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response of the frequency estimation loop and simplified its design.
The estimates were unbiased and ripple-free when the signal contained
no noise and the parameters of the signal were constant.

A modified version of the algorithm provided improvements for situ-
ations in which the fundamental component of the signal could become
small, or vanish for some periods of time. In this case, information from
all components of the signal was used in the fundamental frequency es-
timation. Multiple signals with the same fundamental frequency were
also combined to yield consistent estimation results despite changes
in signal characteristics. In consequence, an advantage of the modified
algorithm over the basic algorithm is that it is not necessary to know
a priori which component is the most suitable to base the frequency
estimation on. The algorithms were designed with real-time tracking
applications in mind. They were simple in design and implementation,
and effective in tracking time-varying parameters. The linear time-in-
variant approximations gave useful information about the dynamic be-
havior of the system, the tradeoff between convergence speed and noise
sensitivity, and the selection of the design parameters.
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On Common Quadratic Lyapunov Functions for Pairs
of Stable LTI Systems Whose System Matrices

Are in Companion Form

Robert N. Shorten and Kumpati S. Narendra

Abstract—In this note, the problem of determining necessary and suffi-
cient conditions for the existence of a common quadratic Lyapunov func-
tion for a pair of stable linear time-invariant systems whose system matrices

and are in companion form is considered. It is shown that a neces-
sary and sufficient condition for the existence of such a function is that the
matrix product does not have an eigenvalue that is real and nega-
tive. Examples are presented to illustrate the result.

Index Terms—Quadratic stability, stability theory, switched linear
systems.

I. INTRODUCTION

In this note, we consider the problem of determining necessary and
sufficient conditions for the existence of a positive–definite real sym-
metric matrixP = P

T
> 0, P 2

n�n that simultaneously satisfies
the matrix inequalities

A
T

1 P + PA1 < 0 A
T

2 P + PA2 < 0 (1)

where the matricesA1,A2 2
n�n are Hurwitz (all of their eigen-

values are in the open-left half of the complex plane). When both in-
equalities are satisfied for someP = P

T
> 0, then the scalar function

V (x) = x
T
Px is said to be astrongcommon quadratic Lyapunov

function (CQLF) for the dynamic systems�A : _x = A1x and�A :
_x = A2x. While a general analytic solution to this problem has yet to
be obtained [1] (a number of numerical solutions have been obtained
[2]), significant progress has been made for special classes ofAi ma-
trices. In this note the case whereA1 andA2 are in companion form is
considered. It is shown that

1) a necessary and sufficient condition for the existence of a
CQLF for the associated linear time-invariant (LTI) systems
is that the matrix productA1A2 does not have any real nega-
tive eigenvalues;

2) the aformentioned condition may be interpreted as a time-do-
main formulation of the circle criterion.

The implications of the result for several problems in stability theory
are then discussed.
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II. M ATHEMATICAL PRELIMINARIES

The following results are useful in deriving the main result of this
note. Lemma 2.1 is a well known result from linear algebra and Lemma
2.2 is a concise formulation of a result used in [3].

Lemma 2.1 [4]: LetA 2
n�p, B 2

p�n, and letIn denote the
identity matrix of dimensionn � n. Then

det[In � AB] = det[Ip �BA]: (2)

Lemma 2.2 [3]: Let A 2 n�n be a companion matrix, and let
h, g 2 n�1 such thatA � ghT is also in companion form; namely
gT = [0; . . . ; 1]. Then, the numerator and denominator polynomials
of the rational function

1 +Re h
T (j!In � A)�1g =

�(�!2)

jM(j!)j2

are given by

jM(j!)j2 = det !
2
In + A

2

�(�!2) = 1� h
T
A !

2
In +A

2 �1
g

�det !
2
In + A

2
: (3)

.When the matrix A is Hurwitz, det[!2In + A2] =
det[A]det[!2A�1 + A] 6= 08! 2 .

Comment: A proof of Lemma 2.2 is given in the Appendix.

III. M AIN RESULT

Theorem 3.1:A necessary and sufficient condition for the existence
of a common quadratic Lyapunov function for the LTI systems,�A :
_x = A1x, and�A : _x = A2x, with A2 = A1 � ghT , A1 2

n�n,
h, g 2 n�1, whereA1 andA2 are companion matrices, is that the
matricesA1 andA2 are Hurwitz, and that the matrix productA1A2

does not have any negative real eigenvalues.
Proof: The circle criterion [5], [6] provides a necessary and suf-

ficient condition for the existence of a common quadratic Lyapunov
function for�A and�A ; namely

1 +Re h
T (j!In �A1)

�1
g > 0 8! 2 : (4)

It is shown in this note that the condition thatA1A2 has no real negative
eigenvalues is both necessary and sufficient for (4).

Necessity: From Lemma 2.2, the rational function (4) can be written
as

1 +Re h
T (j!In � A1)

�1
g =

�(�!2)

jM(j!)j2

where the denominator polynomial is strictly nonzero for all real! and
where the numerator polynomial is given by

�(�!2)= 1�hTA1 !
2
In+A

2

1

�1
g det !

