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Abstract

This paper deals with the question of the existence of weak and strong com-

mon quadratic Lyapunov functions (CQLFs) for stable discrete-time linear time-

invariant (LTI) systems. The main result of the paper provides a simple charac-

terisation of pairs of such systems for which a weak CQLF of a given form exists

but for which no strong CQLF exists. An application of this result to second

order discrete-time LTI systems is presented.

1 Introduction and Notation

In recent years, the area of systems theory and control has witnessed a considerable growth

of interest in systems characterised by a combination of continuous dynamics and logic-

based switching. Systems of this type are commonly referred to as switching systems in

the scientific and engineering literature. A major issue in this area is the determination of

easily verifiable and interpretable conditions that guarantee the stability of such systems. For

†oliver.mason@may.ie
‡robert.shorten@may.ie
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an overview of some of the more recent approaches to this issue see (DeCarlo et al. 2000),

(Branicky 1994), (Ye, Michel and Hou 1998), (Shorten and Narendra 2000), (Shorten and

Narendra 1998), (Johansson and Rantzer 1998), (Shorten and O’Cairbre 2002), (O’Cairbre

and Shorten 2001), (Narendra and Balakrishnan 1994b). In this context the problem of the

existence or non-existence of a common quadratic Lyapunov function (CQLF) for a family of

linear time-invariant (LTI) systems is of great importance. There is already a considerable

body of literature dedicated to this question for both discrete-time and continuous-time

systems (Boyd and Yang 1989), (Ando 2001), (Agrachev and Liberzon 2001), (Shorten and

Narendra 1999), (Akar and Narendra 2001), (Gurvits 1995), (Ooba and Funahashi 1999),

(Ooba and Funahashi 1997), (Mori, Mori and Kuroe 1998), (Mori, Mori and Kuroe 2001),

(Narendra and Balakrishnan 1994a). The main result presented here is concerned with the

CQLF existence problem for a family of two discrete-time LTI systems.

Throughout R and C will denote the fields of real and complex numbers respectively and

Rn×n (Cn×n) denotes the space of n× n matrices with real (complex) entries. For a matrix

A in Rn×n, AT denotes its transpose, det(A) its determinant and aij the entry in the (i, j)

position of A. Similarly for a vector x in Rn, xi denotes the ith component of x. A matrix

A ∈ Rn×n is said to be symmetric if A = AT . The notation P > 0 (P ≥ 0) is used to denote

that the matrix P is positive (semi-)definite with P < 0, (P ≤ 0) meaning that −P > 0

(−P ≥ 0).

We shall be concerned with the discrete-time Lyapunov matrix equation 1

AT PA− P = −Q A,P,Q ∈ Rn×n (1)

The next result is standard in the theory of discrete-time LTI systems (Rugh 1996).

1referred to as the Stein equation by some authors
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Theorem 1.1 : Let A ∈ Rn×n. If there exist P = P T > 0, Q = QT > 0 satisfying (1), then

all of the eigenvalues of the matrix A have magnitude less than 1. Conversely, if all of the

eigenvalues of A have magnitude less than 1, then there exists a Hermitian solution P to (1)

for any choice of Hermitian Q and moreover, if Q > 0 then P > 0.

The relevance of equation (1) to the theory of discrete-time LTI systems (and the reason for

calling it the discrete-time Lyapunov equation) is provided by the fact (Rugh 1996), (Kailath

1980) that the discrete-time LTI system

ΣA : x(k + 1) = Ax(k) x(0) = x0, A ∈ Rn×n (2)

is exponentially stable if there exist positive definite matrices P , Q satisfying (1). We shall

refer to such systems as discrete-time stable systems from now on. Note that a system ΣA is

discrete-time stable if and only if all eigenvalues of the matrix A have magnitude less than 1.

In the spirit of (Shorten, Narendra and Mason 2003), we now define strong and weak CQLFs

for a set of discrete-time stable LTI systems.

