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1. Introduction. The study of the structure of any simple commutative
power-associative algebra 21 over a field g begins with the case where % is
algebraically closed. We shall also assume that the characteristic of $ is
prime to 30. Then 2Í has a unity quantity 1 which is expressible as the sum
l=«i + • • • +Ut of pairwise orthogonal (absolutely) primitive idempotents
U{. The integer t is unique and is called the degree of 2Í. It is known that if
t>2, the algebra 21 is a classical Jordan algebra(2). The structure of algebras
of degree two is not known and will be considered here.

Every simple algebra 21 of degree two contains an idempotent Ut¿1 and
there is a corresponding decomposition

(i) 2i = a„(i) +a„(i/2) +2i„(o),
where 2L(a) consists of all quantities xa of 21 such that uxa =axa. It is known(3)
that 2IU(1) and 2i„(0) are orthogonal subalgebras of 21, that [2I„(l/2)]2
Ç2L(1)+2IU(0), and that

(2) 2I„(X)2Ul/2) Ç «¿(1/2) + 2IU(1 - X) (X = 0, 1).
We say that 21 is u-stable (stable relative to the idempotent u) if the stronger
condition

(3) 2I„(X)2I„(l/2) Ç «„(1/2) (X = 0, 1)
holds. Moreover, we call an algebra 21 a stable algebra if 21 is w-stable for
every idempotent u of 21.

The main result of this paper will be stated as follows.

Theorem 1. Let %be a simple commutative power-associative algebra of de-
gree t>\ over its center g whose characteristic is prime to 30. Then 21 is stable if
and only if 21 is a Jordan algebra.

Mr. Louis Kokoris has constructed(4) a class of «-stable central simple

Presented to the Society, April 26, 1952, under the title New power-associative algebras and
their derivations; received by the editors May 12, 1952.

(') This paper was sponsored in part by the Office of Naval Research.
(2) See Theorem 8 of the author's A theory of power-associative commutative algebras, Trans.

Amer. Math. Soc. vol. 69 (1950) pp. 503-527. We shall refer to this paper as CPA.
(3) These results were given in Power-associative rings, Trans. Amer. Math. Soc. vol. 62

(1948) pp. 552-593.
(*) These results will be published in the Proc. Nat. Acad. Sei. U. S. A. in 1952.
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commutative power-associative algebras © of degree two and dimension
4p over a field % of characteristic p. These algebras are not Jordan algebras
since ©u(l) has a (p— l)-dimensional radical, while 2lu(l) is simple for every
simple Jordan algebra 21.

Each of the algebras of Kokoris contains a simple subalgebra X of dimen-
sion 3p which is constructed in terms of the algebra 33 of all polynomials in
x with coefficients in % such that xp = 0. We shall obtain the derivation algebra
3) of © and shall show that it coincides with the derivation algebra of X.
Moreover, 3D is the direct sum of the three-dimensional central simple Lie
algebra of two-rowed matrices of trace zero and the well known ^-dimensional
simple Lie algebra of Witt, that is, the derivation algebra of 33.

We close our study with an extensive generalization of the algebras ©
and X of Kokoris. We generalize 33 to be the algebra 33r of all polynomials in
Xi, • • • , xr with x? = 0, and define a certain set S of derivations Di¡= —D¡i
for all integers i^O and/SïO. Let 3D«, be the subset of <S consisting of all 7)¿3-
with i^m and j^m, and define a corresponding commutative algebra
X(dr, £>m) =33r+yo33r+ • • • + yJ8T of dimension pT(m + 2) over g of charac-
teristic p, for every m>0 where (yib)c=yt(bc), (yib)(yjC) = (bDiJ)c — b(cDi])
for every b and c of 33r and i,j — Q, ■ ■ ■ , m. This algebra can be imbedded in a
«-stable algebra ©(33n 3Dm) =£(33r, 3Dm)+«33r, and the algebras © and X of
Kokoris are the case r = m = 1 of the algebras ©(33r, 3Dm) and £(33r, 3Dr). The
new algebras are central simple power-associative algebras and contain other
central simple algebras whose dimensions need not even be divisible by p.

2. Structure properties of «-stable algebras. If 21 is a simple commuta-
tive power-associative algebra over % the scalar multiples al of the unity
quantity 1 of 21 form a subalgebra of 21, and the mapping a<->al is an iso-
morphism of this subalgebra and $. We shall identify this subalgebra with
g, shall write a rather than al, and shall regard % as being a subset (actually
a subring) of 21.

We shall assume that g is an algebraically closed field of characteristic
prime to 30 and that 21 has degree two. Then 1 =u+v for an idempotent u y^ 1,
so that u and v are orthogonal idempotents. Since u and v are absolutely primi-
tive, we have

a-(i) = u% + 9Í!,    «„(o) = a,(i) = »g + %,,
where 9Î* is a nilalgebra and is the radical of 2IU(X). Define

6 = 2IU(1) 9 2I„(0) = «5 + v% + W,
where 9íl' = 9ííi©9,Co is then the radical of 6. The idempotents u and v are the
unity quantities of 2L(1) and 2IU(0) respectively, and we have

(4)     iab)u = iau)b = a(èw) = (o«)(ôm),    iab)v = iav)b = a(uô) = iav)ibv),

for every a and b of S.
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The following known(6) result is a basic tool in our investigation.

