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ABS]RACT. Our main theorem establishes the uniqueness of the common fixed point of tw

set-valued mappings and of two single-valued mappings defined on a complete metric space,

under a contractive condition and a weak commutativity concept. This improves a theorem

of the second author.
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Let (X,d) be a complete metric space and let B(X) be the set of all nonempty,

bounded subsets of X As in [I], let (A,B) be the function defined by

(A,B) sup {d(a,b) a A, b B}

for all A, B in B(X).

If A consists of a single point a we write

6(A,B) (a,B)

and if B also consists of a single point b we write

(A,B) d(a,b)

It follows immediately from the definition that

(A,B) (B,A) O, (A,A) diam A,

6(A,B) 6(A,C) + 6(C,B)

for all A B C in B(X).

We say that a subset A of X is the limit of a sequence {A of nonempty sub-
n

sets of X if each point a in A is the limit of a convergent sequence {a }, where
n

a is in A for n 1,2 and if for arbitrary O, there exists an integern n

N such that A ! for n N where A is the union of all open spheres withn
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centres in A and radius

LEMM_A I. If {A and {B are sequences of bounded subsets of (X,d) which con-
n n

to the bounded sets A and B respectively, then the sequence {6(An,Bn)}verge

converges to (A,B).

This lemma was proved in [2].

Now let F be a mapping of X into B(X) We say that F is continuous at the

point in X if whenever {x is a sequence of points in X converging to x
n

the sequence {Fx in B(X) converges to Fx in B(X). If F is continuous at
n

each point x in X, we say that F is a continuous mapping of X into B(X). A

point z in X is said to be a fixed point of F if z is in Fz.

For a selfmap I of (X,d), the authors of [3], extending the results of [2] and [4],

defined F and I to be weakly commuting on X if

(Flx,IFx) ! max{(Ix,Fx), diam IFx} (I.I)

for all x in X. Two commuting mappings F and I clearly commute, but two weakly

commuting mappings F and I do not necessarily commute as is shown in the following

example.

EXAMPLE I. Let X [0,I], let 6 be the function induced by the euclidean metric d

and define

Fx [0, x/(x+ah)], Ix x/a

for all x in X where h and a 2. Then for any non-zero x in X we have

h+lFIx [0, x/(x + a )] [0, x/(ax + ah+l)]-- IFx

but for any x in X we have

6(Flx, IFx) x/(x + ah+l) x/a (Ix, Fx)

Note that if F is a single-valued mapping, then the set {IFx} consists of a

single point and therefore diam {IFx} 0 for all x in X. Condition (I.I) therefore

reduces to the condition given in [5], i.e.

d(Flx, IFx) ! d(Ix, Fx) (1.2)

for all x in X.

An extensive literature exists about (common) fixed points of set-valued mappings

satisfying contractive conditions controlled from non-negative real functions f from

[0,) into [0,). Suitable properties of f guarantee the convergence to the

(common) fixed point of the sequence of successive approximations: see for example the

papers of Barcz [6], Chen and Shih [7], Guay, Singh, and Whitfield [8], Miczko and

Palezewski [9], Nhan [I0], Papageorgiou [II], Popa [12], Sharma [13] and Wegrzyk [14].

In this paper we consider the family F of functions f from [0,) into [0,)

such that

(a) is non-decreasing,

(aa) is continuous from the right,

(aaa) f(t) < t for all t 0.

LEMMA 2. For any t > 0 lim fn(t) O.

The proof of this lemma is obvious but see also [15].
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Further details about the usage of functions with properties similar to (a), (a),

and (aaa) can be found in the papers of Benedykt and Matkowski [16], Browder [17],

Conserva and Fedele [18], HegedHs and Szilgyi [19], Hikida [20], Park and Rhoades [21],

Jhoades [22], and Singh and Kasahara [23].

2. RESULTS IN COMPLETE METRIC SPACES.

Let F, G be two set-valued mappings of X into B(X) and let I J be two

elfmaps of X such that

F(X) ! l(X), G(X) i J(X) (2.1)

l.et Xo (Resp. yo be an arbitrary point in X and define inductively a sequence {i
resp. {yn }) such that, having defined the point Xn_l (resp. yn_l), choose a point

:n (resp. yn with IXn (resp. JYn) in FXn_l (resp. GYn_ 1) for n |,2,

’I’his can be done since the range of I (resp. J) contains the range of F (resp. G).

Further, assume that

sup{6(FXn,GYo), 6(GYn,FXO) n 1,2 < (2.2)

i<EMARK I. IF X is bounded then (2.2) will always be satisfied for all x, y in X.