Strong and weak common quadratic Lyapunov functions

Consider the set of discrete-time stable LTI systems

ΣAi : x(k + 1) = Aix(k), i ∈ {1, 2, ...M}. (3)

where the Ai, i ∈ {1, 2, ...M}, are constant matrices in Rn×n such that all the eigenvalues of

Ai have magnitude less than 1. Let the matrix P = P T > 0, P ∈ Rn×n, be a simultaneous

solution to the discrete-time Lyapunov equations

AT
i PAi − P = −Qi, i ∈ {1, 2, ...M}. (4)

If Qi is positive definite, the function V (x) = xT Px is a strong quadratic Lyapunov function

for the system ΣAi . If Qi is positive definite for all i, 1 ≤ i ≤ n, V (x) is a strong CQLF for

the family of systems ΣAi , 1 ≤ i ≤ n.
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Similarly, if Qi is positive semi-definite and singular the function V (x) = xT Px is a weak

quadratic Lyapunov function for the system ΣAi . If Qi is positive semi-definite and singular

for all i, 1 ≤ i ≤ n, V (x) is a weak CQLF for the family of systems ΣAi , 1 ≤ i ≤ n.

The notion of a matrix pencil will be convenient for expressing our later results, so we now

recall the definition of this concept.

The matrix pencil σγ[0,∞)[A1, A2]

The matrix pencil σγ[0,∞)[A1, A2] is the parameterised family of matrices

σγ[0,∞)[A1, A2] = {A1 + γA2, γ ∈ [0,∞)}, (5)

where A1, A2 ∈ Rn×n. We say that the pencil is non-singular if A1 + γA2 is non-singular for

all γ ≥ 0. Otherwise the pencil is said to be singular.

To complete this section, we recall some facts about the continuous-time Lyapunov equation

that will be needed later. A matrix A ∈ Rn×n is said to be Hurwitz if all of its eigenvalues lie in

the open left half of the complex plane. The following standard result is the continuous-time

analogue of Theorem 1.1 (Horn and Johnson 1991), (Rugh 1996).

Theorem 1.2 : Let A ∈ Rn×n. If there exist positive definite matrices P and Q satisfying

the continuous-time Lyapunov equation

AT P + PA = −Q (6)

then A is Hurwitz. Conversely, if A is Hurwitz, then there exists a Hermitian solution P to

the equation (6) for any choice of Hermitian matrix Q and moreover, if Q > 0 then P > 0.

As in the discrete-time case, equation (6) is intimately related to the stability properties of

the continuous-time LTI system

ΣA :
dx

dt
= Ax x(0) = x0, A ∈ Rn×n.

Using equation (6), the notions of strong and weak CQLFs are defined for continuous-time

LTI systems in the obvious way.
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2 Some Preliminary Lemmas

In this section, we present some technical results that shall prove useful in establishing the

main theorem of the next section. While a number of these results are known, we include them

here for the sake of completeness. The following well-known Lemma provides a convenient

test for singularity of a matrix pencil.

Lemma 2.1 : Let A1, A2 be non-singular matrices in Rn×n. The pencil σγ[0,∞)[A1, A2] is

singular if and only if the matrix product A1A
−1
2 has a negative (real) eigenvalue.

Proof: A1 is non-singular so the pencil is not singular for γ = 0. Now if γ > 0 then

det(A1 + γA2) = 0 ⇐⇒ (det(A1A
−1
2 + γI))(detA2) = 0

⇐⇒ det(A1A
−1
2 + γI) = 0

Thus the matrix A1+γA2 is singular if and only if the matrix product A1A
−1
2 has the negative

(real) eigenvalue −γ. 2

We next record the simple observation that the quadratic Lyapunov functions for the discrete-

time stable LTI systems ΣA and Σ−A coincide. This relates to the result in (Loewy 1976)

identifying the quadratic Lyapunov functions for ΣA and ΣA−1 for continuous-time systems.

