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ABSTRACT
Linked or networked data are ubiquitous in many applica-
tions. Examples include web data or hypertext documents
connected via hyperlinks, social networks or user profiles
connected via friend links, co-authorship and citation in-
formation, blog data, movie reviews and so on. In these
datasets (called “information networks”), closely related ob-
jects that share the same properties or interests form a com-
munity. For example, a community in blogsphere could be
users mostly interested in cell phone reviews and news. Out-
lier detection in information networks can reveal important
anomalous and interesting behaviors that are not obvious if
community information is ignored. An example could be a
low-income person being friends with many rich people even
though his income is not anomalously low when considered
over the entire population. This paper first introduces the
concept of community outliers (interesting points or rising
stars for a more positive sense), and then shows that well-
known baseline approaches without considering links or com-
munity information cannot find these community outliers.
We propose an efficient solution by modeling networked data
as a mixture model composed of multiple normal communi-
ties and a set of randomly generated outliers. The proba-
bilistic model characterizes both data and links simultane-
ously by defining their joint distribution based on hidden
Markov random fields (HMRF). Maximizing the data like-
lihood and the posterior of the model gives the solution to
the outlier inference problem. We apply the model on both
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synthetic data and DBLP data sets, and the results demon-
strate importance of this concept, as well as the effectiveness
and efficiency of the proposed approach.
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H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms
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1. INTRODUCTION
Outliers, or anomalies, refer to aberrant or interesting ob-

jects whose characteristics deviate significantly from the ma-
jority of the data. Although the problem of outlier detection
has been widely studied [6], most of the existing approaches
identify outliers from a global aspect, where the entire data
set is examined. In many scenarios, however, an object may
only be considered abnormal in a specific context but not
globally [25, 29]. Such contextual outliers are sometimes
more interesting and important than global outliers. For
example, 20 Fahrenheit degree is not a global outlier in tem-
perature, but it represents anomalous weather in the spring
of New York City.

In this paper, we study the problem of finding contex-
tual outliers in an “information network”. Networks have
been used to describe numerous physical systems in our
everyday life, including Internet composed of gigantic net-
works of webpages, friendship networks obtained from so-
cial web sites, and co-author networks drawn from bibli-
ographic data. We regard each node in a network as an
object, and there usually exist large amounts of information
describing each object, e.g. the hypertext document of each
webpage, the profile of each user, and the publications of
each researcher. The most important and interesting aspect
of these datasets is the presence of links or relationships
among objects, which is different from the feature vector
data type that we are more familiar with. We refer to the
networks having information from both objects and links
as information networks. Intuitively, objects connected via
the network have many interactions, subsequently share mu-
tual interests, and thus form a variety of communities in the
network [11]. For example, in a blogsphere, there could be



financial, literature, and technology cliches. Taking commu-
nities as contexts, we aim at detecting outliers that have
non-conforming patterns compared with other members in
the same community.

Example: Low-income person with rich friends
A friend network is shown in Figure 1(a), where each node
denotes a person, and a link represents the friend relation-
ship between two persons. Each person’s annual salary is
shown as a number attached to each node. There obvi-
ously exist two communities, high-income (v1,v2,v3,v4,v5)
and low-income (v7,v8,v9,v10). Interestingly, v6 is an exam-
ple of community outliers. It is only linked to the high-
income community (70 to 160K), but has a relatively low
income (40K). This person could be a rising star in the social
network, for example, a young and promising entrepreneur,
or someone who may settle down in a rich neighborhood.
Another example is a co-author network. Researchers are
linked through co-authorship, and texts are extracted from
publications for each author in bibliographic databases. A
researcher who does independent research on a rare topic
is an outlier among people in his research community, for
example, a linguistic researcher in the area of data mining.
Additionally, an actor cooperation network can be drawn
from movie databases where actors are connected if they
co-star a movie. Exceptions can be found when an actor’s
profile deviates much from his co-star communities, such as
a comedy actor co-starring with lots of action movie stars.

Limitation of Traditional Approaches
Identifying community outliers is a non-trivial task. First,
if we conduct outlier detection only based on each object’s
information, without taking network structure into account,
the identified outliers would only be “global” outliers. As
shown in Figure 1(b), v1 is a global outlier with 70K deviat-
ing from the other salary amounts in the“low-income person
with rich friends” example. We call this method GLobal
Outlier Detection Algorithm (GLODA). Secondly, when
only “local” information (i.e., information from neighboring
nodes) is considered, the identified node is just significantly
away from its adjacent neighbors. It is a “local” outlier, not
necessarily a “community” outlier. As illustrated in Figure
1(c), v9 is a local outlier because his salary is quite different
from those of his direct friends (v2, v4 and v10). The cor-
responding algorithm is denoted as Direct Neighbor Outlier
Detection Algorithm (DNODA).

In detecting community outliers, both the information at
each individual object and the one in the network should
be taken into account simultaneously. A naive solution is
to first partition the network into several communities using
network information [24, 14], and then within each commu-
nity, identify outliers based on the object information. This
two-stage algorithm is referred to as Community Neighbor
Algorithm (CNA). The problem with such a two-stage ap-
proach is that communities discovered using merely network
information may not make much sense. For example, parti-
tioning the graph in Figure 1(c) along the dotted line min-
imizes the number of normalized cuts, and thus the line
represents the boundary between two communities identi-
fied by CNA. However, the resulting two communities have
wide-spread income levels, and thus it does not make much
sense to detect outliers in such two communities.