We consider the following conditions:

(y|) continuous,

(y2) F continuous and IFx ! Fix for all x in X

([) J continuous,

(2) G continuous and JGx ! GJx for all x in X

Modifying the proof of theorem of [I] we are now able to prove the following:

THEOREM I. Let F, G be two set-valued mappings of X into B(X) and let I, J

be two selfmaps of X satisfying (2.1) and

6(Fx,Gy) ! f(max{d(Ix,Jy), 6(Ix,Gy), 6(Jy,Fx) }) (2.3)

for all x, y in X where f is in F Further let F and G weakly commute

with and J respectively. If there exist points x
0

and YO in X satisfying

(2.2) and if the conditions (yi) and (%j) with i, 1,2, hold, then F G

and J have a unique common fixed point z Further, Fz Gz {z} and z is the

is the unique common fixed point of F and I and of G and J

PROOF. Since

6(FXr,GYs) _< 6(FXr,GYo) + 6(GYo’Fxo) + 6(Fxo’GYs)’
it follows from (2.2) that

M sup {6(FXr,GYs) r, s 0,1,2

is finite.

If M O, then for arbitrary e > O, we can choose an integer p such that

fP(M) e by lemma 2. If M O, then fP(M) 0 < e for any integer p.

As in the proof of theorem of [24], we have on using inequality (2.3) p times

and property (a):

6(FXm,GYn) fP(max{6(FXr’Gyq) m p _< r _< m

n- p!q!n})
<6
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for m n > p. Thus

(Fxm,Fxn) _< 6(FXm,GYs) + 6(GYs,FXr) 2

for m n > p The sequence {z is therefore a Cauchy sequence in the complete

metric space X and so has a limit Z in X where z is independent of the particu-

lar choice of each z It follows in particular that the sequence {Ix converges
n n

to z and the sequence of sets {Fx converges to the set {z}
n

Similarly, it can be proved that the sequence {Jyn converges to a point w and

the sequence of sets {Gyn} converges to the set {w}

Using (2.3) we have

6(Fxn,Gyn) _< f(max{d(IXn,JYn), 6 (Ixn’Gyn), 6(JYn,FXn
Letting n tend to infinity and using lemma and properties (aa) and (aaa) it is

seen that w z.

Now suppose that (yl) holds. Then the sequence {12Xn and {IFXn converge

to Iz and {Iz} respectively. Let w be an arbitrary point in Fix for
n n

n 1,2, Then since I weakly commutes with F we have on using (I.I)

d(Wn,IZ) _< 6(FlXn,lZ)
< 6(Fix IFXn) + (IFx

n
Iz)n’

max{6(Ix Fxn) 2(12Xn+ IFXn)} + 6(IFx Iz)n’ I’ n’

Letting n tend to infinity and using lemma we see that the sequence {w converges
n

to Iz But Iz is independent of the particular choice of w in Fix and this
n n

means that the sequence of sets {Fix converges to the set {Iz}
n

Using inequality (2.3) we have

(FlXn’GYn) -< f(max{d(12Xn’JYn ), 6(12Xn,GYn), 6(Jyn,Flxn)})
Letting n tend to infinity and using lemma and property (aa), we have

d(Iz,z) _< f(d(Iz,z))

which implies Iz z by (aaa).

Since

(Fz,GYn) _< f(max{d(Iz,Jyn), (Iz, GYn),6(JYn,FZ)})
we have on letting n tend to infinity and using lemma and property

(Fz,z) _< f((z,Fz))

which gives Fz {z} by ().

Similarly, the weak commutativity of G and J and condition (i) implies

Jz z and Gz {z}

Now assume that (y2) holds. Then the sequence {FIXn converges to Fz and

using inequality (2.3) we have

6(FlXn’GYn) -< f(max{d(12Xn’JYn), 6(12Xn,GYn), 6(JYn,FlXn)})
f(max{6(Flx Jyn 6(Flx

n GYn) 6(Jy
n FlXn)})n’

since f is non-decreasing and Ix is in Fx and so 12x is in IFXn_ FlXn_n n-I n
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Letting n tend to infinity and using lemma and property () we have

6(Fz,z) ! "f(6(Fz,z))

which implies Fz {z} by (aaa) Thus by (2.1) there must exist a point u in X

such that lu z.

Using inequality (2.3) we have

(Fu,Gyn) f(max{d(lu,JYn), (lu,GYn), (JYn,FU)}).
Letting n tend to infinity and using lemma and property (a), we obtain the ine-

quality

(Fu,z) ! f(max{d(lu,z), 6(z,Fu)}) f((z,Fu))

Thus Fu {z} by (aaa) and since F and I weakly commute, we have

z Fz Flu IFu Iz}.

It follows that Iz z.

Similarly property (%2) assures that Gz {z} and Jz z.