2. A related observation was also made in (Barker, Berman and Plemmons 1978).

Lemma 2.2 : Consider the discrete-time stable LTI systems

ΣA : x(k + 1) = Ax(k)

Σ−A : x(k + 1) = (−A)x(k).

Then, any quadratic Lyapunov function for ΣA is also a quadratic Lyapunov function for

Σ−A.

2In fact, it is shown in (Loewy 1976) that, up to constant factors, A and A−1 are the only matrices

in Rn×n sharing the same set of real solutions to the continuous time Lyapunov equation (6)
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Proof: This is a straightforward consequence of the fact that

AT PA− P = (−A)T P (−A)− P

for any positive definite matrix P . 2

The following lemma relates the discrete-time Lyapunov equation (1) to the continuous-time

Lyapunov equation (6), and introduces a notation that we shall use to state our results.

Lemma 2.3 : Let ΣA be a discrete-time stable LTI system, and P = P T > 0 be a solution

of the discrete-time Lyapunov equation

AT PA− P = −Q Q > 0.

Consider the matrix

C(A) = (A− I)(A + I)−1

(Note that this is well defined as the eigenvalues of A are all of modulus less than 1.) Then

P is also a solution of the continuous-time Lyapunov equation

C(A)T P + PC(A) = −Q′

with Q′ = 2(A + I)−T Q(A + I)−1 > 0 The mapping

A → C(A) = (A− I)(A + I)−1

is known as the bilinear transformation in the engineering literature 3 (Kailath 1980), (Gajic

and Qureshi 1995) and it provides a link between the discrete-time and the continuous-time

Lyapunov equations. Henceforth, we shall use the notation C(A) for this mapping and write

C−1(A) for the inverse mapping C−1(A) = (I + A)(I −A)−1.

The next result gives a simple necessary condition for the existence of a strong CQLF for

two discrete-time stable LTI systems.

3It is more commonly referred to as the Cayley transform in mathematics
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Lemma 2.4 : Let ΣA1 ,ΣA2 be two discrete-time stable LTI systems with a strong CQLF

given by V (x) = xT Px. Then the two matrix pencils σγ[0,∞)[C(A1), C(A2)], σγ[0,∞)[C(A1), C(A2)−1]

are non-singular.

Proof: It is straightforward to check that C(−A) = C(A)−1. Thus, by Lemma 2.2 and

Lemma 2.3, P also defines a strong CQLF for the continuous-time systems ΣC(A1),ΣC(A2)

and for the continuous-time systems ΣC(A1),ΣC(A2)−1 . This implies in turn that P defines a

strong quadratic Lyapunov function for the systems ΣC(A1)+γC(A2), ΣC(A1)+γC(A2)−1 for all

γ > 0. From this it follows that the pencils σγ[0,∞)[C(A1), C(A2)], σγ[0,∞)[C(A1), C(A2)−1]

must consist entirely of Hurwitz matrices (Theorem 1.2) and, in particular must be non-

singular. 2

The proofs of the next two results to be presented are a little longer than the others in this

section, and for this reason are included in the appendix rather than in the body of the text.

Lemma 2.5 : Let u, v, x, y ∈ Rn be any four non-zero vectors. There exists a non-singular

T ∈ Rn×n such that each component of the vectors Tu, Tv, Tx, Ty is non-zero.

The next result (Lemma 2.6) establishes a convenient relationship between two parameteri-

zations of the same hyperplane in the space of symmetric matrices in Rn×n. A direct proof

of this result is provided in the appendix.