Therefore, we propose to utilize both the network and
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Figure 1: Comparison of Different Types of Outliers

data information in an integrated solution, in order to im-
prove community discovery and find more meaningful out-
liers. The algorithm we developed is called community out-
lier detection algorithm (CODA). With the proposed method,
the network in Figure 1(a) will be divided by the dashed line,
and v6 is detected as the community outlier. In many ap-
plications, no matter the network is dense or sparse, there
is ambiguity in community partitions. This is particularly
true for very large networks, since information from both
nodes and links can be noisy and incomplete. Consolidating
information from both sources can compensate missing or
incomplete information from one side alone and is likely to
yield a better solution.

Some clustering methods (CLA for short) have been de-
veloped to group nodes in an information network into com-
munities using both data and link information [17, 32, 30].
Those methods, however, are not designed for outlier de-
tection. The reason is that they are proposed under the
assumption that there are no outliers. It is well-known that
outliers can highly affect the formation of communities. Dif-
ferent from those methods, the proposed approach combines,
instead of separating, outlier detection and community min-
ing into a unified framework. As summarized in Table 1,
both GLODA and DNODA only use part of the available in-



Table 1: Summary of Related Work
Algorithms Tasks Information Sources
GLODA global outlier detection data of objects
DNODA local outlier detection data and direct neighbors

find communities use data and links
CNA then detect outliers separately

clustering in use data and links
CLA information networks together

formation, whereas the other two approaches consider both
data and links. However, CNA utilizes the two information
sources separately, and CLA is used to conduct clustering,
instead of outlier detection.

Summary of the Proposed Approach
In this paper, we propose a probabilistic model for commu-
nity outlier detection in information networks. It provides a
unified framework for outlier detection and community dis-
covery, integrating information from both the objects and
the network. The information collected at each object is
formulated as a multivariate data point, generated by a mix-
ture model. We use K components to describe normal com-
munity behavior and one component for outliers. Distribu-
tions for community components are, but not limited to, ei-
ther Gaussian (continuous data) or multinomial (text data),
whereas the outlier component is drawn from a uniform dis-
tribution. The mixture model induces a hidden variable zi

at each object node, which indicates its community. Then
inference on zi’s becomes the key in detecting community
outliers. We regard the network information as a graph de-
scribing the dependency relationships among objects. The
links from the network (i.e., the graph) are incorporated into
our modeling via a hidden Markov random field (HMRF) on
the hidden variable zi’s. We motivate an objective function
from the posterior energy of the HMRF model, and find
its local minimum by using an Iterated Conditional Modes
(ICM) algorithm. We also provide some methods for setting
the hyper-parameters in the model. Moreover, the proposed
model can be easily generalized to handle a variety of data
as long as a distance function is defined.

A summary of this paper is as follows:

• Finding community outliers is an important problem
but has not received enough attention in the field of in-
formation network analysis. To the best of our knowl-
edge, this is the first work on identifying community
outliers by analyzing both the data and links simulta-
neously.

• We propose an integrated probabilistic model to in-
terpret normal objects and outliers, where the object
information is described by some generative mixture
model, and network information is encoded as spatial
constraints on the hidden variables via a HMRF model.

• Efficient algorithms based on EM and ICM algorithms
are provided to fit the HMRF model as well as inferring
the hidden label of each object.

• We validate the proposed algorithm on both synthetic
and real data sets, and the results demonstrate the
advantages of the proposed approach in finding com-
munity outliers.
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Figure 2: Community Outlier Detection Model

2. COMMUNITY OUTLIER DETECTION
Community outliers can be defined in various ways. We

define it based on a generative model unifying data and links.
Based on the definition, we discuss the specific models for
continuous data and text data. Table 2 summarizes some
important notations used in the paper.

2.1 Outlier Detection via HMRF
The problem is defined as follows: suppose we have an

information network denoted as a graph G = (V, W ), where
V denotes a set of objects {v1, . . . , vM}, and W represents
the links between each pair of objects. Specifically, the input
include:

• S = {s1, . . . , sM} where si is the data associated with
object vi.

• W is the symmetric M × M adjacency matrix of the
network where wij (wij ≥ 0) is the weight of the link
between the two objects vi and vj . If wij > 0, vi and
vj are connected.

Let I = {1, . . . , M} be the set of indices of the M objects.
The objective is to derive the anomalous subset {i : vi is a
contextual outlier with respect to S and W , i ∈ I}.

Next, we discuss how to formulate this using HMRF model.
Mathematically, a HMRF model is characterized by the fol-
lowing:

Observed data
X = {x1, . . . , xM} is a set of random variables. Each ran-

dom variable xi generates the data si associated with the
i-th object.

Hidden labels
Z = {z1, . . . , zM} is the set of hidden random variables,

whose values are unobservable. Each variable zi indicates
the community assignment of vi. Suppose there are K com-
munities, then zi ∈ {0, 1, . . . , K}. If zi = 0, vi is an outlier.
If zi = k (k �= 0), vi belongs to the k-th community.

