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Abstract—In this paper, we introduce the concept
of dense scene flow for visual SLAM applications.
Traditional visual SLAM methods assume static fea-
tures in the environment and that a dominant part
of the scene changes only due to camera egomotion.
These assumptions make traditional visual SLAM
methods prone to failure in crowded real-world dy-
namic environments with many independently mov-
ing objects, such as the typical environments for the
visually impaired. By means of a dense scene flow
representation, moving objects can be detected. In
this way, the visual SLAM process can be improved
considerably, by not adding erroneous measurements
into the estimation, yielding more consistent and
improved localization and mapping results. We show
large-scale visual SLAM results in challenging indoor
and outdoor crowded environments with real visually
impaired users. In particular, we performed experi-
ments inside the Atocha railway station and in the
city-center of Alcalá de Henares, both in Madrid,
Spain. Our results show that the combination of visual
SLAM and dense scene flow allows to obtain an accu-
rate localization, improving considerably the results
of traditional visual SLAM methods and GPS-based
approaches.

I. Introduction

Autonomous navigation is of extreme importance for
those who suffer from visual impairment problems. With-
out a good autonomy, visually impaired people depend
on other factors or other persons to perform typical daily
activities. Within this context, a system that can provide
robust and accurate localization of a visually impaired
user in urban city-like environments or indoor ones is
much more than desirable.
Nowadays, most of the commercial solutions for visu-

ally impaired localization and navigation assistance are
based on the Global Positioning System (GPS). However,
these solutions are not suitable enough for the visually
impaired community mainly for two reasons: the low
accuracy in urban-environments (errors about the order
of several meters) and signal loss due to multi-path effect
or line-of-sight restrictions. Moreover, GPS does not work
if an insufficient number of satellites are directly visible.
Therefore, GPS cannot be used in indoor environments.

All the authors are with the Department of Electronics, Uni-
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Computer vision-based approaches offer substantial
advantages with respect to GPS-based systems and con-
stitute a promising alternative to address the problem.
By means of visual SLAM techniques [1], [2], it is pos-
sible to build an incremental map of the environment,
providing at the same time the location and spatial ori-
entation of the user within the environment. In addition,
compared to other sensory modalities computer vision
can also provide a very rich and valuable perception
information of the environment such as for example
obstacle detection [3] or 3D scene understanding [4].
Most of visual SLAM systems in the literature [5], [6]

need to assume static features in the environment and
that a dominant part of the scene changes only with
the camera egomotion. As a result, these approaches are
prone to failure in crowded scenes with many indepen-
dently moving objects. Even though some of the outliers
can be detected by geometric constraints validation, one
needs to take special care about not introducing any
outlier in the 3D reconstruction process or otherwise
the estimated map and camera trajectory can diverge
considerably from the real solution.
In this paper, we will show how traditional stereo

visual SLAM algorithms can be improved by means of
the detection of moving objects, thanks to a dense scene
flow [7] representation of the environment. In this way,
visual SLAM algorithms can obtain more robust and
accurate localization and mapping results in crowded and
dynamic environments with many independent moving
objects. The rest of the paper is organized as follows: In
Section II, we briefly review the main components of our
stereo visual SLAM system. In Section III, the formu-
lation of the dense scene flow and detection of moving
objects are described. Then, we show in Section IV, how
visual SLAM and dense scene flow can be combined in
order to detect moving objects in the image and avoid
adding erroneous measurements into the SLAM process.
Finally, in Section V, we show main conclusions and ex-
perimental results considering challenging environments
with many independent moving objects.

II. Stereo Visual SLAM

In this section, we briefly review the main components
of our stereo visual SLAM system. Our visual SLAM
system uses a stereo camera as the only sensor and it



is based on a combination of stereo visual odometry [8]
and a hierarchical structure and motion refinement by
means of Bundle Adjustment (BA) [9].