Lemma 1. Let x and y be in 2I„(l/2). Then

xy = a + z,

where a is in 5 and z is in W.

A commutative algebra 21 over a field % of characteristic prime to 30 is
power-associative if and only if

4[(wx)(yz) + iwy)ixz) + iwz)ixy)]

(5) = w[xiyz) + yizx) + z(xy)] + x[yizw) + ziwy) + wiyz)]

+ y\ziwx) + wixz) + xizw)] + z[wixy) + xiyw) + yiwx)]

for every w, x, y, z of 21. This identity is of obvious importance in our analysis.
If x is in 2lu(l/2), we apply Lemma 1 to see that

x2 = a + z,

where z is nilpotent and a is in g. If a = 0, then x is nilpotent. Otherwise the
algebra S[x] contains 1 and x_1 and we shall call x nonsingular.

Lemma 2. 7/21 is simple and u-stable, there is a nonsingular quantity in
»«(1/2).

For© is not simple and 21^(1/2)^0. If x2 were in W for every x of 2Iu(l/2),
then 2xy = ix+y)2 — x2—y2 would be in 9Î' for every x and y of 2L(l/2), that
is, [2L(l/2)]2ç:9î'. Also 62L(l/2)Ç2lu(l/2) since 2Í is «-stable. Define
5DÎ = 9T+2L(l/2) and see that 2M = 9î'6+S2L(l/2) + 9î'2L(l/2) + [«.(1/2) ]2
C9í' + 2íu(l/2)+2Iu(l/2)+9í'C9K, that is, M is an ideal of 21. This is im-
possible since 21 is simple and 2I^9ft^2L(l/2) ^0.

The result of Lemma 2 implies the following result.

Lemma 3. Let x be a nonsingular element of 2IM(l/2) where 2Í is u-stable.
Then there exists a quantity c in 5[x2]ÇË such that w = cx is in 2iu(l/2), and
w2=l.

For x2 = a+5 where 5 is nilpotent and aj^O is in g. Then j3=(a_l)1/2 is
in g, and if y=ßx, we have y2 = a~1ia+s) = 1+3 where z = ct~ls is nilpotent,
g HCgf*2]- Write

c' = (1 + z)-1'2 = 1 - (1/2)« + (3/8)z2 + • ■ • ,

where we use the fact that z is nilpotent and the ordinary power series expan-
sion of the function (l+z)-1'2 to obtain a polynomial c' = c'(z) with coeffi-
cients in g such that c'2(l+z) = l. But ^[x] is associative and so (c'y)2
= c'2(l+z) = l = (cx)2 where c= ßc', cx = c'y. Since c is in S and x is in 2lu(l/2),

(«) CPA, Lemma 10.
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the product w is in 2Iu(l/2).
The next step in our derivation is the substitution of the values

x = k,        y = u,        z = w
in (5), where

k = ku,        w2 = 1,        uw = (\/2)w.

We also use that fact that 21 is «-stable and so

u(kw) = il/2)kw.

Then (5) becomes 4k+4wikw) =2w[uikw)+kiuw)+wiuk)]+u[2wikw)
+ kw2]+k[2iwu)w+uw2] =4wikw)+2u[wikw)]+k + 2k. This is equivalent
to k = 2u[w(kw)], a result which we state as follows.

Lemma 4. Let c be in S so that b = 2w [(cm)w] is in E. Then bu = cu.

Consider the set O of all quantities q in 21 such that

(6) wiwq) = q.

Evidently Q is a subspace over % of 21. We determine £D as follows.

Lemma 5. A quantity q of 21 is in O if and only if q = iwx)w for x in 21.
The intersection 33 of G and E is the set of all quantities b = iwc)w for c in 6.

For proof we substitute y=z = w in (5) to obtain 12[(wx)w2] = 12wx
= 3w[2(wx)w+w2x]+3xw = 6w[(wx)w]+6wx. Thus our assumption about
the characteristic of % implies that

(7) w[(wx)w] = wx

for every x of 21. Put q=(wx)w and see that wq = wx, (wq)w = (wx)w = q. Thus
every x of 21 determines a quantity (wx)w in O. Conversely if q is in O, we
have q = (wx)w for x = q. If o is in 33, then b = (wb)w where b is in Ê. Conversely
if c is in 6, then b = (wc)w is in Q. But (wc)w is in 2Í„(1/2)2IU(1/2)CS and
so b is in 33, our proof is complete.

Lemma 6. Let c be in Ë. Then wc = 0 if and only if c = b(u — v) for b in 33.
Then

(8) w(bu) = w(bv) = (1/2) wb

for every b of 33.

Let us write a —2 \w(bu) ]w, c = 2 \w(bv) ]w for b in 33 so that a and c are
in 33. By Lemma 4, au = bu, and by symmetry bv = cv. Then a+c = 2(wb)w
= 2b — 2bu + 2bv = au + cu+av + cv. It follows that bu+bv = av+cu, av = bv,
a = a(u+v) =b = c.