Neighborhood system
The links in W induce dependency relationships among

the hidden labels, with the rationale that if two objects vi

and vj are linked on the network (i.e., they are neighbors),
then they are more likely to belong to the same community



Table 2: Important Notations

Symbol Definition
I = {1, . . . , i, . . . , M} the indices of objects

V = {v1, . . . , vM} the set of objects
S = {s1, . . . , sM} the given attribute values of the objects

WM×M = [wij ] the given link structure, wij-the link strength between objects vi and vj

Z = {z1, . . . , zM} the set of random variables for hidden labels of the objects
X = {x1, . . . , xM} the set of random variables for observed data

Ni (i ∈ I) the neighborhood of object vi

1, . . . , k, . . . , K the indices of normal communities
Θ = {θ1, . . . , θK} the set of random variables for model parameters

θk = {μk, σ2
k} the parameters of the k-th normal community (continuous data): μk-mean, σ2

k-variance
θk = {βk1, βk2, . . . , βkT } the parameters of the k-th normal community (text data)

βkl (l = 1, . . . , T ) the probability of observing the l-th word in the k-th community (text data)

(i.e., zi and zj are likely to have the same value). How-
ever, since outliers are randomly generated, the neighbors
of an outlier are not necessarily outliers. So we adjust the
neighborhood system as the following:

Ni =

{ {j; wij > 0, i �= j, zj �= 0} zi �= 0
φ zi = 0.

Here Ni stands for the set of neighbors of object vi. When
zi �= 0, i.e., vi is not an outlier, the neighborhood of vi

contains its normal neighbors in G. In contrast, vi’s neigh-
borhood is empty if it is an outlier (zi = 0).

Conditional independence
The set of random variables X are conditionally indepen-

dent given their labels:

P (X = S|Z) =

M∏
i=1

P (xi = si|zi).

Normal Communities and Outliers
We assume that the k-th normal community (k �= 0) is

characterized by a set of parameters θk, i.e.,

P (xi = si|zi = k) = P (xi = si|θk).

Quite differently, the outliers follow a uniform distribution,
i.e.,

P (xi = si|zi = 0) = ρ0

where ρ0 is a constant. Let Θ = {θ1, . . . , θK} be the set of
all parameters describing the normal communities.

Dependency between hidden variables
The random field defined over the hidden variables Z is a

Markov random field, where the Markov property is satis-
fied:

P (zi|zI−{i}) = P (zi|zNi) zi �= 0.

It indicates that the probability distribution of zi depends
only on the labels of vi’s neighbors in G if zi corresponds to
a normal community. If zi = 0, vi is an outlier and is not
linked to any other objects in the random field, and thus we
set P (zi = 0) = π0 where π0 is a constant. According to the
Hammerskey-Clifford theorem [3], an MRF can equivalently
be characterized by a Gibbs distribution:

P (Z) =
1

H1
exp(−U(Z)) (1)

where H1 is a normalizing constant, and U(Z) =
∑

c∈C Vc(Z),
the potential function, is a sum of clique potentials Vc(Z)

over all possible cliques (c ∈ C) in G. Since outliers are
stand-alone objects (their links in G are ignored in the model),
we define the potential function only on the neighborhood
of normal objects:

U(Z) = −λ
∑

wij>0,zi �=0,zj �=0

wijδ(zi − zj) (2)

where λ is a constant, wij > 0 denotes that there is a link
connecting the two objects vi and vj , and both zi and zj are
non-zero. The δ function is defined as δ(x) = 1 if x = 0 and
δ(x) = 0 otherwise. The potential function suggests that,
if vi and vj are normal objects, they are more likely to be
in the same community when there exists a link connecting
them in G, and the probability becomes higher if their link
wij is stronger.

Figure 2 shows the HMRF model for the example in Fig-
ure 1(a). The top layer represents the hidden variables
{z1, . . . , z10}. It has the same topology as the original net-
work G except that the neighborhood of z6 is now empty
because it is an outlier. Given zi = k, the corresponding
data value is generated according to the parameter θk. The
bottom layer is composed of the data values (salaries) of
the objects. In this example, two communities are formed,
and objects in the same community are strongly linked in
the top layer, as well as having similar values in the bottom
layer. When considering both data and link information, we
cannot assign v6 to any community (linked to community 1
but its value is closer to community 2), and thus regard it
as a community outlier.

2.2 Modeling Continuous and Text Data
In the proposed model, the probability of hidden variables

is modeled by Eq. (1) and Eq. (2), and the outliers are gener-
ated by a uniform distribution. However, given the hidden
variable zi �= 0, the probability distribution of xi can be
modeled in various ways depending on the format it is tak-
ing. In this part, we discuss how P (xi = si|zi) (zi �= 0) is
modeled when si is continuous or a text document, the two
major types of data we encounter in applications. Exten-
sions to general cases are discussed in Section 4.

Continuous Data
For the sake of simplicity, we assume that the data S

are 1-dimensional real numbers. Extensions to model multi-
dimensional continuous data are straightforward. We pro-
pose to model the normal points in S by a Gaussian mixture
due to its flexibility in approximating a wide range of con-
tinuous distributions. Parameters needed to describe the
k-th community are the mean μk and variance σ2

k: θk =



{μk, σ2
k}. Given the model parameter Θ = (θ1, . . . , θK), if

zi = k ∈ {1, . . . , K}, the logarithm of the conditional likeli-
hood ln P (xi = si|zi = k) is:

ln P (xi = si|zi = k) = − (si − μk)2

2σ2
k

− ln σk − ln
√

2π. (3)

Text Data
Suppose each object vi is a document that is comprised

of a bag of words. Let {w1, w2, . . . , wT } be all the words
in the vocabulary, and each document is represented by a
vector si = (di1, di2, . . . , diT ), where dil denotes the count
of word wl in vi. Now the parameter characterizing each
normal community is θk = {βk1, βk2, . . . , βkT } where βkl =
P (wl|zi = k) is the probability of seeing word wl in the k-th
community. Given that a document vi is in the k-th com-
munity, its word counts si follow a multinomial distribution,
and thus ln P (xi = si|zi = k) is defined as:

ln P (xi = si|zi = k) =

T∑
l=1

dil ln P (wl|zi = k) =

T∑
l=1

dil ln βkl.