A. Stereo Visual Odometry

We estimate the relative camera motion by matching
detected features between two consecutive frames. Fea-
tures are detected by means of Harris corner detector [10]
at different scale levels. We detect features only for
the left image of the stereo pair. Then, we find the
correspondences of the 2D features in the right image
by accessing the disparity map and compute the 3D
coordinates of the point by means of standard stereo
geometry equations.
For each detected 2D feature in the left image we also

extract a MU-SURF [11] descriptor vector of length 64.
Once we have computed the features descriptors, we find
the set of putatives matches between two consecutive
frames by matching their associated list of descriptors
vectors. Then, we estimate the relative camera motion
using the standard three-point algorithm in a Random
Sample Consensus (RANSAC) [12] setting. The resulting
relative camera motion is translated to a global coordi-
nate frame and then used by the mapping management
module.

B. Mapping Management

By means of stereo visual odometry, we estimate the
camera motion between consecutive frames. When the
accumulated motion in translation or rotation is higher
than a fixed threshold we create a new keyframe. This
keyframe, will be optimized later in a local BA procedure.
In the local BA process, 3D points and camera poses
are refined simultaneously through the sequence. Similar
to [13] we use a sliding window BA approach over the
last N keyframes (e.g. 10), reducing the computational
complexity.

We perform an intelligent management of features into
the map, in order to produce an equal distribution of
feature locations over the image. While adding a new
feature to the map, we also store its associated appear-
ance descriptor and 3D point location. Then, we try to
match the feature descriptor against the detected new 2D
features on a new keyframe by matching their associated
descriptors in a high probability search area. In this
way, we can create for a map element, feature tracks

that contain the information of the 2D measurements
of the feature (both in left and right views) in several
keyframes. Then, this information is used as an input in
the local BA procedure. Features are deleted from the
map when the mean re-projection error per frame in the
3D reconstruction is higher than a fixed threshold (e.g. 3
pixels). Notice here that we avoid adding erroneous new
features by discarding those that are located on moving
objects. In Section IV, we will explain how to identify
areas in the image that belong to moving objects, thanks
to a dense scene flow representation.

By means of appearance based methods, loop closure
situations can be detected and the residual error in the
3D reconstruction can be corrected by means of pose-
graph optimization techniques such as Smoothing and
Mapping (SAM) [14]. After the pose-graph optimization,
the solution can be further refined in a global BA proce-
dure.

III. Dense Scene Flow and Detection of

Moving Objects

One of the advantages of stereo vision against monoc-
ular one, is that we can exploit the information from
four images at once, obtaining dense disparity maps
(between the left and right stereo views at each frame)
and dense 2D optical flow correspondences (between two
consecutive frames). Since for every pixel that has a valid
disparity value we know its 3D position (with respect
to the camera coordinate frame) and the associated
dense 2D optical flow (between two consecutive images),
a dense scene flow [7] representation can be obtained,
describing the 3D motion of the world points. Fig. 1
depicts an example of the four images that can be used
in order to compute a dense scene flow representation of
the environment.

Fig. 1. Process of computing a dense scene flow representation.
Best viewed in color.

Scene flow was introduced in [7], and should be con-
sidered as an essential algorithm for studying 3D motion
in scenes. Scene flow describes the 3D motion of the
points in the scene, whereas optical flow describes the 2D
motion of the pixels in the image. Recently, scene flow
techniques have been proposed for intelligent vehicles
applications [15], [16]. The work of Wedel et al. [16]
can be considered as the main reference for computing
dense scene flow from stereo images. In this work, the
authors proposed a variational framework for estimating
dense stereo correspondences and dense 2D optical flow
correspondences between consecutive images and also
how dense scene flow estimates can be used for moving
objects segmentation. In [15], a sparse scene flow rep-
resentation of the scene is obtained in order to detect
moving objects in road-traffic urban environments. Those
adjacent points that describe a similar scene flow are
clustered and considered to belong to the same rigid
object.