(9) 2w[w(bu)] = 2w[w(bv)] = b.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] COMMUTATIVE POWER-ASSOCIATIVE ALGEBRAS 327

Hence w[w(bu — bv)]=0. By (7) we obtain w(bu — bv)=0 and w(bu)=w(bv),
wb=w(bu + bv)=2w(bu)=2w(bv), that is, (8) holds. Conversely if c is in S
and wc = 0, then b = 2w[w(cu)] is in 33, 2w[w(cv)]=d is in 33, cu = bu, dv = cv
by Lemma 4. But then b+d = 2w(wc) =0, d = du+dv = du+cv= — b= — cu
— bv, cv=—bv, c = c(u+v)=b(u—v) as desired.

The quantities

e = (1/2)(1 + w),        f = (1/2)(1 - w) = 1 - e

are orthogonal idempotents and there is a corresponding decomposition

(10) 21 = «.(l)+».(0) +21,(1/2),
where 2Ie(0) =21/(1). We propose to express this decomposition in terms of
w, 33, and the decomposition (1) of the algebra 21 relative to u.

Lemma 7. Let 33 be the set of all elements b of S = 2Iu(l)+2lu(0) such that
(wb)w = b. Then 2Ie(l)=e33, 21/(1) =2te(0) =/33, 2I«(l/2) = («-z>)33 + ® where ®
is the set of all elements g of 2L(l/2) such that wg = 0. Also «„(1) =«33, 2I„(0)
=üS3, 2I„(l/2)=w33 + ®, E=33+(w-z/)33.

For every element of 21 has the form x = c+y where c is in Ê and y is in
«»(1/2). Then

2ex = (1 + w)x = px

if and only if

(11) wx = (p — l)x.

Since 21 is «-stable and (11) is equivalent to

wc + wy = (p — \)c + (p — \)y,

we see that

(12) wc — (p — \)y,        wy = (p — l)c.

The value of p for elements of 2ie(X) is ¿u = 2X. Hence x is in 2Ie(l) if and only
if y = wc, wy = w(wc)=c. Thus c is in 33, x==(w+l)c = 2ec, and we have
proved that 21,(1) =e33. By symmetry 21/(1) =2Ie(0) =/33. Also x is in 21.(1/2)
if and only if wc = wy = 0, y is in ®, c is in 33(w — v). This completes the expres-
sion of the decomposition of 21 relative to e in terms of w, 33, and ®.

Observe that if c is in E, then (wc)w = b is in 33, [w(c — b)]w = 0, c — b
= a(u-v) for a in 33, c = b+a(u-v), E = 33+33(«-z;). Clearly 2I„(1)=«E
= «33, 2L(0) =z$3. Since every x of 21 has the form ea+fb + (u— v)c+g with
a, b, ein 33 and g in ®, we see that x=(l/2)(a+Z>) + (l/2)w(a — b)+(u— v)c+g
and the component of x in 2Iu(l/2) is (l/2)w(a-b)+g. But then 2I„(l/2)Çw33
+ ©Ç2I„(l/2) and we have the desired result.

We shall actually show that 33 is a subalgebra of E, and it will follow that
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2I«(1) and 2I«(0) are isomorphic to 33. The next step in our derivation of this
vital result is the use of some known (6) results which we write as

(13) w[(a¿>)«] = w[(au)(bu)] = [w(au)](bu) + [w(bu)](au),

(14) [w(au)](bv) =  [w(bv)](au),

and the result of replacing « by v in (13). These equations hold for all quantities
a and b of Ë and we take a and & in 33 so that w(au) =w(av), w(bu) =w(bv) by
the proof of Lemma 6. Then (wa)b=[w(au+av)](bu+bv)=[w(au)](bu)
+ [w(au)] (bv) + [w(av)] (bv) + [w(av)] (bu) = [w(au)] (bu) + [w(bv)] (au)
+ [w(av)](bv) + [w(bu)](av) =w[(ab)u + (ab)v] =w(ab).   Also   [w(bu+bv)](au
— av) = 2 [w(bv) ] (au) — 2 [w(bu) ] (av) = 2 [w(au) ] (bv) — 2 [w(av) ] (bu) = (wa) (bv
— bu). We have proved the following result.

Lemma 8. Let a and b be in 33. Then (wa)b = w(ab), (wb) [a(u—v)]
= — (wa) [b(u— v)].

The substitution x = w, y = a, z = b in (5) yields 4[2(wa)(wb)+ab]
= 2w[(wa)b + (wb)a+w(ab)]+a[2w(wb)+w2b]+b[2w(wa)+w2d] = 6w\w(ab)]
+ 6ab, 8(wa)(wb)=6w[w(ab)]+2ab,

(15) 4(wa)(wb) — 3w[w(ab)] + ab.

Since 2Ie(l) is an algebra, we have (a+wa)(b+wb) =2(d+wd) for every a and
& of 33 where d is in 33. Then ab + (wa)(wb) + (wa)b + (wb)a=ab + (wa)(wb)
+ 2w(ab)=2d + 2wd,

(16) ab + (wa)(wb) = 2d,        w(ab) = wd.

Then 4(wa)(wö) =8d — 4ab = 3w\wiab)]+ab. Since both d and w[w(a&)] are
in 33, so is 5ab = Sd — 3w[wiab)]. Thus ab is in 33 and 33 is a subalgebra of S.
Also w[wiab)]=ab so that (15) implies that

iwa)iwb) = ab

for every a and b of 33. It is now true that (ea)(eô) =ed = eiab) and 2íe(l) is
isomorphic to 33. We are now ready to show that 2I„(1) is isomorphic to 33.

