

to keep 1% misdetection rate, and hence the rank reduction

rate implies the reduction rate of the burden by surveillance

agents.

As a result, in terms of rank-1 identification rate, the score-

level fusion almost does not work except for the combination

GEnI-CGI and CGI-GFI. In particular, the non-parametric

density-based approaches (KDE and LCP) significantly de-

grade their performances.

On the other hands, in terms of the screening task, we can

see the significant improvements by the score-level fusion. In

fact, from 30% to 40% rank reduction rate are achieved for

some of the combinations (e.g., GEI-GFI, FDF-GFI, GEnI-

CGI). Moreover, it is quite interesting that the LCP achieves

the best rank reduction rate on average (approximately 20%),

while its rank-1 identification rate is considerably worse than

the other approaches.

Therefore, the score-level fusion of multiple gait features

is effective for the screening task, while it is not true to

identification rates for lower ranks.

VI. CONCLUSION

This paper described a method of gait recognition using

multiple gait features in conjunction with the score-level

fusion techniques. All the pairs of the five state-of-the-art

period-based gait features, namely, the GEI, FDF, GEnI,

CGI, and GFI were evaluated with the eight score-level

fusion approaches, that is, the sum-rule and min-rule as

the transformation-based approaches, the SVM with linear

and RBF kernel as the classification-based approaches, and

the GMM, LLR, KDE, and LCP as the density-based ap-

proaches. The experiments with the large-population gait

database of 3,249 subjects demonstrated that the score-level

fusion of the two gait features with relatively weak corre-

lation achieved the performance improvement with regard

to EER in the verification scenarios and also reduced the

candidates to be checked in a screening task.

While this paper pursued the upper bound of the perfor-

mance by the score-level fusion of the multiple state-of-the-

art gait features without covariates (e.g., view, walking speed,

clothing, and shoes), the performance evaluation involving

the covariates is one of important future work. In addition,

because the identification rates for lower ranks in the iden-

tification scenarios were little improved by the score-level

fusion, a study of the score-level fusion approach which

focuses on lower-rank identification rates is another future

work.
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