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Abstract. Community detection or graph clustering is an important
problem in the analysis of computer networks, social networks, biologi-
cal networks and many other natural and artificial networks. These net-
works are in general very large and, thus, finding hidden structures and
functional modules is a very hard task. In this paper we propose new
data structures and a new implementation of a well known agglomer-
ative greedy algorithm to find community structure in large networks,
the CNM algorithm. The experimental results show that the improved
data structures speedup the method by a large factor, for large networks,
making it competitive with other state of the art algorithms.

1 Introduction

The problem of graph clustering or community finding has been extensively
studied and, for the majority of the interesting formulations, this problem is
NP-hard. Thus, in the study of large networks, fast approximation algorithms
are required even though we may obtain suboptimal solutions. For a deep review
on this topic, we refer the reader to a recent survey on community finding by
Fortunato [1]. Here we revisit the modularity maximization problem, which is
NP-hard [2], and a well known greedy approach proposed by Newman [3]. The
simplest algorithm based on his approach runs in O(n(n+m)) time, or O(n2) for
sparse graphs, where n is the number of vertices and m is the number of edges.
More recently, Clauset et al. [4] exploited some properties of the optimization
problem and, by using more sophisticated data structures, they proposed the
CNM algorithm which runs in O(md log n) time in the worst case, where d is the
depth of the dendrogram that describes the community structure.

In this paper we propose a new implementation of the CNM algorithm, us-
ing improved data structures. Although the asymptotic time bound is the same
of the CNM algorithm, experimental results show a speed up of at least a fac-
tor of two. Moreover, we introduced randomization within our implementation
which is useful to evaluate stability as different runs can provide different cluster-
ings. The experimental evaluation includes several public available datasets and
benchmarks. We also evaluate the performance of our implementation on large
graphs generated with the partial duplication model [5]. The maximum mod-
ularity values obtained for these graphs are rather large, which is interesting
given that these are random graphs. Finally, we briefly discuss the application
and integration of this method with other measures and schemata.



2 Algorithm and data structures

The proposed algorithm starts with each vertex being the sole member of its
community and then, iteratively, it merges pairs of communities that maximize
the modularity score Q. Given a graph and a specific division of it into com-
munities, modularity evaluates the difference between the fraction of edges that
fall within communities and the expected fraction of edges within communities,
if the edges were randomly distributed while respecting vertices degrees [6]. Let
G = (V,E) be an undirected graph and A its adjacency matrix, i.e., Auv = 1
if (u, v) ∈ E, and Auv = 0 otherwise. Let n be the number of vertices and
m be the number of edges of G. The degree du of a vertex u ∈ V is given by∑

v∈V Auv. A clustering or partition P of G is a collection of sets {V1, . . . , Vk},
with k ∈ IN, such that Vi 6= ∅, for 1 ≤ i ≤ k, Vi ∩ Vj = ∅, for 1 ≤ i < j ≤ k, and⋃

1≤i≤k Vi = V . Given a partition P for G, we compute its modularity as

Q(P) =
1

2m

∑
u,v∈V

[
Auv −

dudv
2m

]
δP(u, v), (1)

where m = |E| and the δP -function is such that δP(u, v) = 1 if both u, v ∈ C
for some C ∈ P, δP(u, v) = 0 otherwise. The modularity QG of a graph G is
defined as the maximum modularity over all possible graph partitions. Although
Eq. (1) can take negative values, QG takes values between 0 and 1. Values near
1 indicate strong community structure and 0 is obtained for the trivial partition
where all nodes belong to the same community. Typically, values for graphs with
known community structure are in the range from 0.3 to 0.7 [6, 7].

Let Ci, Cj ∈ Pt be two communities, where 0 ≤ i, j < |Pt| and Pt is the
partition achieved after t ≥ 0 iterations. The change ∆Qij in Q after merging
Ci and Cj to form a new partition Pt+1 is given by manipulation of Eq. (1),

∆Qij = Q(Pt+1)−Q(Pt) =
1

2m
2
∑
u∈Ci

∑
v∈Cj

[
Auv −

dudv
2m

]
. (2)

Since calculating the ∆Qij for each pair Ci, Cj and for each iteration t becomes
time-consuming, as in the original CNM algorithm, we store these values for each
pair and only update them when needed. Given Ci ∈ Pt, let d̄i =

∑
u∈Ci

du/(2m)
and assume that Ci, Cj ∈ Pt are merged into Ck ∈ Pt+1 at iteration t+1. Then,
for Pt+1, d̄k = d̄i + d̄j and, for each C` adjacent to Ck,

∆Qk` =

∆Qi` +∆Qj` if C` is connected to Ci and Cj ,
∆Qi` − 2d̄j d̄` if C` is connected to Ci but not to Cj ,
∆Qj` − 2d̄id̄` if C` is connected to Cj but not to Ci.