Theorem 2. 7,e/ 21 be a simple commutative power-associative algebra of
degree two over an algebraically closed field 5 whose characteristic is prime to 30
so that 21 has a unity quantity 1 and 1=m+îi where u is an idempotent,
v^O. Then 7/ 2Í is u-stable, its subalgebras 2I„(1) and 2IU(0) are isomorphic.

For 2Iu(l) =«E = «[33 + (m— z>)33] =«33. The mapping b—>bu is a one-to-one
mapping of 33 onto 2L(1) since 2w[wibu)] =w(w&) =b. Since iab)u = (a«)(&«)
for every a and b of 33 (and indeed for every a and b of E), the mapping is an

(6) Formulas (5) and (7) of CPA are equivalent to (13) and (14) in the «-stable case. The
proofs of CPA can be simplified considerably in the stable case.
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isomorphism. By symmetry 33 is isomorphic to 21,(1) =2I„(0) and so 2I«(1)
and 2iu(0) are isomorphic.

The algebra 33 = 8+9? where 9Î is the radical of 33 and is isomorphic to
both 9îo and 9?t. Evidently

5R' = Wi 9 9lo = SR + (« - vW.
Since x(w— v) =0 for every x of 2l„(l/2), we see that if

b = ß + b* (ß in g, b* in W)

is any quantity of 33, then

(17) x[b(u - v)] - x[6*(w - a)]

for every x of 2lu(l/2). By Lemma 8 we have:

Lemma 9. T,e¿ a=a+a* and b=ß+b* be in 33 so that a* and b* are in 9Î
and a and ß are in $. Then (wb) [a(u— v)] = (wb*) [a*(u — v)].

The result above actually follows directly from Lemma 9 since
(wb) [a(u— v)] = (wb*) [a(u —v)]+ßw[a(u —v)] and we use (17) and Lemma 6.

We shall close our study of «-stable algebras by deriving a sequence of
lemmas which we shall use in a determination of all stable algebras.

Lemma 10. Let b be in 33 and g be in ®. Then

(18) g[iu - v)b] = wd,

where d is in 33. Also iwb) [a(u — v) ] is in ® for every a and b of 33.

For [2i6(l/2)]2Ç2le(l) +21.(0) and so g[iu-v)b] = (l/2)(a + wd) + (l/2)
■ic — wc) for d and c in 33. Sinceg[(«— v)b] is in 2Iu(l/2) we have c+d = 0, and
(18) is proved. The relation 21.(1)21,(1/2) ÇZ2U1/2)+21.(0) implies that
ib+wb) [a(u — v)] =ciu — v)+g+d — wd where c and d are in 33 and g is in ®.
Then b[aiu— v)] = (ba)(u — v) — c(u — v)+d, d=iba — c)iu — v) is in 33 and in
(«— !/)23, d = ba — c = 0, iwb) [a(u — v)] =g is in ®.

Lemma 11. The product gh of any two elements of ® is in 33.

For we put x = y=g and z = w in (5) and obtain 4g2 = 2w[2giwg)+wg2]
+ 2g[2wiwg)+w2g] = 2wiwg2)+2g2 since wg = 0, w2=l. Thus g2 = wig2w).
However g2 is in Ë for every g of 2la(l/2) and so g2 is in 33 for every g of @.
Clearly 2gh = ig + h)2 — g2 — h2 is in 33 for every g and h of the vector space ®,
gh is in 33.

Lemma 12. Let g be in ® and b be in 33 so that (18) holds for d in 33. Then

(19) gb — h — wc

for h in ® and c in 33, awo*
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(20) w(gb) = — c,        (wb)g + w(gb) = — d(u — v).

Equation (19) is simply an application of the fact that 2tu(l/2) =w33+®.
Now (e33)@Ç2I.(l/2) +21.(0) and so (b+wb)g = a(u-v)+h+c-wc for a and
c in 33 and h in ®. This yields gb = h — wc and (wb)g = a(u — v)+c and these
results are trivial. They imply that w(gb) = —w(cw) = —c so that (wb)g
+w(gb) =a(u — v). To prove that a= — d we substitute x = g, y = b, z = u—v in
(5) and obtain 4[(bz)(wg) + (bw)(zg) + (bg)(wz)]=0=g[b(zw)+(bz)w+(bw)z]
+ b[(zg)w + z(gw) + (wz)g] + (u — v) [g(bw) + (gb)w + b(gw)]+w[(bg)z + g(bz)
+ (gz)b]=w[g(bz)] + (u—v)[g(bw) + (gb)w]. Using [(wb)g+w(gb)](u — v)
= [a(u — v)](u — v) =a and w[g(bz)]=w(wd) we have

(21) [(wb)g + w(gb)\(u — v) = — w[g(bu — bv)] = — d.

This completes our set of properties and we pass on to the stable case.
3. Stable algebras. The concept of stability is vacuous for simple algebras

of degree one. If 21 is a central simple algebra of degree t> 1 over its center ft,
then 21 is stable if and only if 21$ is a central simple stable algebra for every
scalar extension £ of ft. Moreover 21 is a Jordan algebra if and only if every
2Ij¡ is a Jordan algebra. Since 21 is a Jordan algebra if t>2, the proof of the
theorem of our introduction can be reduced to the proof in the case where t — 2
and ft is algebraically closed.