We have therefore shown that if the conditions (yi) and (j), with i, I, 2,

hold then Iz Jz z and Fz Gz {z}.

That z is the unique common fixed point of F and I and of G and J

follows easily. This completes the proof of the theorem.

COROLLARY I. Let F, G be two set-valued mappings of X into B(X) and let

I, J be two selfmaps of X satisfying (2.1) and

(Fx,Fy) c.max{d(Ix,Jy),(Ix,Gy),(Jy,Fx)} (2.4)

for all x, y in X, where 0 c < I. Further, let F and G commute with I and

J respectively. If F or I and G or J are continuous, then F, G, I and J

have a unique common fixed point z. Further, Fz Gz {z and z is the unique

common fixed point of F and I and of G and J.

PROOF. As in the proof of theorem of [I], it is proved that (2.2) holds for any

x0’ Y0 in X. Since F and G commute with I and J respectively, we have

Fix IFx and GJx JGx for all x in X. The thesis then follows from theorem

if we assume that f(t) ct for all t O.

The result of this corollary was given in [I].

We now give an example in which theorem holds but corollary is not applicable.

EXAMPLE 2. Let X [o,I] with 6 induced by the euclidean metric d and let

Fx [0,x/(x + 4)], Gx [0,x/(x + 8)], Ix Jx x
for all x in X.

By example i, F and G weakly commute with I. Further, we have

F(X) [0,I/5] [0,3 I(X),

G(X) [0,1/9] [0,1/2] J(X),

IFx [0,x/(2x + 8)] [0,x/(x + 8)] Fix

JGx [0,x/(2x + 16)] [O,x/(x + 16] GJx

for all x in X.

Since

6(Fx,Gy) max{x/(x+4), y/(y+8)}

! max{x/(x+4), y/(y+4)}
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! max{x, y}

(Ix,Gy), if x y,

(Jy,Fx), if x < y

and since X is bounded all the hypotheses of theorem are satisfied if we assume

f(t) t for all t 0. Clearly f is in F and 0 is the’unique common fixed

point of F, G and I

Theorem is a stronger result than corollary I, even if the mappings under consid-

eration are commutative, as is shown in the following example.

EXAMPLE 3. Let X be the reals with 6 induced by the euclidean metric d let

{0}, if x 0

Fx [0, x/(1 + 3x)], if 0 < x

[0, i/4], if x >

{0}, if x 0

Gx [0, x/(l + 2x)], if 0 < x !

{1/3}, if x > I,

O, if x_< 0

Ix x, if 0 < x <_ Jx

I, if x

for all x in X and let f in F be given by

We have

O, if x _< O,

x, if x > O,

f(t)
t/(l + 2t), if 0 < t <

t/3, if t >

(Fx,Gy) 0 f(d(Ix,Jy)), if x,y <_ 0

(Fx,Gy) y/(l+2y) f(y) f(d(Ix,Jy)), if x < 0 and 0 < y _< I,

(Fx,Gy) 1/3 < y/3 f(y)= f(d(Ix,Jy)), if x _< 0 and y >

(Fx,Gy) x/(l+3x)<x/(l+2x)=f(x)=f(d(Ix,Jy)), if 0 < x < and y _< O,
(Fx,Gy) max{x/(l + 3x), y/(1 + 2y)}

< max{x/(l + 2x), y/(l + 2y)}

f(y) f((Fx,Jy)), if x < y

f(x) f((Ix,Gy)), if x > y, and if 0 < x, y _< I,
(Fx,Gy) I/3 < y/3 f(y) f((Jy,Fx)), if 0 < x _< and y > I,
(Fx,Gy) I/4 < I/3 f(1) f(d(Ix,Jy)), if x > and y _< O,
(Fx,Gy) max{I/4, y/(l + 2y)} _< 1/3 f(1) f((Ix,Gy)), if x and

0 < y_<
(Fx,Gy) I/3 < y/3 f(y) f(6(Jy,Fx)), if x,y >

Condition (2.3) therefore holds in every case since f is non-decreasing. Further
F(X) [0,1.4] [0,I] I(X)

G(X) [0,I/3] [0,] J(X)
and F and G commute with I and J respectively. Since Fx _c [0,1/4] and
Gx

_
[0,1/3] for all x in X, it is easily seen that M _< I/3 and so (2.2) holds

for any x
0

and Y0 chosen in X. As I and J are continuous, theorem is appli-

cable. However, the conditions of the corollary are not satisfied. Otherwise for x=0
and 0 y < I, condition (2.4) should imply
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Y < c.max{y, Y cy6(Fx,Gy) + 2y- + 2y’ y

and so I/(I + 2y) _< c which as y tends to zero, gives c _> I, a contradiction.
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