(4)

3. FITTING COMMUNITY OUTLIER DE-
TECTION MODEL

In the HMRF model for outlier detection we discussed
in Section 2, both the model parameters Θ and the set of
hidden labels Z are unknown. In this section, we present
the method to infer the values of hidden variables (Section
3.1) and estimate model parameters (Section 3.2).

3.1 Inference
We first assume that the model parameters in Θ are known,

and discuss how to obtain an assignment of the hidden vari-
ables. The objective is to find the configuration that max-
imizes the posterior distribution given Θ. We then discuss
how to estimate Θ and Z simultaneously in Section 3.2.

In general, we seek a labeling of the objects, Z = {z1, . . . , zM},
to maximize the posterior probability (MAP):

Ẑ = arg max
Z

P (X = S|Z)P (Z).

We use the Iterated Conditional Modes (ICM) algorithm [4]
to solve this MAP estimation problem. It adopts a greedy
strategy by calculating local minimization iteratively and
the convergence is guaranteed after a few iterations. The
basic idea is to sequentially update the label of each ob-
ject, keeping the labels of the other objects fixed. At each
step, the algorithm updates zi given xi = si and the other
labels by maximizing P (zi|xi = si, zI−{i}), the conditional
posterior probability. Next we discuss the two scenarios sep-
arately when zi takes non-zero or zero values.

If zi �= 0, we have

P (zi|xi = si, zI−{i}) ∝ P (xi = si|Z)P (Z).

As discussed in Eq. (1) and Eq. (2), the probability distri-
bution of Z is given by

P (Z) ∝ exp
(
λ

∑
wij>0,zi �=0,zj �=0

wijδ(zi − zj)
)
.

In P (zi|xi = si, zI−{i}), the links that involve objects other

Algorithm 1 Updating Labels

Input: set of data S, adjacency matrix W , set of model
parameters Θ, number of clusters K, link importance λ,
threshold a0, initial assignment of labels Z(1);
Output: updated assignment of labels Z;
Algorithm:

Randomly set Z(0)

t ← 1
while Z(t) is not close enough to Z(t−1) do

t ← t + 1
for i = 1;i <= M ;i + + do

update z
(t)
i = k which minimizes Ui(k) in Eq. (6).

return Z(t)

than vi are irrelevant, and thus

P (zi|xi = si, zI−{i}) ∝ P (xi = si|zi)·exp
(
λ

∑
j∈Ni

wijδ(zi−zj)
)

where only the links between vi and its neighbors in Ni

are taken into account. We take logarithm of the posterior
probability, and then transform the MAP estimation prob-
lem to the minimization of the conditional posterior energy
function:

Ui(k) = − ln P (xi = si|zi = k) − λ
∑

j∈Ni

wijδ(k − zj).

If zi = 0, vi has no neighbors, and thus

P (zi|xi = si, zI−{i}) ∝ P (xi = si|zi = 0)P (zi = 0) = exp(−Ui(0))

(5)

with

Ui(0) = − ln(ρ0π0) = a0.

Therefore, to find zi that maximizes P (zi|xi = si, zI−{i}),
it is equivalent to minimizing the posterior energy function:
ẑi = arg mink Ui(k) where

Ui(k) =

{ − ln P (xi = si|zi = k) − λ
∑

j∈Ni
wijδ(k − zj) k �= 0

a0 k = 0
(6)

As can be seen, λ is a predefined hyper-parameter that rep-
resents the importance of the network structure. ln P (xi =
si|zi = k) is defined in Eq. (3) and Eq. (4) for continuous
and text data respectively. To minimize Ui(k), we first select
a normal cluster k∗ such that k∗ = arg mink Ui(k)(k �= 0).
Then we compare Ui(k

∗) with Ui(0), which is a predefined
threshold a0. If Ui(k

∗) > a0, we set ẑi = 0, otherwise
ẑi = k∗. As shown in Algorithm 1, we first initialize the
label assignment for all the objects, and then repeat the up-
date procedure until convergence. At each run, the labels
are updated sequentially by minimizing Ui(k), which is the
posterior energy given xi = si and the labels of the remain-
ing objects.

3.2 Parameter Estimation
In Section 3.1, we assume that Θ is known, which is usu-

ally unrealistic. In this part, we consider the problem of es-
timating unknown Θ from the data. Θ describes the model
that generates S, and thus we seek to maximize the data like-
lihood P (X = S|Θ) to obtain Θ̂. However, because both the
hidden labels and the parameters are unknown and they are
inter-dependent, it is intractable to directly maximize the



Algorithm 2 Community Outlier Detection

Input: set of data S, adjacency matrix W , number of clus-
ters K, link importance λ, threshold a0;
Output: set of outliers;
Algorithm:

Initialize Z0,Z1 randomly
t ← 1
while Z(t) is not close enough to Z(t−1) do

M-step: Given Z(t), update the model parameters
Θ(t+1) according to Eq. (8) and Eq. (9) (continuous
data), or Eq. (10) (text data).

E-step: Given Θ(t+1), update the hidden labels as
Z(t+1) using Algorithm 1.
t ← t + 1

return the indices of outliers: {i : z
(t)
i = 0, i ∈ I}

data likelihood. We view it as an “incomplete-data” prob-
lem, and use the expectation-maximization (EM) algorithm
to solve it.