Lemma 2.6 : Let x, y, u, v be 4 non-zero vectors in Rn such that for all n×n real symmetric

matrices H

xT Hy = −kuT Hv

with k > 0. Then either

x = αu for some real scalar α, and y = −(
k

α
)v

or

x = βv for some real scalar β and y = −(
k

β
)u.
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3 Main results

The principal result of this paper concerns two discrete-time stable LTI systems for which

no strong CQLF exists but for which a weak CQLF exists with each of the Qi, i ∈ {1, 2}

in (4) of rank n − 1. In Theorem 3.1 we provide a simple algebraic characterisation of this

situation. The result is of interest for any class of systems where the transition from the

existence of a CQLF to the non-existence of a CQLF passes through the situation described

in the theorem.

Remark: It is possible to show that for any matrix A ∈ Rn×n, all of whose eigenvalues are

of modulus less than one, the set of matrices P = P T satisfying

AT PA− P = −Q Q ≥ 0, rank(Q) = n− 1

is dense in the set of matrices satisfying

AT PA−A = −Q Q ≥ 0, det(Q) = 0.

This indicates that the situation described in the theorem is potentially of great importance

in providing insight into the existence question for strong and weak CQLFs.

Theorem 3.1 : Let ΣA1 ,ΣA2 be two discrete-time stable LTI systems such that a positive

semi-definite solution P = P T ≥ 0 exists to the non-strict Lyapunov equations

AT
1 PA1 − P = −Q1 ≤ 0, (7)

AT
2 PA2 − P = −Q2 ≤ 0, (8)

for some positive semi-definite matrices Q1, Q2 both of rank n − 1 (n ≥ 2). Furthermore

suppose that the systems ΣA1 ,ΣA2 do not have a strong CQLF. Under these conditions,

at least one of the pencils σγ[0,∞)[C(A1), C(A2)], σγ[0,∞)[C(A1), C(A2)−1] is singular, and

equivalently, at least one of the matrix products C(A1)C(A2) and C(A1)C(A2)−1 has a real

negative eigenvalue.
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Proof: As Q1 and Q2 are of rank n− 1, there are non-zero vectors x1, x2 such that

xT
1 Q1x1 = 0 (9)

xT
2 Q2x2 = 0. (10)

The proof of Theorem 3.1 is split into two main stages.

Stage 1 : The first stage in the proof is to show that if there exists a real symmetric matrix

P satisfying

xT
1 (AT

1 PA1 − P )x1 < 0 (11)

xT
2 (AT

2 PA2 − P )x2 < 0 (12)

then ΣA1 , ΣA2 would have a strong CQLF.

So assume that there is some P satisfying (11), (12), and consider the set

Ω1 = {x ∈ Rn : ‖x‖ = 1 and xT (AT
1 PA1 − P )x ≥ 0}.

(Here ‖x‖ is the usual Euclidean norm on Rn.)

We shall show that there is a positive constant C1 > 0 such that AT
1 (P + δ1P )A1− (P + δ1P )

is negative definite provided that 0 < δ1 < C1.

Firstly suppose that Ω1 was empty. Then AT
1 (P + δ1P )A1 − (P + δ1P ) is negative definite

for any δ1 > 0. So any positive constant C1 will work in this case.

Now, assume that the set Ω1 is non-empty. The function that takes x to xT (AT
1 PA1 − P )x

is continuous. Thus Ω1 is closed and bounded, hence compact. Furthermore x1 (or any

non-zero multiple of x1) is not in Ω1 and thus xT (AT
1 PA1 − P )x is strictly negative on Ω1.

Let M1 be the maximum value of xT (AT
1 PA1−P )x on Ω1, and let M2 be the maximum value

of xT (AT
1 PA1 − P )x on Ω1. Then by the final remark in the previous paragraph, M2 < 0.
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Choose any constant δ1 > 0 such that

δ1 <
|M2|

M1 + 1

and consider the matrix

P + δ1P .

By separately considering the cases x ∈ Ω1 and x /∈ Ω1, ‖x‖ = 1, it is easy to see that for all

non-zero vectors x of norm 1

xT (AT
1 (P + δ1P )A1 − (P + δ1P ))x < 0

provided 0 < δ1 < |M2|
M1+1 . Let C1 denote the value |M2|

M1+1 . Thus we have shown that there is

some positive constant C1 such that AT
1 (P +δ1P )A1− (P +δ1P ) is negative definite provided

that 0 < δ1 < C1.