We now let 21 be stable so that all of the properties of §2 will hold and 21
will also be e-stable. Then (19) holds with c = 0. This yields:

Lemma 13. Let 21 be both u-stable and e-slable. Then ©33Ç7.®, ®[33(« — v)]
Cw33. Moreover, if b is in 33 and g is in ® so that g(bu — bv) =wd for d in 33,
then (wb)g= —d(u — v).

We shall now strengthen the result of Lemma 13.

Lemma 14. The product ®[33(m-z/)]Çw9î and (w^8)®Q3t(u-v).

For Lemma 13 implies that — (wb)g = d(u— v) = 5(w —v)+d*(u — v) for 5
in ft and d* in 9c. But Lemma 1 implies that (wb)g = a(u+v)+k for k in 9T.
Hence a = S=—5 = 0 and d = d* is in 9Î. Our result is then an immediate
consequence of Lemma 13.

The following property is proved quite trivially.

Lemma 15. The product [3î'2Iu(l/2)]Ec:9î'2Iu(l/2).

Let k be in W and x be in 2Iu(l/2). Then if b—ß+b* is any quantity of
33, we have ß in ft, b* in 9Î, (xk)b=ßxk + (xk)b* in 9î'2Iu(l/2) since xk is in
9î'2I»(l/2), xk is in 2I„(l/2), (xk)b* is in 9c2iu(l/2). It remains to show that
(xk) [b(u-v)\ = (xk) [b*(u-v)]+ß(xk)(u-v) = (xk) [b*(u-v)] is in 9î'2I„(l/2)
and this quantity is clearly in [9c(«— î>)]2I„(1/2), a subspace of 9î'2Iu(l/2)
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= 9c2Iu(l/2) + [9c(« -v) ]2IK(l/2).
Let us substitute x = g, y = a, z = b(u — v) in (5) and use the properties

wz = wg = Q to obtain 4(wa)(gz) =w[a(zg) + (az)g+ (ag)z]+a[w(zg)]+z[(wa)g
+w(ag)]+g[(wa)z], where g[w(az)]=0 by Lemma 6. The quantity zg
= g(bu — bv)=wd* where d* is in 9? by Lemma 14, w(zg) is in 9Î, a[w(zg)] is
in 9Î for every a of 33. Also a(zg)=w(d*a), w[a(zg)]=d*a is in 9Î, az
= (ab)(u—v), (az)g is in K/9Î by Lemma 14, w[(az)g] is in 9Î. The quantity ag
is in ®, (ag)z is in w9c by Lemma 14, w[(ag)z] is in 91. The quantity w(ag) =0
by Lemma 13, (wa)g is in 9î(w— v), z[(wa)g] is in 9Î. Thus g[(wa)z] is in 91
and we state this result as follows.

Lemma 16. The product © {(w33) [33(w-z;)]} Ç9Î.

We are now ready to prove the critical result of the proof of the theorem
of our introduction.

Lemma 17. The product [9i'2Iu(l/2)]2Iu(l/2)ç:9î'.

We first consider the element t — wa where a is in 33. If b is in 9Í, we have
tb = iwa)b = wiab) =wd* where d* is in 91, itb)iwc) =cd* is in 9Î for every c of
33, (¿9î)(w33)ç:9î. Also (¿9c)®Ç9î' by Lemma 14 and so (i9î)2Iu(l/2)ç:9t'.

We next write s = t[b(u—v)]. By Lemma 16 we know that s®Ç9c. But 5
is in ® by Lemma 10 and so siwb)Q1l' by Lemma 14. Hence (¿9t')2L(l/2)
Ç9Î' for every t in w33.

Suppose now that t is any nonsingular element of 2Iu(l/2). We apply
Lemma 3 to show that there exists an element c in ft[t2] such that w = ct has
the property that w2 = l. Then t = c~1w = dw where d is in ^[^JÇZE. Then
d = a+biu— v) where a and b are in the algebra 33 defined for this w, dw = aw
+w[biu — v)]=aw = t by Lemma 6. Thus (¿9î')2Î«(i/2)ç:9î' for every non-
singular element t of 2Iu(l/2). But if h is a singular element of 2íu(l/2), there
exists an element a in ft such that t = aw+h is nonsingular, (¿i9i')2L(l/2)
Ç(/9t')3i»(l/2) + (w9i')2I»(l/2)Ç9î' since w and t are nonsingular. It follows
that [9c'2I„(l/2)]2I„(l/2)ç:9î' as desired. This completes our proof of Lemma
17.

We may now write 9)î = 9î' + 2ÎM(l/2)9î/. By Lemma 17 we know that
[9c'2I„(l/2)]2iu(l/2)Ç9c'ç:9Jc. Also [9c'2Iu(l/2)]SÇ9î'2Wl/2) by Lemma 15
and so [9î'2Iu(l/2)]2ÎÇ9Jc. But 9î'2I = 9Z'E + 9,c'2IM(l/2)ç:9)rc and we have
shown that 9JÍ is an ideal of 21. Clearly 1 is not in 9JÎ and the hypothesis that
21 is simple implies that 2ft = 9c' = 0. Then % = uft+vft+%uil/2) = ft+u0ft
+ 2I„(l/2) where «o = u — v, «ox0 = 0 for every x0 of 2l„(l/2). By Lemma 1 we
know that Xo = a0 in ft for every x0 of 2iu(l/2). If x=X+Juw0+J'Xo is any
quantity of 21 we see that x2 — 2Xx+X2=ju2+j>2ao and so x2 = ^x+rj where f
and r¡ are in ft. But then x(yx2) —(xy)x2 = f [x(yx) — (xy)x]+?;(xy — yx) =0and
21 is a Jordan algebra. This completes our proof of Theorem 1.