The basic idea is as follows. We start with an initial esti-
mate Θ(0), then at E-step, calculate the conditional expecta-
tion Q(Θ|Θ(t)) =

∑
Z P (Z|X, Θ(t)) ln P (X, Z|Θ), and at M-

step, maximize Q(Θ|Θ(t)) to get Θ(t+1) and repeat. In the
HMRF outlier detection model, we can factorize P (X, Z|Θ)
as P (X|Z, Θ)P (Z), and since P (Z) is not related to Θ, we
can regard the corresponding terms as a constant in Q. Sim-
ilarly, the outlier component does not contribute to estima-
tion of Θ neither, and thus

∑n
i=1 P (zi = 0|xi = si) ln P (xi =

si|zi = 0) can also be absorbed into the constant term H2:

Q =
M∑

i=1

(
K∑

k=1

P (zi = k|xi = si, Θ
(t)) ln P (xi = si|zi = k, Θ)

)
+H2.

(7)

We approximate P (zi = k|xi = si, Θ
(t)) using the esti-

mates obtained from Algorithm 1, where P (zi = k∗|xi =

si, Θ
(t)) = 1 if k∗ = arg mink Ui(k), and 0 otherwise.

Specifically, for continuous data, we maximize Q to get the
mean and variance of each normal community k ∈ {1, . . . , K},
where ln P (xi = si|zi = k, Θ) is defined in Eq. (3):

μ
(t+1)
k =

∑M
i=1 P (zi = k|xi = si, Θ

(t))si∑M
i=1 P (zi = k|xi = si, Θ(t))

, (8)

(σ
(t+1)
k )2 =

∑M
i=1 P (zi = k|xi = si, Θ

(t))(si − μk)2∑M
i=1 P (zi = k|xi = si, Θ(t))

. (9)

Similarly, for text data, based on Eq. (4), as well as the

constraints that
∑T

l=1 βkl = 1 (k = 1, . . . , K), we have:

β
(t+1)
kl =

∑M
i=1 P (zi = k|xi = si, Θ

(t))dil∑T
l=1

∑M
i=1 P (zi = k|xi = si, Θ(t))dil

(10)

for k = 1, . . . , K and l = 1, . . . , T .
In summary, the community outlier detection algorithm

works as follows. As shown in Algorithm 2, we begin with
some initial label assignment of the objects. In the M-
step, the model parameters are estimated by maximizing
the Q function based on the current label assignment. In
the E-step, we run Algorithm 1 to re-assign the labels to the
objects by minimizing Ui(k) for each node vi sequentially.
The E-step and M-step are repeated until convergence is
achieved, and thus the outliers are the nodes that have 0 as

the estimated labels. Note that the running time is linear in
the number of edges. It is not worse than any baseline that
uses links because each edge has to be visited at least once.
For dense graphs, the time can be quadratic in the num-
ber of objects. However, in practice, we usually encounter
sparse graphs, on which the method runs in linear time and
can scale well.

4. DISCUSSIONS
To use the community outlier detection algorithm more

effectively, the following questions need to be addressed: 1)
How to set the hyper parameters? 2) What is a good ini-
tialization of the label assignment Z? 3) Can the algorithm
be applied to any type of data?

Setting Hyper-parameters
We need users’ input on three hyper-parameters: thresh-

old a0, link importance λ, and the number of components
K. Intuitively, a0 controls the percentage of outliers r dis-
covered by the algorithm. We will expect a large number
of outliers if a0 is low and few outliers if a0 is high. There-
fore, we can transform the problem of setting a0, which is
difficult, to an easier problem to choose the percentage of
outliers r. To do this, in Algorithm 1, we first let ẑi =
arg mink Ui(k)(k �= 0) for each i ∈ I, and sort Ui(ẑi) for
i = 1, . . . , M and select the top r percent as outliers.

λ > 0 represents our confidence in the network structure
where we put more weights on the network and less weights
on the data if λ is set higher. Therefore, if λ is lower, the
outliers found by Algorithm 2 is more similar to the results
of detecting outliers merely based on nodes information. On
the other hand, a higher λ makes the network structure play
a more important role in community discovery and outlier
detection. It is obvious that if we set λ to be extremely
high, and the graph is connected, then every node will turn
out to have the same label. To avoid such cases, we set an
upper bound λC so that for any λ > λC , the results contain
empty communities. With this requirement, we show that
the proposed algorithm is not sensitive to λ in Section 5.

K is a positive integer, denoting the number of normal
communities. In principle, it controls the scale of the com-
munity, and thus a small K leads to“global”outliers, whereas
the outliers are determined locally if lots of communities are
formed (i.e., large K). Many techniques have been proposed
to set K effectively, for example, Bayesian information crite-
rion (BIC), Akaike information criteria (AIC) and minimum
description length (MDL). In this paper, we use AIC to set
the number of normal communities. It is defined as:

AIC(Δ) = 2b − 2 ln P (X|Δ) (11)

where Δ denotes the set of hyper-parameters and b is the
number of parameters to be estimated (model complexity).
Since P (X|Δ) is hard to obtain, in the proposed algorithm,

we use P (X|Ẑ, Δ) to approximate it by assuming that Ẑ is
the true configuration of the hidden variables.