2
In+A

2

1 >0:

By applying Lemma 2.1,�(�!2) can be written

�(�!2)=det In� !
2
In+A

2

1

�1
gh

T
A1 det !2In+A

2

1

=det !
2
In+A

2

1

�1
!
2
In+A

2

1�gh
T
A1

�det !2In+A
2

1

=det !
2
In+ A1�gh

T
A1

=det !2In+A2A1 >0:

Now, suppose thatA2A1 has a negative real eigenvalue. This implies
thatdet[!2In +A2A1] = 0 for some!2 > 0. Hence, it follows from
the fact that the eigenvalues ofA1A2 andA2A1 are identical, that a
necessary condition for (4) is that the matrix productA1A2 does not
have a negative real eigenvalue.

Sufficiency: Let A1A2 (and henceA2A1) have no negative real
eigenvalues. Then, the polynomialdet[!2In + A2A1] is nonzero for
! 2 , or equivalently has no real roots for!2 � 0. Hence, since both
A1 andA2 are Hurwitz matrices

det !
2
In + A2A1 > 0; ! 2 :

Since the matrixA1 is Hurwitz,det(!2In + A2
1) 6= 0 for all !2 � 0.

Therefore, it follows that

det !
2
In + A

2

1

�1

�det !
2
In + A2A1 det !

2
In + A

2

1 >0

) det !
2
In + A

2

1

�1

�det !
2
In + A1 � gh

T
A1 det !

2
In + A

2

1 >0

) det !
2
In + A

2

1

�1

�det !
2
In + A

2

1 � gh
T
A1 det !

2
In + A

2

1 >0

) det In � !
2
In +A

2

1

�1
gh

T
A1

�det !
2
In + A

2

1 >0:

By applying Lemma 2.1, it follows that

1�hTA1 !
2
In+A

2

1

�1
g det !

2
In+A

2

1 > 0

)�(�!2)> 0: Q:E:D:

Comment: The circle criterion provides a convenient frequency do-
main test for the existence of a CQLF for systems of the form_x =
(A1 � k(t)ghT )x wherek1 � k(t) � k2. Theorem 3.1 may be inter-
preted as providing a time-domain formulation of the circle criterion
with k1 = 0 andk2 = 1.

Comment: Megretski [7, problem 30(1)]) notes the importance of
relating the multiplication operation in the time domain and the fre-
quency domain. This problem is also considered in [8]. Theorem 3.1
may provide insight into this relationship.

Comment: Theorem 3.1 provides a coordinate free condition for the
existence of a CQLF; the matricesA1 andA2 need only be simultane-
ously similar to companion matrices [9].

IV. I MPLICATIONS OF MAIN RESULT

The implications of the main result are given in 1)–3), as shown later.
Before proceeding, we note the following results.

Lemma 4.1 [10], [11]: Consider the LTI systems

�A : _x =Ax

�A : _x =A
�1
x

whereA 2 n�n is Hurwitz. Then, any quadratic Lyapunov function
for �A is also a quadratic Lyapunov function for�A .

Lemma 4.2 [12]: Let V (x) be a strong CQLF for the stable LTI
systems�A , �A . From Lemma 4.1,V (x) is a Lyapunov function
for the LTI systems�A +�A , �

A +�A
, � � 0. It follows that the

matrix pencilsA1 + �A2 andA1 + �A�12 are both Hurwitz for all
� 2 [0;1). Thus, the nonsingularity of these two pencils is a necessary
condition for the existence of a CQLF for the systems�A , �A .
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1) Necessity of the circle criterion for the existence of a CQLF:
While sufficiency of the circle criterion for the existence of a
CQLF for �A and�A was shown in [5] (using direct ar-
guments from Lyapunov stability theory), necessity was first
established by [6] using an indirect argument. Necessity fol-
lows immediately from Lemma 4.2 as follows. Let (4) be false.
Then, from the proof of Theorem 3.1,det[!2In + A2A1] =
det[A2]det[!

2A�1
2

+ A1] = 0 for some! 2 . SinceA2

is Hurwitz, it follows thatdet[!2A�1
2

+ A1] = 0 for some
! 2 . Hence, the pencil!2A�1

2
+ A1 is not Hurwitz for

some!2 > 0. From Lemma 4.2, a CQLF cannot exist for
�A and�A and (4) is both necessary and sufficient for the
existence of a CQLF.

2) Pencils of matrices: The existence of a CQLF for�A and
�A , namely thatA1A2 has no negative eigenvalues, is suf-
ficient to guarantee the Hurwitz stability of each of the fol-
lowing pencils:

A1 + �A2; A
�1

1 + �A2; A
�1

1 + �A
�1

2 ; A1 + �A
�1

2

for all � � 0. It consequently follows from item 1) that the
condition that the productA1A2 has no negative real eigen-
values is both necessary and sufficient for the simultaneous
Hurwitz stability of the above matrix pencils. We also note
that the existence of a CQLF implies the Hurwitz stability
of all convex combinations of the previous matrices and their
inverses.