4. The derivations of the algebras of Kokoris. A derivation of an algebra
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© over a field ft is a linear transformation s—+sD over ft of @ such that

(22) irs)D = irD)s + risD)

for every r and 5 of ©. The algebra 3D of all derivations of © is a Lie algebra
with respect to the product operation

(23) 7>i o T>2 = D1D2 - DiDi,

where 7>i7?2 and D%Di are the ordinary linear transformation products.
Let 33 = ft [l, x] be the algebra of all polynomials & = ö(x) with coefficients

in ft in 1 = x° and x, where xp = 0, 33 has dimension p over ft, and ft has char-
acteristic p. The derivation algebra of 33 is the well known simple Lie alge-
bra of Witt. We shall designate this algebra by 3/3. It consists of all linear
transformations 7>(c) where c is any quantity of 33 and 7>(c) is the transforma-
tion

(24) b = bix) -^ bDic) = b'ix)cix).

Here b'ix) is the ordinary derivative of bix), and

(25) Dia) o Die) = Dia'c - ac'),

for every a and c of 33.
The algebra © of Kokoris may be defined as'follows. Let 33 be imbedded

in the vector space

(26) 33 + 33« + yo33 + ^33
of dimension 4p over ft, where

(27) E = 33 + 33« = 33« © 33d
is the associative algebra which is the direct sum of 33« and S8v for an idem-
potent uj^ 1 and v= 1 — w. Then a+¿»«+yoc+yid = 0 for a, b, c, d in 33 if and
only if a = b = c = d = 0. We assume that

(28) iyia)b = yiiab) = 2[yiiau)\b = 2(y¿a)(«*) (i = 0, 1),

for every a and b of 33. We also assume that

(29) iVioKyth) = 0,        iyoa)iyxb) = a'b - b'a (t = 0, 1),

for every a and b of 33 where a' and b' are the ordinary derivatives. The
commutative law will then complete the definition of @. This algebra clearly
contains the subalgebra

(30) X = 33 + yo33 + y&,
and both © and X are power-associative and central simple over ft. We ob-
serve that E = ©„(1)©©U(0) is the vector space direct sum

(31) E = 33 + (« - v)SQ,
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and that

(32) yf[(u - v)b] = 0 (i - 0, 1),

for every b of 33.
We shall determine all derivations D of © and of X.  Every such deriva-

tion is a linear transformation

(33) s-+sD= fis) + (« - v)gis) + yofois) + y^i),

where fis), gis), fois), fiis) are linear functions of s with values in 33 and
gis) = 0 if D is a derivation of X. Since

(34) is2)D = 2s(s£>),

for every 5 of ©, we see that (29) implies that

iyib) [iyib)D] = 0.

Then yiWiyib^ + i-iylb'f^iiy^-blf^iiyib)]'} =0 and so
(35) bfiyib) = 0, b'f^iiyib) - b[f^;(yib)]'.
When & is a nonsingular element of 33, we see that (35) implies that/(y;c>) =0.
If b is singular, then c=i+b is nonsingular, /(y,c) =/(y¿) =0,/(y¿&) =/(y,c)
—/(y.)=0. We have proved the following result.

Lemma 18. Let D be a derivation of ©. Then

(36) (yib)D = yofo(yib) + yifiiytV) + (u - v)g(yib)

for every b of 33 where fo(yib), fiiyfi), g(ytb) are linear functions of ytb with
values in 33 such that 6'/i_i(y,o) = &[/i-,-(y%b)]'. If D is a derivation of X, then
(36) Äc-Ws wí'ífe g(y,&) =0, (y,&)7) is t« yo33+yi33 = ©„(1/2).

Lemma 18 implies that  [foiyi)]'= [/i(yo)]' = 0. Thus we may write

(37) y0D = g0(u — v) + y0/o + ayu        yiD = gi(u — v) + ßy0 + yi/i,

where g0, gi,/o,/i are in 33 and a and ß are in ft. Then (yo^)7? =yo(xD) +(y0D)x
= yo\f(x)+yofo(x)+yifi(x)]+gox(u—v)+yofox+ayix. The component in 33 is

f(yox) = — \fi(x)]' = 0 by Lemma 18. The computation of (y\x)D yields
[fo(x)]' = 0. Hence xD=f(x) + (u—v)g(x)+5yo+eyi where ô and e are in ft.
But x2D = 2x(xD)=2xf(x)+2(u—v)xg(x)+2ôy0x + 2eyiX and so (y0x2)T)
= 2y0 [x(x7?) ] + (y0D)x2 = 2y0 [xf(x)] + 2ey0(yix) + [g0(u -v) +y0/o+ayi]x2.
Then/(y0x2) = — 2e = 0. By symmetry the computation of (yiX2)D yields 5 = 0.
We state the result as follows.