Initialization
Good initialization is essential for the success of the pro-

posed community outlier detection algorithm, otherwise the
algorithm can get stuck at some local maximum. Instead of
starting with a random initialization, we initialize Z by clus-
tering the objects without assigning any outliers. Although
this may affect the estimation of the model parameters at



Table 3: Comparison of Precisions on Synthetic Data

Precisions
K = 5 K = 8

GLODA DNODA CNA CODA GLODA DNODA CNA CODA
r = 1% 0.0143 0.0714 0.5429 0.6286 0.0571 0.0571 0.4429 0.7429M = 1000
r = 5% 0.0867 0.2600 0.6930 0.8106 0.0688 0.1554 0.5723 0.6565
r = 1% 0.0118 0.0111 0.1007 0.6565 0.0395 0.0170 0.1536 0.4974M = 2000
r = 5% 0.0567 0.1779 0.4645 0.6799 0.0649 0.1341 0.4944 0.7047
r = 1% 0.0061 0.0041 0.0510 0.3714 0.0163 0.0000 0.0204 0.5347M = 5000
r = 5% 0.0496 0.1134 0.1854 0.7302 0.0565 0.0646 0.1602 0.7926

the first iteration, it can gradually get corrected while we
update Z and nominate outliers in the E-step. To overcome
the barrier of local maximum, we repeat the algorithm mul-
tiple times with different initialization and choose the one
that maximizes the likelihood.

Extensions
We have provided models for continuous and text data,

which already covers lots of applications. Here, we discuss
extension of the proposed approach to more general data
formats by using a distance function. In general, we let the
center of each community μk to be the parameter charac-
terizing the community, and define D(si, μk) to be the dis-
tance in feature values from any object si to the center of
the k-th community μk. For k = 1, . . . , K, we then define
P (xi = si|zi = k) in terms of the distance function:

P (xi = si|zi = k) ∝ exp(−D(si, μk))

which suggests that given vi is from a normal community,
the probability of xi = si increases as the distance from si

to μk gets closer. For example, we can choose D to be a
distance function from the class of Bregman divergence [1],
which is a generalization from the Euclidean distance and is
known to have a strong connection to exponential families
of distributions.

5. EXPERIMENTS
The evaluation of community outlier detection itself is an

open problem due to lack of groundtruths for community
outliers. Therefore, we conduct experiments on synthetic
data to compare detection accuracy with the baseline meth-
ods, and evaluate on real datasets to validate that the pro-
posed algorithm can detect community outliers effectively1.

5.1 Synthetic Data
In this part, we describe the experimental setting and re-

sults on the synthetic data.

Data Generation
We generate networked data through two steps. First,

we generate synthetic graphs, which follow the properties of
real networks–they are usually sparse, follow power law’s de-
gree distributions, and consist of several communities. The
links of each object follow Zipf’s law, i.e., most of the nodes
have very few links, and only a few nodes connect to many
nodes. We forbid self-links and remove the nodes that have
no links. Secondly, we infer the label of each node follow-
ing the proposed generative model, and sample a continuous
number based on the label of each node. The configuration
parameters to describe P (X|Z) include the number of com-
munities K and the percentage of outliers r. We draw the

1http://ews.uiuc.edu/∼jinggao3/kdd10coda.htm

mean of each community uniformly from [-10,10], let the
standard deviation be 10/K, and generate random numbers
using Gaussian probability density.

Baseline Methods
As discussed in Section 1, we compare the proposed com-

munity outlier detection algorithm (CODA) with the fol-
lowing outlier detection methods:

• GLODA: This baseline looks at the data values only.
We use the popular outlier detection algorithm LOF [5]
to detect “global” outliers without taking the network
structure into account.

• DNODA: This method only considers the values of
each object’s direct neighbors in the graph. We define
the outlier score as:∑

j∈Ni
D(si, sj)

|Ni| (12)

where D is the Euclidean distance function. Ni con-
tains all the direct neighbors of vi in the graph: Ni =
{j : wij > 0, i �= j}. If si is significantly different from
the data of vi’s direct neighbors, it is considered an
outlier.

• CNA: In this approach, we partition the graph into K
communities using clustering algorithms [13], and de-
fine outliers as the objects that have significantly dif-
ferent values compared with the other objects in the
same community. Therefore, the outlier score is cal-
culated in the same way as in Eq. (12). But here, Ni

stands for the whole community: Ni = {j : zi = zj , i �=
j} where zi is the community label derived from the
clustering of the network structure.

Empirical Results
In experimental studies, we make each baseline method

detect the same number of outliers as that of the groundtruths.
To achieve this, we simply sort the outlier scores obtained
by the three baseline methods in descending order, and take
the top r percent as outliers. Then we use precision, also
known as true positive rate, as the evaluation metric. It
is defined as the percentage of correct ones in the set of
outliers identified by the algorithm. We vary the scale of
the network to have 1000, 2000 and 5000 nodes respectively.
We set the number of clusters K to be either 5 or 8, and the
percentage of outliers r to be either 1% or 5%.

For each parameter setting, we randomly generate 10 sets
of networked data, and report the average precisions of all
the methods in Table 3. It is clear that GLODA fails to find
most of community outliers because the method completely
ignores the network structure information. The approach
that only checks the direct neighbors of each object to de-
termine outliers (DNODA) also has a low precision. On
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the other hand, if we first discover the communities, and
then identify outliers based on the peers in the community,
the precision is improved as shown in the method CNA. The
proposed CODA algorithm further increases the precision by
modeling both data and link information. We can observe
the consistent improvements where the margin of precision
increase is from 8% to 60%.