However, scene flow computation considering a mov-
ing stereo pair with 6-Degrees of Freedom (DoF) and
crowded urban scenarios with many independently mov-
ing objects is more challenging than for common intel-
ligent vehicle applications. In these kind of Advanced
Driver Assistance Systems (ADAS), it is possible to use
the prior information from inertial sensors to compensate
for camera egomotion. Despite of this, some approaches
neglect the effect of camera rotation [17] or do not
perform any kind of egomotion compensation [15].
In stereo visual SLAM applications, it is necessary to

consider the camera rotation and translation for egomo-
tion compensation for a reliable scene flow computation.
SLAM and scene flow computation from a stereo camera
in highly crowded environments can be a difficult task.
These scenarios are extremelly challenging since we can
have fast camera motion, changes in lighting conditions,
motion blur and many independently moving objects
such as pedestrians that on occasions can almost cover
the entire image view. For example, Fig. 2 depicts few
samples of typical environments where visually impaired
users have to deal with during navigation tasks.

Fig. 2. These three images depict some examples of the difficult
challenging scenes that we can have in real-world crowded environ-
ments for the visually impaired.

By means of dense scene flow estimates, we can derive
motion likelihoods that can be used to segment moving
objects, aiding the visual SLAM process. To the best of
our knowledge, this is the first time that dense scene
flow has been used in the context of visual SLAM
for dealing with moving objects in crowded and highly
dynamic scenarios aiding the visual SLAM estimation.
In Section III-A we will derive the set of equations
that are necessary in order to obtain a dense scene flow
representation. Finally, we will show in Section III-B,
how to obtain motion likelihoods by means of a dense
scene flow representation, and how these likelihoods can
be used to identify moving objects in the image. In this
way, we obtain more robust camera egomotion estimates
and delete those features located on moving objects from
the SLAM process, yielding superior 3D reconstruction
results.

A. Scene Flow Computation

Given dense disparity maps between the two images
of a stereo rig and dense optical flow estimates between
two consecutive images, we can estimate a dense 3D scene
flow, describing the 3D motion of world points. Using this
information and considering that the images are rectified
and undistorted, the 3D motion vector associated to two

correspondent points can be computed considering the
following equations:
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where Eq. 1 describes the coordinates of a 3D point at
time instant t+1, and Eq. 2 describes the 3D coordinates
of a 3D point at time t referenced to the camera coor-
dinate frame at time t + 1. R and T are respectively
the rotation matrix and the translation vector of the
camera between the two time steps. Notice that if the
camera is stationary, the rotation matrix is equal to an
identity matrix and the translation vector components
are zero. B is the baseline of the stereo rig, f is the
camera focal length and u0, v0 are the coordinates of the
camera principal point.
Considering the above two equations, the 3D transla-

tion or motion vector M can be expressed as follows:
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In this work, we have used the dense opti-
cal flow method described in [18], for obtaining
dense 2D correspondences between consecutive frames
{(uL, v) → (u′

L, v
′)}. This algorithm computes the 2D

motion between consectutive frames by means of min-
imizing a cost function that approximates each neigh-
borhood of both frames by quadratic polynomials. In
addition, this algorithm is included in the OpenCV
library 1 and exhibits good performance. Notice here that
other advanced variational optical flow methods could
have been employed [19], [20], but the derivation of the
scene flow and residual motion likelihoods remain the
same.

B. Detection of Moving Objects by Motion Likelihoods

Once we have computed the 3D motion vector for each
pixel in the image, it is necessary to take into account
the uncertainties of the scene flow vector in order to
derive robust motion likelihoods. If we try to segment
objects based on the modulus of the 3D motion vector,
the segmentation is prone to errors due to measurement
noise and depth uncertainty in the stereo reconstruction
process. Therefore, it is much more robust to take all
the uncertainties of the problem into account and derive
a metric based on the Mahalanobis distance. By means
of the Mahalanobis distance, a metric can be derived in
order to identify possible moving objects in the scene [15],
[16].