Lemma 19. 7/7? is a derivation of © the quantity xD is in S=33 + (w — z>)33.
If D is a derivation of X, then xD is in 33.

Since «2 = «, we have 2u(uD) =uD and so «7? is in yo33+yi33 and we may
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write

uD = y0Co + yiCi,

where c0 and C\ are in 33. The relation wy0=(l/2)yo yields (l/2)y07>=«(yo7>)
+ (uD)yo=gou + (\.'/2)(yofo+oiyi)—c'1 = (l/2)[go(u-v)+yafa+ctyi]. Thus c[
= (l/2)go(w+z>) and so

(38) 2ci = go.

Similarly  (l/2)y17> =u(yxD) + (uD)yx = glu + (1/2)ißyo+yifi) +4 = (1/2) [gl(«
— v)+ßy0+yif] and we obtain

(39) 2c'o = - gu

Let us introduce the notation

(ux)D = du + dî + z

where d and d2 are in 33 and uz= (l/2)z. Since m(mx) =ux, we conclude that
du+d2+z = u[(ux)D] + (uD)(ux) =du+d2u + (l/2)z+(l/2)x(uD). Thus z
= x(uD) and a\v = Q, d2 = 0,

(40) (ux)D = du + x(uD).

Also (vx)D = ev+e2+t where e and e% are in 33 and ut = (1/2)/. Since ux+vx = x
and xD is in S, we conclude that /= —x(uD). However, by symmetry, the
fact that v(vx) =vx implies that e2« = e2 = 0 and so

(41) (vx)D = ev — x(uD).

We now use the fact that y¿(x«) =yi(xv). Then y0[(xu)D] + (yoD)(xu)
= y0[(xv)D] + (y0D)(xv),    (y0D)(xu — xv) = [go(u— v)]x(u— v) =goX = y0[(xv)D
— (xu)D] =y0[ev — du — 2x(uD)]. But then y0(ev — du) = (l/2)yo(e — d) =0 and
so e = d, xD = d(u+v)—d is in 33. Also goX= — 2y0[(yoCo+yiCi)x] =2(cix)'
= 2(ci+xci) =2c\+goX by (38). Thus 2ci = 0, g0 = 2ci = 0. We similarly see
that (y\D) (xu — xv) =g\X = y\(xv)D — (x«)7>] = — 2yi[x(«7J)] = — 2yi [yo(co^) ]
= — 2(e0x)'= — 2c0+gix, c0 = 0, gi = 0. We have proved the following result.

Lemma 20. Let D be any derivation of ©. Then uD = 0, xD is in 33, yo7>
= yo/o+cryi, yiD =j3y0+yi/i where a and ß are in ft,fo and fi are in 33.

We are now ready to establish the following theorem.

Theorem 3. Every derivation D of © =33+33w+yo33+yi33 induces a deriva-
tion t—^tD of X. Conversely every derivation DofX may be extended to a deriva-
tion D of © with ibu)D = biuD) for every b c/33. Thus © and X have isomorphic
derivation algebras.

For Lemmas 18 and 20 imply that y¿7) is in ©„(1/2) =yo33+yx33 for
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every derivation D of either © or X. Also Lemmas 19 and 20 imply that xD
is in S3 for every D of'either © or X. But if xkD = kxk~l(xD), then x*+17J>
= ixkD)x+xkixD)=k[xk-1ixD)]x+xkixD) = ik + l)xkixD) since xD is in the
associative algebra 33. Thus

bD = b'(xD)

for every & of 33 and every derivation D of either © or X.
If s—*sD is a derivation of ©, it should now be clear that tD is in X for

every t oiX and so t—HD is a derivation of X. Conversely let D be a deriva-
tion of X. We extend D to a linear transformation of © by writing ibu)D
= ibD)u for every & of S3 where 7) thus maps «S3 into itself. It remains to show
that (22) holds for every r and s of ©, that is, that D is a derivation of ©. It is
sufficient to show that (22) holds for r = bu, s = a+cu+z where a and c are
in 33 and wz=(l/2)z. Then (rs)D=[(ba+bc)u + (l/2)zb]D=[(ba+bc)D]u
+ (\/2)(zb)D, <p = (rD)s+r(sD)=[(bD)u]s+(bu)[aD + (cD)u+zD]. We use
the fact that bD is in 33 and z7> is in yo33+yi33 to obtain <j> = (bD) [(a+c)u]
+ (l/2)z(bD) + [b(aD)]u+[b(cD)]u + (l/2)(zD)b=[(ba+bc)D]u + (l/2)(zb)D
as desired.

The relation y0yi = 0 implies that yo(y\D) +yi(yt>D) —fí—fí = 0 and so

(42) /i = /o + 7,

where y is in ft.
Now (y0x)D=y0(xD)+yofoX+ayiX and yi(y0x) = l, [y1(y0x)]l> = 0

= yibo(xD)+yo(xfo)] + (yox)(y1f1) = (xD)' + (xfo)'+fi-xfl and so (x7J»)'+x/0'
+/o+/o+7-*/ó = 0,

(43) (xD)' + 2/o + t = 0.

