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1. Introduction. A proof is given here of a theorem of Sarason [9, Theorem 2], the proof
being valid in an arbitrary (non-separable) complex Hilbert space. Sarason's proof uses a
theorem and lemma of Wermer which may both fail when the separability hypothesis is
omitted [3]. By using a special case of Sarason's theorem and another result of Sarason
[10, Lemma 1] a simplified and shortened proof is given of a result of Scroggs [11, Corollary 1].

In general, terminology and notation are similar to those in Halmos's book [5]. In
addition, throughout this paper, L(H) denotes the algebra of bounded linear operators on the
complex Hilbert space H, si denotes a commutative, identity containing, weakly closed algebra
of normal operators in L(H) and s#w denotes the Von Neumann algebra generated by si.

2. Sarason's Theorem. This is the following result [9].

THEOREM 1. If the operator B, in L(H), leaves invariant every closed invariant subspace of
si, then B belongs to si.

Before proving this theorem we require some preliminary definitions and results.

DEFINITION. A Boolean algebra of projections, 38, on a Hilbert space H is complete if and
and only if, for each subset {Ea} s @,

(a) i/admits the orthogonal direct sum decomposition H = M®N, where M = elm {Ea H),
JV n ( / £ ) H

(b) the projection Eo with range M belongs to 38 (see [1]).

Let 8P denote the set of projections in si. Then SP forms a complete Boolean algebra of
projections. This follows from [4, p. 2201] and the fact that, since si is closed in the weak
operator topology, it is also closed in the strong operator topology.

LEMMA 1. SP can be regarded as a self-adjoint spectral measure E{ •) over its Stone repre-
sentation space SI, and every element ofsiw can be expressed in the form ^nfifyEidX), where
feC(Si).

Proof. Certainly & is isomorphic with the Boolean algebra of all open and closed subsets
of fi (a compact, Hausdorff, extremally disconnected space). Call this isomorphism £'( •).
Now the set T of finite linear combinations of open and closed sets of f2 is norm dense in
C(Q). Define a map $ from x to siw by

Qj open and closed in fi for / = 1, . . . ,n; fi;nfi,- = 0 for i¥=j), where, for any set S,
is the characteristic function of S. Then <f> is a continuous algebra homomorphism. Since
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T is norm dense in C(£2), 4> can be extended to the whole of C(£2) and, since the uniform closure
of finite linear combinations of elements of & is equal tosfw [7, p. 18, Lemma 1], the image of
C(£2) under <f> iss#w. Hence there exists a uniquely determined spectral measure E{ •) defined
on the Borel subsets of Q and such that [4, p. 2186]

Also, if <5 is any open and closed subset of Q, then

Hence the values of the spectral measure E{ •) on the open and closed subsets of Q, generate 2P\
whence the result.

For m a natural number, we let Hm denote the orthogonal direct sum of m copies of H
and, for A e L(H), we let Am denote the direct sum of A with itself m times. $fm = {Am: Aes/}
and Em( •) is the direct sum of £( •) with itself m times.

DEFINITION. The cyclic subspace M(x) corresponding to x in H is given by

M(x) = clm{E(d)x:5eI.},
where I denotes the a-algebra of Borel subsets of Q.

LEMMA 2. Suppose that there exist vectors x e Hm, y e Hsuch that <£( • )y, y} = <£m( • )x, x >.
Let N be the smallest closed reducing subspacefor s/ containing the vector y and Y the smallest
closed reducing subspace of sfm containing the vector x. Then, for any A in stfw,Am\ Y and A \N
are unitarily equivalent via an isometry V of N onto Ysuch that Am | Y = VAV~l, where V is
independent of the choice of A. (For convenience we write A instead of A | N.)

Proof. First notice that N = M(y) and Y = elm {Em(5)x: <5eZ}. Let

Then there exist isometric isomorphisms [/,, U2 taking L2(ii) onto M{y) and L2(n) onto
elm {Em(5)x: <5eZ}, respectively, such that

where feL2(n), 5 el. [5, p. 95]. Therefore EJJS)= VE(8)V~\ where V= UvU2
l, is an

isometric isomorphism of N onto Y. V\ N is unitary. Thus, if A e stw, there is an fe C(fi)
such that A = \af{X)E{dX), by Lemma 1, and this implies that

~Xfor all zuz2sH. Therefore Am = VAV

LEMMA 3. Suppose that B in L{H) leaves invariant every closed invariant subspace ofsf.
ThenBesf".
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Proof. By hypothesis, B commutes with every projection that commutes with siw. Let
5 e (siw)' and suppose that S = S*. Then, if Te siw, Fuglede's theorem tells us that Tcommutes
with all the spectral projections of S and hence all these lie in (si™)'. Therefore, by the spectral
theorem, BS = SB. Since any operator S e ^ * ) ' can be expressed as a linear combination of
self-adjoint operators in (si")', namely S = $(S+S*) + i{(ll2i)(S-S*)}, it follows that B
commutes with every operator in (si")'. Therefore B e(si")" =siw. This completes the proof.