1Available from http://sourceforge.net/projects/opencvlibrary/



First, we need to define the uncertainties of our mea-
surements. Then, the resulting error of the 3D motion
vector can be computed by linear error propagation and
the Jacobian of the motion vector with respect to the
measurements. Let us denote the scene flow vector of
measurements zSF as:

zSF = (u′

L, u
′

R, v
′, uL, uR, v, tx, ty, tz, qx, qy, qz)

t
(4)

where (u′

L, u
′

R, v
′) are the image coordinates for a

given stereo point at time instant t + 1 and (uL, uR, v)
are the image coordinates for the same corresponding
point at time instant t. The set of parameters (tx, ty, tz)
and (qx, qy, qz) represent respectively the 3D translation
vector and the rotation matrix parametrized by means
of a unit quaternion between the two time instants. This
translation vector and rotation matrix can be obtained
directly from the visual odometry procedure described in
Section II-A.
The covariance of the scene flow ΣSF is obtained as:

ΣSF = JSF · SSF · JSF
t (5)

where JSF is the Jacobian of the scene flow with
respect to the vector of measurements zSF and SSF is
the measurement noise matrix. We consider a pixelic
standard deviation of ±1 pixel for all the pixelic values
that are involved in the measurement scene flow zSF. Re-
garding the translation and orientation variances, these
quantities can be obtained from the visual odometry
estimation, which is formulated as a nonlinear least
squares minimization. When the sum of squares repre-
sents the goodness of fit of a nonlinear model to observed
data, there are several approximations to obtain the
covariance matrix of the estimated regression coefficients.
These approximations estimate the Hessian of a function
in the neighbourhood of a solution by means of the
Jacobian product J(x)t · J(x) being J(x) the Jacobian
matrix of the function f(x), thereby avoiding to compute
or approximate any second-order derivatives. For more
information about how to compute these covariances es-
timates we recommend the reader to check the following
references [21], [22].

For a given pixel in the image (u, v), we can evaluate
the associated Mahalanobis distance of the 3D motion
vector in order to compute a residual motion likelihood:

ξmotion(u, v) =

√

(Mt ·ΣSF
−1 ·M) (6)

Assuming a stationary world and Gaussian error prop-
agation, Eq. 6 can be used to identify possible outliers
or moving points. Stationary points will exhibit low
residual motion likelihoods, whereas moving points will
yield higher deviations from zero. Then, by thresholding
on the residual motion likelihood we can identify those
parts in the scene that are static or that belong to moving
objects. In this way, we can identify those points in

the image that are not static, deleting them from the
SLAM process yielding more robust 3D reconstruction
results. The squared Mahalanabois distance ξmotion(u, v)
follows a χ2 distribution, and outliers can be identified
by thresholding according to this distance.

IV. Combining Visual SLAM and Dense Scene

Flow

Visual odometry is a key component in our visual
SLAM algorithm, since we use the visual odometry infor-
mation as an initialization for the structure and motion
in the reconstruction. Visual odometry assumes that a
dominant part of the scene changes only due to camera
egomotion. There can be some situations in crowded
and dynamic environments where some visual odome-
try correspondences declared as inliers in the RANSAC
step, will belong to moving objects, yielding wrong and
inconsistent camera pose estimates. Those outliers can
be detected if we have some prior information about the
position of the moving objects in the image. Therefore,
in order to use the information from the dense scene flow
representation, we obtain a more robust visual odometry
estimate by means of a two-step approach:

1) First, we obtain visual odometry estimates between
two consecutive images. With the resulting camera
egomotion and associated uncertainty, we build a
dense scene flow representation of the environment.
Even though the visual odometry estimate can be
corrupted due to the presence of some outliers,
we can use this visual odometry estimate as an
initialization for building an approximate dense
scene flow representation.

2) Second, from the dense scene flow representation
and derived residual motion likelihoods, we detect
those possible visual odometry inliers that are lo-
cated on moving objects and discard those from
the set of correspondences. Then, we re-estimate
visual odometry without the discarded set of corre-
spondences. In this way, we can obtain more robust
visual odometry estimates that will be used to
create consistent priors on the 3D structure and
camera motion that will be incorporated in the
visual SLAM estimation.

Fig. 3 depicts one comparison of visual odometry with
and without moving objects detection by means of the
residual motion likelihoods obtained from the dense scene
flow. Even though RANSAC can detect most of the
outliers or wrong correspondences, in extremelly chal-
lenging scenarios where moving objects can cover almost
the whole image view there can be some remaining
correspondences declared as inliers that belong to moving
objects. By means of the dense scene flow representation,
these areas can be identified and visual odometry can be
re-estimated without the wrong set of correspondences,
improving considerably the egomotion results.