Sensitivity
Figure 3 shows the performance of the CODA algorithm

when we vary λ from 0.1 to 0.7, as illustrated using the solid
line. The dotted line represents the performance of the best
baseline method CNA applied on the same data set. The re-
sults are obtained on the synthetic data with 1000 objects,
5 communities and 1% community outliers. It is clear that
in spite of slight changes caused by parameter variation, the
proposed method improves over the best baseline method.
We let λ = 0.2 to get the experimental results shown in Ta-
ble 3.

Time Complexity
Suppose the number of objects is M , and the number of

edges is E. In M-step, we need to visit all the objects to
calculate the model parameters, so the time complexity is
O(M). In E-step, for each object vi, the posterior energy
function Ui has to aggregate the effect of the labels of vi’s
neighbors to compute P (Z). Therefore, in principle, the
time of the E-step is O(E). Real network is usually sparse,
and thus the computation time of the proposed approach
can be linear in the number of objects. Figure 4 presents
the average running time of the CODA algorithm on the
synthetic data. We generate sparse networks using power
law distribution where the number of edges grow linearly,
and thus the running time is linear in the number of objects.

5.2 DBLP
DBLP2 provides bibliographic information on major com-

puter science journals and proceedings. We extract two sub-
networks from the DBLP data: a conference relationship
network and a co-authorship network.

Sub-network of Conferences
In the conference relationship network, we use 20 confer-

ences from four research areas as the nodes of the graph, and
construct a similarity graph based on the 20 nodes. Suppose
there are L authors, then each conference has a L×1 vector
Ai, whose l-th entry is the number of times the l-th author
publishes in the i-th conference. We use cosine similarity to

2http://www.informatik.uni-trier.de/∼ley/db/

Table 4: Top Words in Communities
Communities Keywords

Data frequent dimensional spatial association similarity
Mining pattern fast sets approximate series

oriented views applications querying designDatabase
access schema control integration sql

Artificial reasoning planning logic representation recognition
Intelligence solving problem reinforcement programming theory
Information relevance feature ranking automatic documents

Analysis probabilistic extraction user study classifiers

represent the link weight between two conferences:

wij = cos(Ai, Aj) =
Ai · Aj

||Ai||||Aj || . (13)

This suggests that the conferences that attract the same set
of authors have strong connections, and such conferences
may form a research community. Additionally, we have a
document attached to each node, which contains all the pub-
lished titles in the conference. We conduct the community
outlier detection algorithm on this network to obtain the
outlier that has a different research theme compared with
the other conferences containing similar researchers.

From this dataset, we find the following communities:

• Database: ICDE, VLDB, SIGMOD, PODS, EDBT

• Artificial Intelligence: IJCAI, AAAI, ICML, ECML

• Data Mining: KDD, PAKDD, ICDM, PKDD, SDM

• Information Analysis: SIGIR, WWW, ECIR, WSDM

The community outliers detected by the proposed algorithm
include CVPR and CIKM. Clearly, CVPR is more likely
to fall into the AI area because researchers in CVPR will
often attend IJCAI, AAAI, ICML and ECML. However, al-
though people in computer vision utilize many general arti-
ficial intelligence methods, there exist unique computer vi-
sion techniques, such as segmentation, object tracking, and
image modeling. Therefore, CVPR represents a commu-
nity outlier in this problem. On the other hand, CIKM has
a wide-spread scope, and attracts people from information
analysis, data mining, and database areas. Apparently, it
has a different research theme from that of any conference
in these areas, and thus represents a community outlier as
well.

Sub-network of Authors
We extract a co-authorship network, which contains the

authors publishing in the 20 conferences mentioned above
from DBLP. We select the top 3116 authors with the highest
number of publications in these conferences, and use them as
nodes of the network3. If two researchers have co-authored
papers, there is an edge connecting them in the graph. The
weight of the edge is the number of times two researchers
have collaborated. We run the CODA algorithm on this
co-author network to identify communities and community
outliers. The top-10 frequent words occurring in each com-
munity identified by the algorithm are shown in Table 4. It
is obvious that we can discover four research communities

3This is a sub-network of the original DBLP network. There
could have some information loss in the co-authorship rela-
tionships.



Researchers & 

Collaborators

Research Interests 

Dennis Shasha 

DB 19 DM 6 

biological computing, pattern recognition, querying in trees 

and graphs, pattern discovery in time series, cryptographic file 

systems, database tuning 

Craig A. 

Knoblock

IA 4 AI 4

DM 1 DB 1 

planning, machine learning, constraint reasoning, semantic 

web, information extraction, gathering, integration, mediators, 

wrappers, source modeling, record linkage, mashup 

construction, geospatial and biological data integration 

Eric Horvitz 

IA 9 AI 4 

human decision making, computational models of reflection, 

action with applications in time-critical decision making, 

scientific exploration, information retrieval, and healthcare 

Sourav S. 

Bhowmick

IA 8 DM 2 DB 2 

blogs, social media analysis; web evolution, evolution, graph 

mining; social networks, XML storage, query processing, 

usability of XML/graph databases, indexing and querying 

graphs, predictive modeling, comparison of molecular 

networks, multi-target drug therapy 

Timothy W. Finin 

IA 6 AI 1 

social media, the semantic web, intelligent agents, pervasive 

computing 

Jack Mostow 

AI 3 IA 2 

focuses on using computers to listen to children read aloud 

while other interests include machine learning, automated 

replay of design plans, and discovery of search heuristics 

Terrance E. Boult 

AI 2 IA 1 

vision and security including video surveillance systems, 

biometrics, biometric fusion, supporting trauma treatment, 

steganalysis, network security, detection of chemical and 

biological weapons 

Jayant R. 