Now the same argument can be used to guarantee the existence of a positive constant C2

such that

xT (AT
2 (P + δ1P )A2 − (P + δ1P ))x < 0.

for all non-zero x provided we choose 0 < δ1 < C2. So, if we choose δ less than the minimum

of C1, C2, we would have a real symmetric matrix

P1 = P + δP

satisfying (4) with Q1, Q2 > 0. Furthermore it follows from Theorem 1.1 that P1 > 0 and

thus V (x) = xT P1x would be a strong CQLF for ΣA1 , ΣA2 .

Stage 2 : So, under our assumptions there is no real symmetric matrix H such that

xT
1 (AT

1 HA1 −H)x1 < 0 (13)

xT
2 (AT

2 HA2 −H)x2 < 0. (14)
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This means that the mapping from the space of real symmetric matrices in Rn×n into R2

defined by

H →

 xT
1 (AT

1 HA1 −H)x1

xT
2 (AT

2 HA2 −H)x2


must be of rank 1.

Therefore there is some positive constant k such that

xT
1 (AT

1 HA1 −H)x1 = −kxT
2 (AT

2 HA2 −H)x2 (15)

for all real symmetric matrices H.

Expanding the expression (A1x1 − x1)T H(A1x1 + x1) for symmetric H gives

xT
1 AT

1 HA1x1 − xT
1 Hx1 + xT

1 AT
1 Hx1 − xT

1 HA1x1 = xT
1 AT

1 HA1x1 − xT
1 Hx1

= xT
1 (AT

1 HA1 −H)x1

Therefore

xT
1 (AT

1 HA1 −H)x1 = (A1x1 − x1)T H(A1x1 + x1) (16)

and similarly

xT
2 (AT

2 HA2 −H)x2 = (A2x2 − x2)T H(A2x2 + x2) (17)

for all symmetric H.

Combining (15) with (16) and (17) yields the following identity for all symmetric matrices

H.

(A1x1 − x1)T H(A1x1 + x1) = −k(A2x2 − x2)T H(A2x2 + x2) (18)

Now apply Lemma 2.6 to deduce that either

(A1x1 + x1) = α(A2x2 + x2), (A1x1 − x1) = −k

α
(A2x2 − x2) (19)
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or

(A1x1 + x1) = α(A2x2 − x2), (A1x1 − x1) = −k

α
(A2x2 + x2) (20)

In the first case (19), we have

x1 = α(A1 + I)−1(A2 + I)x2

and substituting this into the second identity in (19) yields

(A1 − I)(A1 + I)−1(A2 + I)x2 = − k

α2
(A2 − I)x2

Letting y = (A2 + I)x2 we see that

((A1 − I)(A1 + I)−1 +
k

α2
(A2 − I)(A2 + I)−1)y = 0

and hence the pencil σγ[0,∞)[C(A1), C(A2)] is singular and the product C(A1)C(A2)−1 has a

negative eigenvalue. A similar argument shows that in the case (20), the pencil σγ[0,∞)[C(A1), C(A2)−1]

is singular and the product C(A1)C(A2) has a negative eigenvalue. This completes the proof

of Theorem 3.1. 2

We note that an alternative proof of Theorem 3.1 is possible by combining the bilinear

transformation with results presented in (Shorten, Narendra and Mason 2003).

Comments on the Applicability of the result:

Theorem 3.1 provides an insight into the general question of CQLF existence for pairs of

discrete-time LTI systems and can be used to derive checkable necessary and sufficient condi-

tions for CQLF existence for specific classes of systems of practical importance. The general

approach to applying the result relies on the following two facts.

(i) If two systems ΣA1 , ΣA2 have a strong CQLF, then the matrix pencils σγ[0,∞)[C(A1), C(A2)],

σγ[0,∞)[C(A1), C(A2)−1] are Hurwitz.