Once we have computed the residual motion likeli-
hoods for every pixel in the current image, we can create



Fig. 3. Visual odometry in the presence of moving objects.
Inliers are depicted in red, whereas outliers are depicted in blue.
(a) Without moving objects detection (b) With moving objects
detection. Best viewed in color.

a moving objects image mask. Those pixels that have a
residual motion likelihood higher than a fixed threshold
are discarded from the visual SLAM process, in order
to avoid adding erroneous measurements. According to
our experiments, we can only detect moving objects in
a reliable way up to a distance of approximately 5 m.
Detection of objects in a far range is more difficult due
to the high errors and nonlinearities introduced by the
stereo reconstruction and wrong optical flow estimates
due to the small size of the objects. Fig. 4 depicts two
different examples of satisfactory detection of moving
objects, one from an indoor dataset and the other one
from an outdoor dataset. Notice how there are no tracked
features (depicted in red) on the moving objects, since
these features are discarded from the SLAM process.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Detection of moving objects by residual motion likelihoods.
First row, experiment inside Atocha railway station. Second row,
experiments in the city of Alcalá de Henares. (a,d) Original image
with the tracked SLAM features in red (b,e) Dense optical flow
image (c,f) Mask of moving objects. For the dense optical flow
images, the color encodes the direction and the saturation encodes
the magnitude of the flow. For the mask of moving objects images,
a pixel of white color means that the pixel belongs to a moving
object. Best viewed in color.

One of the problems of the scene flow computation is
that the algorithm can detect some pixels in the image
as moving objects, when in fact those pixels belong to
static points due to measurement noise or optical flow
problems. In general, most dense optical flow methods
are not able to handle properly real non-artificial scenar-
ios and textureless regions yielding constant image flow
estimates over these areas. These constant image flow

estimates in textureless regions do not correspond to the
real observed flow. However, in visual SLAM applications
this is not a big problem, since in textureless regions
there are no detected 2D features at all, and even if
some features are detected, these features are difficult to
be tracked successfully during a large number of frames.
Fig. 5 depicts one example in which some static points
located in the floor are detected as moving points. Notice
also that in these textureless areas there are no detected
2D features.

(a) (b) (c)

Fig. 5. Problems of dense scene flow estimation in textureless
areas. (a) Image with the tracked features depicted in red (b)
Dense optical flow (c) Mask of moving objects. Notice that in the
textureless areas there are no features of interest. Best viewed in
color.

V. Results and Discussion

Our vision-based system aid for the visually impaired
consists of a stereo camera connected through a fireware
cable to a small laptop for recording and processing the
images. Fig. 6 depicts one image of our vision-based
system aid for the visually impaired.

Fig. 6. The stereo camera system is attached to chest of the
visually impaired user by means of a non-invasive orthopedic vest.
Then the camera is connected to a small laptop by means of a
fireware cable.

We conducted large-scale visual SLAM experiments
with visually impaired users in highly dynamic environ-
ments, with many independently moving objects such as
pedestrians or cars. We performed experiments inside
the Atocha railway station (Madrid, Spain) and in a
crowded area of the city center of Alcalá de Henares
(Madrid, Spain). In these experiments, we were mainly
interested in evaluating the performance of visual SLAM
approaches in these kind of crowded environments, to



know if visual SLAM approaches can be used success-
fully in future navigation applications for the visually
impaired. For this purpose, the visually impaired user
received several indications before the start of the se-
quence about going from one starting point to a final
destination.

For the mentioned experiments, we have used the
Bumblebee2 stereo camera sold by Point Grey Research2.
This commercial stereo rig provides highly accurate cam-
era calibration parameters and also stereo rectification
and dense depth map generation on-chip. The camera
baseline is 12 cm and the horizontal field of view is of
100◦. The image resolution was 640× 480 pixels and the
acquisition frame rate was about 15 frames per second,
considering B&W images.