(3)

These equations follow easily from Eq. (2). Communities are adjacent or con-
nected if there is at least one edge between them. Note that merging two com-
munities for which there is no connecting edge does not increase Q (when Ci is
disconnected from Cl, the first term of Eq. (2) is zero and only the second one
remains). Therefore, we will not store the value ∆Q for such pairs.



struct adj_node {
int id;
int u;
int v;
struct adj_node *u_nxt;
struct adj_node *u_prv;
struct adj_node *v_prv;
struct adj_node *v_nxt;

};

Fig. 1. Cross-linked adjacency list data structure. List nodes are defined by the C

structure on the left and are linked as depicted on the right.

As described above, the algorithm starts with each vertex u ∈ V being the
sole member of a cluster. Let Cu ∈ P0 be such that Cu = {u}, for each u ∈
V . Then, for each u ∈ V and (u, v) ∈ E, we initially set d̄u = du/2m and
∆Quv = 1/m − 2d̄ud̄v. Accordingly to Eq. (1), the initial value of Q is set to
Q = −

∑
u∈V d̄ud̄u. The algorithm proceeds iteratively as follows:

1. select the pair (i, j) with maximum ∆Qij ;
2. merge Ci and Cj into Ck (assuming that we are in iteration t + 1, Pt+1 is

obtained from Pt replacing Ci and Cj by Ck);
3. update d̄k and ∆Qk` for each C` adjacent to Ck accordingly to Eq. (3);
4. update modularity Q by adding ∆Qij ;
5. repeat from step 1 until one community remains.

Here we are assuming that the graph is connected and that we are storing each
partition Pt obtained at iteration t. If the graph is not connected, the algorithm
stops when a pair (i, j) does not exist in step 1. Note also that we are usually
interested in the partition that maximizes the modularity score. Thus, we can
stop when a pair (i, j), selected in step 1, is such that ∆Qij < 0. By Eq. (3), we
know that ∆Q values can only decrease after a such pair be selected and, thus,
the modularity value will not increase more since all ∆Q values are negative.

The main point is that we must find the maximum values and extract el-
ements from the adjacency lists as fast as possible. Here we use a single heap
data structure to store needed ∆Q values (at most m) and cross-linked adja-
cency lists to store community adjacencies. Since we have to both decrease and
increase values in the heap (recall Eq. (3)), we use a binary heap data structure,
for which the get maximum operation takes constant time and the insert, delete
and update operations take O(logm) time, in the worst case. For community ad-
jacencies, we use doubly-linked lists with cross references (see Fig. 1) and, thus,
we can solve side effects in constant time when merging two adjacency lists.

Let cu, cr, ct, c` be real constants. Updating a value in the heap takes cu logm
time and extracting a value takes cr logm. Thus, the extraction in step 1 takes
cr logm time at most and, since there are m elements in the heap, this step is
repeated m times at most. Because we get a direct reference in step 1 and we
have double-linked lists, removing the edge (i, j) from the community adjacency
data structure in step 2 takes constant time. Step 2 requires also 3c`n time
to merge the adjacencies. Note that there are at most n adjacent communities



to Ci and to Cj and that we can solve side effects in constant. Moreover, if a
community Ck appears twice in the result, we only keep it once. Thus, to achieve
linear time with unsorted lists, without loss of generality, we must process the
adjacency of Ci, building a bit array of size n at most, and then process the
adjacency of Cj , checking whenever a community Ck occurs in both adjacencies
and updating the bit array. Finally we reprocess the adjacency of Ci in order to
find the communities Ck which were not in the adjacency of Cj . Step 3 is done
along with step 2 and each update takes cu logm time at most. Therefore, step 3
takes less than cun logm time. Step 4 takes constant time. Although there exist
m elements in the heap, steps 2-4 are executed at most n − 1 times and, thus,
the running time of the algorithm is at most crm logm+3c`n