(ii) For two systems which do not have a strong CQLF, there is some d > 0 such that ΣA1 ,

ΣC−1(C(A1)−dI) have a weak CQLF but no strong CQLF.
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In order to apply Theorem 3.1, it is necessary to identify systems classes such that the

systems obtained in point (ii) above will satisfy the hypotheses of the theorem. To illustrate

the method, one such class is presented in the next section. It is the authors belief that other

classes exist and the identification of such classes is currently the subject of ongoing research.

It is important to note that for classes to which the result applies in the above sense, it would

be possible to derive conditions in terms of the eigenvalue locus of simple matrix pencils which

were equivalent to the existence of a strong CQLF. Such conditions are easily checkable and

furthermore have a strong connection with the stability properties of the associated switching

system. Indeed, the results presented in (Shorten, O’Cairbre and Curran 2000) indicate how

such conditions can inform us as to whether or not CQLF existence is a conservative condition

for stability. This is of considerable practical importance in using CQLFs to test stability for

switching systems.

4 Second order systems

In this section we present an example to illustrate the use of Theorem 3.1.

Example: Second order systems

Let ΣA1 and ΣA2 be discrete-time stable LTI systems with A1, A2 ∈ R2×2. We note the

following readily verifiable facts.

(a) If a CQLF exists for ΣA1 and ΣA2 then the pencils σγ[0,∞)[C(A1), C(A2)] and

σγ[0,∞)[C(A1), C(A2)−1] consist entirely of Hurwitz matrices.

(b) If a CQLF does not exist for ΣA1 and ΣA2 then a CQLF (in the continuous-time sense)

does not exist for the continuous-time systems ΣC(A1), ΣC(A2). However by choosing

d > 0 sufficiently large, we can ensure that a CQLF (in the continuous-time sense) exists

for ΣC(A1)−dI and ΣC(A2). A continuity argument can be employed to show that there is
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some d1 with 0 < d1 < d such that C−1(C(A1)−d1I) and A2 satisfy Theorem 3.1, and

thus one of the pencils σγ[0,∞)[C(A1)− d1I, C(A2)] and σγ[0,∞)[C(A1)− d1I, C(A2)−1]

is necessarily singular. Hence, it follows that one of the pencils σγ[0,∞)[C(A1), C(A2)],

σγ[0,∞)[C(A1), C(A2)−1] is not Hurwitz.

Items (a) and (b) establish the following facts. Given two discrete-time stable second or-

der LTI systems ΣA1 and ΣA2 , a necessary condition for the existence of a CQLF is that

the pencils σγ[0,∞)[C(A1), C(A2)] and σγ[0,∞)[C(A1), C(A2)−1] are Hurwitz. Conversely,

if a CQLF does not exist for ΣA1 , ΣA2 , then one of the pencils σγ[0,∞)[C(A1), C(A2)],

σγ[0,∞)[C(A1), C(A2)−1] is not Hurwitz. Together these conditions yield the following result

which is closely related to that presented in (Akar and Narendra 2001) and is the discrete-time

counterpart of results presented in (Shorten and Narendra 1999).

A necessary and sufficient condition for the discrete-time stable LTI systems ΣA1

and ΣA2, A1, A2 ∈ R2×2, to have a CQLF is that the pencils σγ[0,∞)[C(A1), C(A2)]

and σγ[0,∞)[C(A1), C(A2)−1] are Hurwitz.

An example of a real world application where the above result can be applied is the problem

of automatic gearbox control. For more information on this topic see the thesis (Shorten

1996).