Fig. 7 depicts some image views from different view-
points of the sparse 3D point map from the Atocha rail-
way station and Alcalá de Henares sequences, using the
visual SLAM algorithm with moving objects detection by
means of residual motion likelihoods. The final Atocha
sparse 3D reconstruction comprises of 65,584 3D map
points and 2060 camera poses that correspond to the set
of reconstructed keyframes. In contrast, the final Alcalá
3D reconstruction comprises of 64,360 3D map points
and 1483 camera poses.

(a) (b)

Fig. 7. Image views of the sparse 3D point cloud reconstruction
from the Atocha railway station (a) and Alcalá de Henares (b)
sequences. Each 3D point is depicted by they grey image value when
the point was added to the map for first time.

A. Atocha Railway Station Experiment

We performed a sequence in which a visually impaired
user entered into the Atocha railway station and had to
go to the entrance of the underground station, wich is
located inside the railway one. Then from the entrance
of the underground station, the user had to come back
to the same starting place of the route in order to
close the loop and correct the accummulated drift in the
trajectory. The total length of the route (round trip)
was approximately 647 m. The sequence comprises of
a total number of 7,109 stereo frames and the total
length in time of the experiment was 11 minutes. Fig. 8

2For more information, please check the following url:
http://www.ptgrey.com/products/stereo.asp

depicts some image samples from the experiment inside
the Atocha railway station.

(a) (b) (c)

Fig. 8. (a) Start of the route (b) One image sample inside the
railway station (c) End of the route: Entrance to the underground
station.

Fig. 9(a) depicts a comparison of the inliers ratio with
respect to the stereo visual odometry step for the Atocha
sequence. As it can be observed when we incorporate the
moving objects detection (MOD) module into the SLAM
system, the final inliers ratio in the visual odometry
estimation increases considerably. This is due to the fact
that thanks to the dense scene flow representation and
the derived motion likelihoods, we are able to identify
possible areas in the image that may belong to mov-
ing objects. With this information we can re-estimate
again visual odometry without the wrong set of corre-
spondences, yielding improved egomotion estimates. In
contrast, Fig. 9(b) depicts the histogram of the number
of inliers in the visual odometry estimation. As it can be
observed, there are several frames in which the number
of inliers in the visual odometry estimation is below 50.
Those situations correspond to images where almost the
whole image view is covered by moving objects. Notice
that as a default option we tried to extract 400 stereo
features per frame in order to find correspondences with
the previous frame for the visual odometry estimation.

(a) (b)

Fig. 9. Visual odometry results considering moving objects detec-
tion, Atocha sequence. (a) Comparison of the inliers ratio in visual
odometry when using the moving objects detection module (b)
Histogram of the number of inliers in visual odometry with moving
objects detection by residual motion likelihoods. Best viewed in
color.

Fig. 10(a) depicts the trajectory performed by the
visually impaired user in the Atocha sequence before
the loop closure correction, considering the visual SLAM
algorithm with (in red) and without (in blue) moving
objects detection. In contrast, Fig. 10(b) depicts the
same comparison after the loop closure correction by
means of pose-graph optimization techniques and a sub-
sequent global BA optimization. It can be observed that



the obtained camera trajectory considering the moving
objects detection is more similar to the real camera
trajectory and fits to the real shape of the Atocha
railway station. However, without the moving objects
detection the estimated camera trajectory is completely
inconsistent with the real-performed trajectory.

(a) (b)

Fig. 10. Comparison of visual SLAM estimated camera trajecto-
ries, Atocha sequence. (a) Before loop closure (b) After loop closure.
Best viewed in color.

At the same time we grabbed the sequence, we em-
ployed a wheel odometer for estimating the total length
in m of the trajectory. Then, we compared the estimated
total length of the wheel odometer with respect to the es-
timated trajectory lengths obtained in the visual SLAM
experiments. The estimated total length of the trajectory
considering the wheel odometer was 647.00 m, whereas
for the visual SLAM was 646.07 m and 641.37 m, with
and without the detection of moving objects respectively.
As we can observe, the estimated length of the visual
SLAM algorithm with moving objects detection is very
close to the ground truth length with a difference of
about 1 m in a total trajectory of 647 m length.