Kalagnanam 

DB 3 AI 2 IA 1 

decision support, optimization, economics and their 

applications to electronic commerce 

Ken Barker 

IA 2 AI 2 DB 1 

knowledge representation and reasoning, knowledge 

acquisition, natural language processing 

Dimitris

Achlioptas

AI 4 

threshold phenomena in random graphs and random formulas, 

applications of embeddings and spectral techniques in 

machine learning, algorithmic analysis of massive networks 

Figure 5: Community Outliers in DBLP co-authors

in this co-author network: Database (DB), Artificial Intel-
ligence (AI), Data Mining (DM), and Information Analysis
(IA).

Outliers in this sub-network somehow represent researchers
who are conducting research on some different topics from
his collaborators and peer researchers in the community. To
illustrate the effectiveness of the proposed algorithm, we
check the research interests listed on the homepages of the
researchers identified by the CODA algorithm. In Figure 5,
we show each researcher’s name together with the number
of his collaborators in each of the four communities (DB, AI,
DM, and IA) in the first column. Their research interests
are shown in the second column. As can be seen, these re-
searchers indeed studied something different from his collab-
orators and the majority of the communities. For example,
Jayant R. Kalagnanam mainly focuses on electronic com-
merce, which is a less popular topic among his collaborators
in Database, Artificial intelligence and Information Analy-
sis areas. Jack Mostow has focused on using computers to
listen to children read aloud, which is a less studied research
theme in Artificial Intelligence and Information Analysis.
Through this example, we demonstrate that the proposed
CODA algorithm has the ability of detecting outliers that
deviate from the rest of the community.

6. RELATED WORK
Outlier detection, sometimes referred to as anomaly or

novelty detection, has received considerable attention in the
field of data mining [6]. Recently, people began to study
how to identify anomalies within a specific context. These
methods are able to detect interesting outliers or anomalies

which cannot be found by existing outlier detection algo-
rithms from a global view. Specifically, the pre-defined con-
textual attributes include spatial attributes [23, 27], neigh-
borhoods in graphs [26], and some contextual attributes [25].
When there is no a priori contextual information available,
Wang et al. propose to simultaneously explore contexts and
contextual outliers based on random walks [29]. The pro-
posed community outlier problem differs from these papers
in that we use communities in networks as contexts, and
they are inferred based on both data and link information.

Outlier detection in data without considering contexts
is called global outlier detection. Existing methods detect
anomalies based on how far their distances [16], densities
[5], statistical distributions [21] deviate from the rest of the
data. The proposed model shares some common properties
with existing methods. For example, we assume that out-
liers are far from any clusters and are uniformly distributed
[7]. On the other hand, we may refer to outliers identified
in network structures purely by link analysis as structural
outliers [31]. There are also works devoting to finding un-
usual sub-graph patterns in networks [22]. Clearly, these
types of outliers are not the same as the community out-
liers defined in this paper. In general, outlier detection is
unsupervised, i.e., the task is to identify something novel
or anomalous without the aid of labeled data. There ex-
ist some semi-supervised outlier detection approaches that
take labeled examples as prior knowledge of label distribu-
tion [33, 28, 8]. In this paper, we aim at unsupervised outlier
detection on networked data requiring no labeled data.

In recent years, many methods have been developed to dis-
cover clusters or communities in networks [11]. At first, com-
munity discovery is conducted on links only without consult-
ing objects’ information. Such techniques find communities
as strongly connected sub-networks by similarity computa-
tion [15, 12] or graph partitioning [24, 20, 14]. Later, it was
found that utilizing both link and data information leads to
the discovery of more accurate and meaningful communities
[17, 32, 30]. Some relational clustering methods [9, 19] fall
into this category when both attributes of objects and re-
lationships between objects are considered. Among various
techniques, Markov random field [18, 34] is commonly used
to model the structural dependency among random variables
and has been successfully applied to many applications, such
as image segmentation. More generally, relational learning
explores use of link structure in inference and learning prob-
lems [10]. Moreover, some semi-supervised clustering tech-
niques based on must-links and cannot-links [2] can be used
to discover communities on networked data as well, where
network structures provide must-links. As shown in the ex-
periments, separating community discovery and outlier de-
tection cannot work as well as our unified model because
absorbing outliers into normal communities affect the pro-
filing of normal communities, and in turn degrade the per-
formance of the second stage outlier detection.

7. CONCLUSIONS
In this paper, we discuss a new outlier detection prob-

lem in networks containing rich information, including data
about each object and relationships among objects. We de-
tect outliers within the context of communities such that
the identified outliers deviate significantly from the rest of
the community members. We propose a generative model
called CODA that unifies both community discovery and



outlier detection in a probabilistic formulation based on hid-
den Markov random fields. We assume that normal objects
form K communities and outliers are randomly generated.
The data attributes associated with each object are mod-
eled using mixture of Gaussian distributions or multinomial
distributions, whereas links are used to calculate prior distri-
butions over hidden labels. We present efficient algorithms
based on ICM and EM techniques to learn model param-
eters and infer the hidden labels of the community outlier
detection model. Experimental results show that the pro-
posed CODA algorithm consistently outperforms the base-
line methods on synthetic data, and also identifies meaning-
ful community outliers from the DBLP network data.
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