Let ^ be a von Neumann algebra; then x is said to be a separating vector for M if and
on\yifAsSi,Ax = 0 implies that A = 0. If£is a projection in Si, then E is said to be countably
decomposable in Si if and only if every orthogonal family {Ex} £ ^ of nonzero subprojections
of £ is at most countable. Si is said to be countably decomposable if and only if / is count-
ably decomposable in 32.

Now, since S? is complete, we can define carrier projections in SP thus:

C(x) = A{£: Ee&, Ex = x}
is the carrier projection of x.

A subset Si of 0> is said to be an ideal if and only if (1) £, Fe ® implies that EvFeS), (2)
G g H, He 3) implies that Ge&. A a-ideal is an ideal closed under countable unions, and an
ideal is dense if and only if every element of & is a union of elements of 2l. Now let # be the
set of countably decomposable elements in SP. Then ^ is a dense <x-ideal and a projection in
6 belongs to <€ if and only if it is the carrier projection of a vector in H [4, p. 2266].

We are now in a position to prove the main lemma in this section.

LEMMA 4. Suppose that B in L(H) leaves invariant every closed invariant subspace of si.
Then Bm leaves invariant every closed invariant subspace ofsim (m= 1,2,3,...).

Proof. Let x = (xu x2,..., xm) eHm and let Y be the smallest closed reducing subspace
m m

olsim containing x. Consider the projection VC(xt) with range M, say. Then VC(x,) is

countably decomposable, since <€ is a a-ideal. Also, M is invariant under £( •) and hence
under siw. Therefore si" M is a countably decomposable commutative von Neumann
algebra over H. Hence si" M has a separating vector ic in H [7, p. 30]. Let£(-) = E(-)\M.
Then E(d)x = 0 => E(d) = 0 (d e 1). Hence

/ = l in)

Hence the measure <£m( • )x, x} is absolutely continuous with respect to the measure <£( • )x, ic>.
So, by [5, p. 95, p. 104], there exists a vector y in M{x) such that (E(-)y,y} = <£„(•).*,*>•
Let N be the smallest closed reducing subspace for si containing the vector y. Then, by
Lemma 2, for any A in siw, Am | Y and A | N are unitarily equivalent via an isometry V of N
onto Y such that Am\Y = VAV'K Since, by Lemma 3, B is i n ^ w , then Bm\Y= VBV~l.
Hence V maps closed invariant subspaces of B onto closed invariant subspaces of Bm I Y.
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Let L be the smallest closed subspace of Hm invariant under stm and containing x.
Then V~lL is invariant under si and hence also under B. Hence L is invariant under Bm.
If now Yo is an arbitrary closed subspace of Hm containing x and invariant under s/m, then

£ Yo. Therefore Bm Yo s Yo.

Proof of Theorem 1. Letxlt...,xm, y1,...,ymbe unit vectors in H and lete > 0 be given.
Define U to be the set of all operators T in L(H) such that

| < Txj,yj>-(Bxj,yj}\<e (j=l,...,m).

Then U is a neighbourhood of B and the family of all such U is a base of neighbourhoods of
B in the weak operator topology. It remains only to prove that U contains an element of si.

Put
x = (xi,...,xm)eHm, s/x={Ax:Aesf}, simx= {Amx: Aesi}.

Consider the closed linear subspace elm sim x. This subspace is invariant under sim and so it
is invariant under Bm. Therefore 5 m xec lm^ m x. Hence there exists an element A in si such
that | |/<„,*-J3mx|| < e . Hence

| | | |
and so

|O** , , t t> -<*W,> |^ I M * I - * * I | | I W I < « (<•= 1,•••,'«)•
Therefore A is in U and so B is in .E/.

REMARK: It was noted in [6] that, in the enunciation of Theorem 1, the word "com-
mutative " is unnecessary. This follows from the fact that, if °U is a linear space of normal
operators, then <2f is commutative. For, if A, Be<%, then

2(B*A-AB*)
)*} = 0.

Hence, by Fuglede's theorem, AB = BA.

3. A Result of Scroggs.

DEFINITION. A normal operator is said to have property (P) if and only if every closed
invariant subspace of the operator is also reducing for the operator.

Scroggs proved the following result [11].

THEOREM l.IfT is a normal operator and if int a(T) # 0, then property (P) fails for T.
A direct proof of this result is given here, based on a lemma of Sarason [10, Lemma 1].

We require a preliminary lemma, the proof of which is given for completeness.