2 +cun
2 logm, i.e.,

O(n2 log n) time in the worst case assuming as usual that m = O(n2).
The differences between our algorithm and the CNM algorithm reside on how

we store ∆Q values and how we manage the adjacency of the communities. The
CNM algorithm stores ∆Q values in a sparse matrix with each row being stored
both as a balanced binary tree and as a binary heap. It maintains also a binary
heap containing the largest element of each row. Considering the same max-
heap implementation and an efficient implementation of binary trees, updating
an element takes cu log n and extracting an element takes cr log n, where n is
the maximum size of the heaps in this case. Thus, step 1 takes cr log n time.
Removing the selected pair from the community adjacency data structure in
step 2 takes 2ct log n to update binary trees plus 2cu log n to update the heaps.
Steps 2 and 3 require also 2n(ct + 2cu) log n + cun time, since we must update
the trees, the k-th heap and the main heap for each Ck in adjacency lists being
merged. The heap associated with the resulting adjacency list can be updated
in cun time. Step 4 takes constant time. Since steps 2–3 are executed at most
n−1 times, the running time of the CNM algorithm is at most (cr +2ct)n log n+
2(ct + 2cu)n2 log n+ cun

2, i.e., O(n2 log n). Note that, although the asymptotic
runtime bounds are the same, we get an improvement of at least a factor of two.

For sparse and hierarchical graphs we can provide a better upper bound. A
graph G = (V,E) is sparse if m = O(n) and G is hierarchical if the resulting
dendrogram for the community merging is balanced. In this case, the sum of the
communities degrees at a given depth d is at most 2m. Therefore the running
time is at most O(md log n), where d is the depth of the dendrogram. Then for
sparse and hierarchical graphs, since m = O(n) and d = O(log n), the algorithm
running time becomes O(n log2 n). The space requirement of the algorithm is
O(n+m) as we store the connections for each community, a total of at most n
communities and m connections, and m elements in the heap.

We also included in our implementation a randomized edge comparison func-
tion. As noted by Brandes et al. [2], the algorithm may perform badly if pairs
with equal ∆Q are chosen in some crafted order. Although we cannot avoid un-
desired behavior by ordering these pairs randomly, we expect that it will not
happen frequently. With respect to such fluctuations of modularity, we must
mention that even small fluctuations may correspond to very different node
clusterings [8]. Thus, several runs may be desirable to evaluate the stability of a
given clustering, i.e., how stable is vertex assignment along different runs.
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Fig. 2. Average running time and average maximum modularity Q for duplication
model graphs obtained with p = 0.5. For each n were generated 10 random graphs.
The number of edges for those graphs is about 10 times the number of vertices.

3 Experimental evaluation

In this section we consider 3 implementations in C, the original implementation
of the CNM algorithm as provided by the authors, our implementation using
optimized data structures to ensure fairness in the comparison and our new
implementation. The running times below include the tracking of community
membership. For that we use a disjoint sets data structure and, therefore, the
running time cost is negligible. All implementations were compiled with the GNU
C compiler with flag -O3. The experiments were conduced in a 2.33 GHz quad
core processor with 16 GB of memory, running a GNU/Linux distribution.

In order to evaluate the performance on large networks, we generated artificial
networks from the partial duplication model [5]. Although the abstraction of real
networks captured by the partial duplication model, and other generalizations,
is rather simple and no community structure is ensured, the global statistical
properties of, for instance, biological networks and their topologies can be well
represented by this kind of model [9]. For each number of vertices, we generated
10 random graphs with selection probability p = 0.5, which is within the range
of interesting selection probabilities [5]. The number of edges for those graphs is
approximately 10 times the number of vertices. Fig. 2 provides the running time
of our implementation versus the running time of the CNM algorithm, where we
observe an improvement of at least a factor of two. We ran also some tests with
very large networks and, for a network with 1 million vertices and more than
13 millions edges, our new implementation takes about 9 hours and requires
744 MB of memory, while our implementation of the CNM algorithm takes 40
hours and requires 1,796 MB. In Section 4 we discuss how prioritizers can further
reduce the running time. Although this model does not ensure any community
structure, note that the values of modularity are usually higher than 0.5 (see
Fig. 2). This is an interesting fact that deserves a better understanding.

Given that in our algorithm we pick randomly a pair whenever two pairs
have the same ∆Q value, we evaluated our implementation on several public



Table 1. Maximum and minimum modularity for 4 real networks after 1,000 runs.
|V | is the number of vertices and |E| is the number of edges for each network. maxQ
is the maximum modularity, minQ is the minimum modularity and #P is number of
different partitions obtained for 1,000 runs.