3) The stability of switching systems: The existence of a strong
CQLF for�A and�A is sufficient to guarantee the expo-
nential stability of the switching system

_x = A(t)x; A(t) 2 fA1; A2g: (5)

Hence, whenA1,A2 are Hurwitz and are simultaneously sim-
ilar to companion matrices, a sufficient condition for the ex-
ponential stability of (5) is that the matrix productA1A2 does
not have any negative real eigenvalues. It follows from Lemma
4.1 that this condition is also sufficient for the exponential sta-
bility of

_x = A(t)x; A(t) 2 fA�11 ; A2g: (6)

The following theorem provides insights into the system (6).
Theorem 4.1[13], [14]: Let Ai 2

n�n, i = f1; 2g, be
general Hurwitz matrices. A sufficient condition for the exis-
tence of an unstable switching sequence for the system

_x = A(t)x; A(t) 2 fA1; A2g

is that the matrix pencilA1 + �A2 has an eigenvalue with a
positive real part for some positive�.

Suppose now that a CQLF does not exist; the matrixA1A2

has at least one negative real eigenvalue, and the pencilA�1
1

+
�A2 is singular, and hence not Hurwitz, for some positive�.
It follows from Theorem 4.1 that an unstable, or a marginally
stable, switching sequence exists for (6). Hence, for systems
of this form, a necessary and sufficient condition for exponen-
tial stability for arbitrary switching sequences is that a CQLF
exists for�

A
and�A (the matrix pencilA1A2 has no neg-

ative real eigenvalues).

V. EXAMPLES

In this section, we present two examples to illustrate the main fea-
tures of our result.

Example 1 (No CQLF):Consider the dynamic systems�A and
�A with

A1 =

0 1 0

0 0 1

�1 �2 �3

A2 =

0 1 0

0 0 1

�2 �3 �1

:

The matrix productA1A2 is given by

A1A2 =

0 0 1

�2 �3 �1

6 8 1

:

A CQLF cannot exist as the eigenvalues ofA1A2 are given by�i =
f1;�2;�1g, i 2 f1; 2; 3g.

Example 2 (CQLF exists):Consider the dynamic systems�A and
�A with

A1 =

0 1 0

0 0 1

�1 �2 �3

A2 =

0 1 0

0 0 1

�1 �1 �3

:

By Theorem 1, a CQLF exists as the eigenvalues ofA1A2 are given
by �i = f6:6264;�0:3132 + 0:2298i;�0:3132 � 0:2298ig, i 2
f1; 2; 3g. Using the MATLAB LMI toolbox, the following matrix is
obtained:

P =

0:5570 0:4236 0:8062

0:4236 1:1359 0:9203

0:8062 0:9203 2:3521

:

P is positive definite and satisfies the simultaneous Lyapunov inequal-
ities (1).

VI. CONCLUDING REMARKS

In this note, necessary and sufficient conditions for the existence of a
CQLF for a pair of dynamic systems whose system matrices are in com-
panion form are derived. These conditions may be viewed as a time-do-
main formulation of the circle criterion and provide a computationally
simple test for verifying the quadratic stability of a class of switched
linear systems.

APPENDIX

Proof of Lemma 2.2:We use the following representation of the
transfer functionG(s) = hT (sIn � A1)

�1g (see [4, Sec. A.13])

G(s) =h
T (sIn �A1)

�1
g

=
det sIn � A1 + ghT � det[sIn � A1]

det[sIn �A1]
:

Hence,1 + Re(hT (j!In � A1)
�1g), can be written as shown in the

first group of equations at the top of the next page. By assumption,
the matricesA1 andA1 + ghT are companion matrices. Hence, the
matrix ghT has nonzero elements only in the last row. It follows that
the second group of equations shown at the top of the next page holds.
Hence, from Lemma 2.1, the last group of equations shown at the top
of the next page holds. Q.E.D
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1 +Re h
T (j!In � A1)

�1
g =1 +Re

det j!In � A1 + ghT � det[j!In � A1]

det[j!In � A1]

=Re 1 +
det j!In �A1 + ghT � det[j!In � A1] det[�j!In � A1]

det[j!In � A1]det[�j!In � A1]

=Re
det !2In +A2

1 � ghTA1 � j!ghT

det [!2In + A2

1
]

:

Re
det !2In + A2

1 � ghTA1 � j!ghT

det [!2In +A2

1
]

=
det !2In +A2

1 � ghTA1

det [!2In + A2

1
]

=
det !2In +A2

1 det In � !2In +A2

1

�1

ghTA1

det [!2In + A2

1
]

:

Re
det !2In + A2

1 � ghTA1 � j!ghT

det (!2In + A2

1
)

=
det !2In + A2

1 1� hTA1 !2In + A2

1

�1

g

det [!2In + A2

1
]

=
�(�!2)

jM(j!)j2:
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