LEMMA 5. Let H be a Hilbert space and let T be a bounded normal operator on H. Then
there is a closed separable reducing subspace Kfor T such that a{TjK) = a(T).

Proof. Let {A,}^ \ be a countable dense subset of the complex plane, containing a dense
subset of o(T). Let Xk be a particular element of the sequence. With kk as centre construct a
sequence of open discs, say {Sj}f= t, so that, if r,- is the radius of Sj, lim ri = 0. For each disc,
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choose a vector xkj- belonging to the range of the projection E(Sj), where E( •) is the resolution
of the identity for the bounded normal operator T. HSjna(Tr) = 0, then xkJ = 0; otherwise
xkJ 5̂  0. In this way we obtain an infinite sequence of vectors {xkj}f= t associated with Xk.
Repeating this process for each Xk (k = 1,2,...), we obtain a doubly indexed sequence of
vectors {x,j}*J=l. The cycle generated by each x^, i.e., the subspace spanned by the E(M)xu

for each Borel set M, is a separable subspace of H [3, Corollary 2.4]. Hence the countable
union of such cycles is separable. Let K be the subspace spanned by these cycles. Then K
is separable. Since each of these cycles is reducing for T, it follows from the linearity and
continuity of T that K reduces T. Finally, we show that a(T\ K) = a(T). It suffices to show
that o(T) £ o(T\K). Suppose that Xkea{T). Then, given any neighbourhood N(Ak) of Xk,
some S,(Ak) has the following properties:

(1) St(Xk) £ N(Xk), (2) S^na{T) / 0.

By definition, there is an xki J= 0 such that E{S^xki = xki. But this means that Si(Xk) and hence
N(Xk) contains a point of the set a(T\ K). If this point is not Xk, then this shows that Xk is a
limit point of o(T\ K) and hence Xkea(T\ K), since this set is closed. Hence <J(T) z o(T\ K),
since a(T) has a dense subset consisting of points Ak, and the proof is complete.

In the proof of Theorem 2 we shall use a special case of Theorem 1, namely the following.
T has property (P) if and only ifT* is in the closed subalgebra ofL(H), generated by land T,

in the weak operator topology.
In the following proof, E( •) will be the resolution of the identity for Tand for x in H, M(x)

will denote the closed linear subspace generated by the E(M)x, for each Borel subset M of the
complex plane.

Proof of Theorem 2. By Lemma 5 there exists a separable closed subspace Yof H which
is reducing for Tand such that o(T\ Y) = a{T). Let jc be a separating vector for the spectral
measure £( •) | Y [3, Theorem 2.7]. Now o(T\ M{x)) is the support of E( •) | M(x) and this is
the same as the support of E{ •) | Y; so a(T\ M(x)) = <r(T).

Define n(-) = (E(-)x,x}. Then n(-) is a positive measure with compact support;

We now suppose that T has property (P) and obtain a contradiction. From the special
case of Theorem 1 we see that T* belongs to the weak closure of polynomials in T, i.e., there
exists a net of polynomials {/?„} such that

lim (p,,(T)x,y} = <T*x,y} for all x, y in H.
a

Put S = T\ M(x). Then S is a normal operator and S* = T*\ M(x); hence

lim <pa(S)x,yy = (S*x, y} for all x, y in M(x).
a

Now, by [4, p. 95], there exists an isometric isomorphism U of L2(/i) onto M(x) with the
property that C/"1£(M)C//= xMf, for all Borel sets M and a l l / in L2(//). We have

<Pa(S)x,y) = (PJJS)Uf, Ug) for some/, g in L2(n)
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Now
<E(M)Uf, Ug> =

for all Borel sets M. Hence,

<Pa(S)x,y} = hM
So

lim J pjg dn = \ zfg dfi, for all / , g in L2(ji).
a

Hence
lim jpahdfi = \zhdfi, for all h in L2(^)>

a
and therefore z is in the weak-star closure of polynomials in LK(fi), thus contradicting [9,
Lemma 1]. For completeness we show how the contradiction arises.

Since int(supp/i) = int(<r(r) ^ 0 we consider the set M of functions holomorphic in
G = int (o(T)). We show that M is closed in the weak-star topology of Z,°°00- We need only
show that M is weak-star sequentially closed [2, p. 124]. By considering a sequence {/„}
converging weak-star in La0(fi) to /we see that {/„} is bounded in L°°(/i) [2, p. 123]. Hence it is
uniformly bounded in G. By Montel's theorem [8, p. 272], {/„} has a subsequence which
converges uniformly on compact subsets of G to the function g, say, where g is holomorphic
in G. Hence/= g a.e. (/i) in G. Thus/eM. Therefore Mis closed in the weak-star topology
of L°°(/i) and this of course shows that z does not belong to the weak-star closure of poly-
nomials in Lx(n), since z$M.
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