Network |V | |E| minQ maxQ #P

Zachary’s karate club [10] 34 78 0.381 0.381 1
Bottlenose dolphins’network [11] 62 159 0.492 0.495 2
C. elegans metabolic network [12] 454 2,025 0.385 0.413 253
Protein interaction network [13] 2,215 2,203 0.842 0.846 770

datasets and benchmarks, focusing on the stability of the obtained clusterings.
Table 1 provides details for four real networks. Unsurprisingly, Q values are
identical to those reported by the CNM algorithm. But the partitions found for
the last two networks are rather unstable, namely for the protein interaction
network where in 1,000 runs 770 different partitions were found. Although we
did not analyse further these networks, our results raise an important question
concerning partition stability. This is an important issue in the study of networks
and, until now, most of the analyses in the literature just consider one partition.

4 Discussion

There are alternative approaches for the greedy optimization of modularity.
Schuetz and Caflisch [14] proposed an approach where they merge at once `
disjoint pairs of communities instead of just one pair and which can benefit from
improvements proposed here. More recently, Blondel et al. [15] proposed an alter-
native greedy approach. The algorithm proceeds by alternating two main steps.
In the first step, it iteratively considers a vertex, removes it from the current
cluster computing the change in modularity, and then selects the cluster that
provides the better improvement by moving the vertex to that cluster. This is
repeated until no change occurs. The second step consists of building a coars-
ened graph where each cluster becomes a vertex. Then, we iterate these two
steps while there are edges in the coarsened graph. Although the authors do not
provide a theoretical bound, the running time seems to be almost linear from
the experiments, making it one of the fastest algorithms to date. The improve-
ments proposed in this paper make the CNM algorithm competitive with that
algorithm, if not faster. With respect to clustering quality, Noack and Rotta [16]
stated that the most effective method consists of a multilevel schema, where the
greedy approach studied here is used for the coarsening phase, and the first step
of the method proposed by Blondel et al. for the refinement phase. They used
also prioritizers to improve both the running time and the clustering quality.

One of the first prioritizers was proposed by Wakita and Tsurumi [17], fa-
voring the merge of equal size communities, enforcing the running time bound
of O(n log2 n) for sparse graphs. Since Newman and Girvan [6] proposed the



modularity score to account for the intra-cluster density versus the inter-cluster
sparsity, given two clusters or communities Ci and Cj , a natural prioritizer is
∆Qij/(d(Ci)d(Cj)), that favors the merge of clusters with lower weight den-
sity, conducting to more dense clusters on average. Although previous studies
pointed in this direction [18], only recently Noack and Rotta [16] explicitly used
this prioritizer and the variant ∆Qij/

√
d(Ci)d(Cj). Although both prioritizers

are related, the second one is closely tied to the null model underlying the mod-
ularity measure. By Eq. (2), 2m∆Qij is the difference between the observed
and the expected number of edges between Ci and Cj . On the other hand,
since the null model assumes a binomial distribution, we know that for large
graphs the variance of the number of edges between Ci and Cj is approximately
d(Ci)d(Cj)/(2m). Thus, the second prioritizer accounts for the number of stan-
dard deviations between the observed and the expected number of edges between
Ci and Cj . We ran our algorithm with this prioritizer for the network with 13
million edges and we obtained an outstanding speedup, it takes now 130 sec-
onds instead of 9 hours. Also, the values of the modularity did not decrease, as
expected, given the modularity definition and its close relation with this prior-
itizer. As observed before [19, 17], the reason for the speedup is that, without
any prioritizer, the greedy approach merges the cluster with the largest contribu-
tion to modularity with its best neighbor. The strength of the cluster increases
and the process continues until all good neighbors are merged. But, since this
cluster has great influence, several bad neighbors may also be merged before
any other merge pairs be considered. This produces very unbalanced partitions
taking the running time up to the upper bound O(n2 log n). Note also that the
modularity value may be lower since some bad neighbors were merged. In fact,
after considering the prioritizer, we obtained higher modularity values. For in-
stance, for the Zachary’s karate social network we achieved a value of 0.419. The
most important conclusion from our work is that, with the new implementation
and considering good prioritizers, we are able to effectively process real large
scale-free networks and evaluate its community structure stability.

Several measures have been proposed to evaluate clusterings quality, in par-
ticular because modularity suffers some resolution problems [20, 21]. Thus, it is
important to note that the optimization approach discussed in this paper can
be easily adapted for other measures and, in general, it is sufficient to rewrite
Eq. (3). This is straightforward for measures based on modularity, such as the
modularity for weighted graphs or the similarity-based modularity [22]. For other
measures, the updates after each merging step may require some more careful
analysis. Nevertheless, we can employ this greedy method either alone or com-
bined with other approaches. For instance, Rosvall and Bergstrom [23, 24] used
recently this approach in their study of mutual information and of maps of ran-
dom walks to uncover community structure. In their work they improve the final
results by using a simulated annealing based approach [24].
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