5 Concluding remarks

In this note we have derived a CQLF non-existence theorem. We have applied this theorem

to derive a CQLF existence result for a pair of stable LTI systems that belong to a certain

system class. We believe that our result can be applied to derive similar results for pairs of

stable LTI systems belonging to other important system classes.
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Appendix

Proof of Lemma 2.5

Consider the norm ‖A‖∞ = sup{|aij | : 1 ≤ i, j ≤ n} on Rn×n, and let z be any non-zero

vector in Rn. Then it is easy to see that the set {T ∈ Rn×n : det(T ) 6= 0, (Tz)i 6= 0, 1 ≤ i ≤ n}

is open. On the other hand, if T ∈ Rn×n is such that (Tz)i = 0 for some i, an arbitrarily

small change in an appropriate element of the ith row of T will result in a matrix T ′ such

that (T ′z)i 6= 0. From this it follows that arbitrarily close to the original matrix T , there is

some T1 ∈ Rn×n such that T1z is non-zero component-wise.

Now to prove the lemma, simply select a non-singular T0 such that T0x is non-zero component-

wise. Suppose that some component of T0y is zero. By the arguments in the previous

paragraph, it is clear that we can select a non-singular T1 ∈ Rn×n such that each component

of T1x and T1y is non-zero. Now it is simply a matter of repeating this step for the remaining

vectors u and v to complete the proof of the lemma. 2

Proof of Lemma 2.6

We can assume that all components of x, y, u, v are non-zero. To see why this is so, suppose

that the result was proven for this case and we were given four arbitrary non-zero vectors

x, y, u, v. We could transform them via a single non-singular transformation T such that each

component of Tx, Ty, Tu, Tv was non-zero (Lemma 2.5).Then for all symmetric matrices P

18



we would have

(Tx)T P (Ty) = xT (T T PT )y

= −kuT (T T PT )v

= −k(Tu)T P (Tv)

Then Tx = αTu and thus x = αu or Tx = βTv and x = βv. So we shall assume that all

components of x, y, u, v are non-zero. We write xi for the ith component of the vector x and

pij denotes the entry in the (i, j) position of the matrix P .

Suppose that x is not a scalar multiple of u to begin with. Then for any index i with

1 ≤ i ≤ n, there is some other index j and two non-zero real numbers ci, cj such that

xi = ciui, xj = cjuj , ci 6= cj (21)

Choose one such pair of indices i, j. Equating the coefficients of pii, pjj and pij respectively

in the identity xT Py = −kuT Pv yields the following equations.

xiyi = −kuivi (22)

xjyj = −kujvj (23)

(xiyj + xjyi) = −k(uivj + ujvi) (24)

If we combine (21) with (22) and (23), we find

yi = − k

ci
vi (25)

yj = − k

cj
vj (26)
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Using (25), (26), (22), (23) and (24) we find

ciuiyj + cjujyi = −k(uivj + ujvi)

⇒ −cik

cj
uivj −

cjk

ci
ujvi = −k(uivj + ujvi)

⇒ uivj(
cj − ci

cj
) = ujvi(

cj − ci

ci
)

Recall that ci 6= cj so we can divide by cj − ci and rearrange terms to get

ci

cj
= (

vi

vj
)(

uj

ui
) (27)

But using (21) we find

ci

cj
= (

xi

xj
)(

uj

ui
) (28)

Combining (27) and (28) yields

vi

vj
=

xi

xj
(29)

Thus xi = cvi, xj = cvj for some constant c.

Now if we select any other index k with 1 ≤ k ≤ n, and write

xk = ckuk

then ck must be different to at least one of ci, cj . Without loss of generality, we may take it

that ck 6= ci. Then the above argument can be repeated with the indices i and k in place of

i and j to yield

xi = cvi, xk = cvk. (30)

But this can be done for any index k so we conclude that x = cv for a scalar c. So we have

shown that if x is not a scalar multiple of u, then it is a scalar multiple of v.

To complete the proof, note that if x = βv for a scalar β then by (22),

βviyi = −kuivi

for all i. Thus y = −( k
β )u as claimed. The same argument will show that if x = αu for a

scalar α, then y = −( k
α)v. 2
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