B. Alcalá de Henares Experiment

For this scenario, we mapped an area of special cultural
interest in the city-center of Alcalá de Henares. The
trip starts at the facade of the University of Alcalá
and finishes at the Cervantes house, passing through the
Mayor street. This street is the most crowded one in the
city of Alcalá and it is a very popular commercial area.
Lining the street there are arcades supported on columns
dating from the 19th century. The total length of the
route was approximately 447 m. The sequence comprises
of a total number of 5,592 stereo frames and the total
length in time of the experiment was approximately 10
minutes. From the facade of the University, the user
passed Cervantes Square and walked through one of the
sides of the square, which is an arcade supported on
columns, and then the user rotated and headed to Mayor
street going in a straight way for approximately 214 m.
Then, the user crossed the street and finally reached
Cervantes house. Fig. 11 depicts some image samples of
the conducted experiments in Alcalá.
Fig. 12(a) depicts the trajectory performed by the

visually impaired user in the Alcalá de Henares sequence,
considering the visual SLAM algorithm with (in red) and

(a) (b) (c)

Fig. 11. (a) Start of the route: Facade of the University of Alcalá
(b) Mayor street (c) End of the route: Cervantes house.

without (in blue) the moving objects detection module,
and also the estimated trajectory by means of a commer-
cial GPS (in green). As we can observe, the visual SLAM
without the moving objects detection module is not able
to estimate the real camera trajectory, showing higher
errors when estimating the two big rotations that are
present in the sequence. In contrast, we can appreciate
how by means of the moving objects detection module,
the estimated trajectory is in correspondence with the
real trajectory. GPS estimated trajectory is also similar
to the one obtained with our visual SLAM and moving
objects detection module, however there are some places
in the sequence where the standard deviation of GPS
measurements is big, in ocassions higher than 10 m.
These situations correspond to areas where the user was
walking close to buildings, or when the user was walking
through the arcades in Mayor street or one of the sides
of Cervantes Square. In those areas, GPS is prone to
failure due to low satellite visibility conditions. Fig. 12(b)
depicts the same comparison but displaying results onto
an aerial image view of the sequence.

(a) (b)

Fig. 12. Comparison of visual SLAM and GPS estimated camera
trajectories, Alcalá de Henares sequence. (a) Visual SLAM with
and without moving objects detection and GPS (b) Aerial image
view of the sequence. Best viewed in color.

The estimated total length of the trajectory consid-
ering the wheel odometer was 447.00 m, whereas for
the visual SLAM was 449.79 m and 451.54 m, with and
without the detection of moving objects respectively.

VI. Conclusions and Future Work

In this paper, we have shown that it is possible to ob-
tain accurate visual SLAM results in extremely challeng-
ing large-scale environments with many independently
moving objects. This is possible, due to the detection of
moving objects in the image by means of a dense scene



flow representation and from derived residual motion
likelihoods. When this object detection module is added
to the visual SLAM pipeline, we can improve consid-
erably visual odometry estimates and consequently, we
obtain more accurate localization and mapping results in
highly dynamic environments. We think that our results
can be improved considerably in the next future from
better dense scene flow representations [23], [20].
We are also interested in improving the capabilities

of visual SLAM and SfM approaches in order to deal
with moving objects in the scene. We think that the
combination of a robust dense scene flow representation
and the tracking of the moving objects [24] can yield a
very robust visual SLAM method that can be used in
challenging and crowded environments.
The visual SLAM module explained in this paper is

an important part of a mobility system towards the
autonomous navigation of the visually impaired. Once a
persistent map of the environment is created by means of
visual SLAM, this map can be used for localization [25] or
topological navigation [26] purposes. Given a prior map
of the environment and an estimate of the localization of
the user within the environment, navigation commands
can be computed and transmitted by audio devices to
the visually impaired users. We are doing experiments
with audio bone conducting, which is a non-invasive
technology that allows visually impaired users to listen to
other important sound sources in the environment (e.g.
vehicles) while receiving navigation commands.
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