We are now ready to use (43), (42), and Lemma 20 to determine the
derivations of X and hence those of ©. The first of these is given by the values
Y=x7)=/o=|8 = 0 and a = l. This is the derivation G where

(44) bG = (yib)G = 0,        (y0b)G = yA

To show that G is actually a derivation of X we see that (22) need only be
verified for r and 5 in component subspaces 33, yo33, yi33. One component
must be in yo33 since otherwise all products are zero, [(yob)(c+yoCo+yiCi)]G
= {yo(bc)]G=y1(bc),[(yob)G][c+yoCo+yiC1] + (y0b)[(yoC0)G]=yi(bc) + (yib)(yaco)
+ (yob) (yiCo) = y i (be) as desired. Evidently the values y = xD =f0 = a = 0, ß = 1
yields the transformation 77 defined by

(45) 677 = (y0b)H = 0,        (yib)H = y0b,

and symmetry considerations imply that 77 is a derivation. But bGH=bHG
= 0, (y0ô)77G = 0, (yob)GH=(yj.b)H=yob, (yib)HG = (yob)G = yib, (yib)GH=0,
and so GH—HG — K where K is the derivation defined by
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(46) bK = 0,        (yab)K = yBb,        (yxb)K = - yjt.

Clearly K corresponds to the values xD = 0=a=ß,fo = l,fi= — 1.
It is easy to see that the derivations G, 77, K form a Lie algebra which is

isomorphic to the set of all linear transformations of trace zero on the vector
space yoft+yift- The remaining derivations are those for which a—ß = Q,
xD^O, 7 = 0. Then/0= — (1/2)(x£>)' and the general derivation of this kind
is determined by

(47) x7>c = c, y0De =  - ( 1/2) y0c', yiDc = - (l/2)ylC/,

where c is any quantity of 33. Then for every b of 33 we have the definition

(48) bDc « b'c,        iyib)Dc = yiib'c - (l/2)c'6) (t = 0, 1).

To verify that De is a derivation of X we first compute [a(y ,■&)]!><.
= [yiiab)]Dc = y,-[(aZ>)'c-(l/2)c'(ao)], ioDe)iyib)+a[(yJ>)Dt] = y^ba'c)
+a\yiib'c- il/2)c'b)]= yi[iab)'c-i\/2)c'iab)] as desired. Since D0 is known
to induce a derivation in 33, there is no need to consider (22) with r and 5 in
33. It also holds trivially if r and 5 are in y,33 since all terms are zero. There
remains the case r = y0b, s=y\a for a and b in 33. Then rs = b'a — ba',
irs)Dc = ib'a-ba'Yc,     irDc)s+risDc) = [y0ib'c- (l/2)c'6) ](yic) + iy0b) [yxia'c
- (l/2)c'a) ] = ib'c - (l/2)c'6)'a- ib'c - (l/2)c'6)a' + b\a'c - (l/2)c'a) - bia'c
- (l/2)c'a)' = b"c + b'c' - il/2)c"b - il/2)c'b')a - ib'c - (l/2)c'o)a' + b'ia'c
- (l/2)c'a) - bia"c + a'c' - (l/2)c"a - (l/2)c'a') = (&"a - Va' + Va' - ba")c
+ Hl/2)Vc' - il/2)c"b - (l/2)o'c' + (l/2)c"6)a + 6((l/2)c'a' - (l/2)aV)
= ib'a — ba')'c as desired. This completes our verification that every Dc is a
derivation of X.

It is now easy to compute DCG — GDC. Indeed biDcG — GDC) =0,
yoiDcG-GDc)= -ií/2)iy0c')G-yiDc= -(l/2)y1c' + (l/2)y1c'=0, y,(DcG
-GDC) = -(l/2)(y1c')G-(yiG)Dc = 0 and so DcG-GDc = 0. It may similarly
be shown that DcH-HDc = 0. By the Jacobi identity DcK-KDc = 0.

We have now obtained the structure of the algebra of all derivations of
the form aoG+j3o77+70-K+T>c for a0, ßo, 7o in ft and c in 33. It remains to
show that this algebra is the algebra of all derivations D of X. Let D be
any derivation and yoD=y0fo+ayi, y\D=ßy0+yifo+yiy- Then D'=D—aG
-ßH+(i/2)yK has the property that y07)/=yo/o+c«:yi-ayi + (l/2)7yo
= yo(fo + (l/2)y), y17r=y1/o+/3yo-/3yo+7:yi-(l/2)7yi = >'i(/o + (l/2)7) and
so we have a derivation D' of Lemma 20 with a = (3=7 = 0. Let xD = c. Then
yoD.= -(l/2)yoc', yiDc= ~(l/2)yic' and so yi(D'-Dc) =yi|/„+(l/2)(x£>)']
= 0 by (43), x(D'—Dc) =0. Thus D'=DC and we have proved the following
result.

Theorem 4. The derivation algebra of X is the direct sum of the derivation
algebra of 33 and the three-dimensional simple Lie algebra.

5. A class of commutative power-associative algebras. Let 33 be a com-
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mutative associative algebra with a unity quantity 1 and dimension « over
a field ft whose characteristic is prime to 30. Suppose that X is the vector
space

(49) X = 33 + yoS3 + • ■ • + ym33,
of dimension «(w + 2) over ft, where m>0. Then we are assuming that
a vector b+y0bo+ • • • +ymbm = 0 for b, b0, • • ■ , bm in 33 if and only if
b = bo— ■ ■ • =bm = 0. Define

(50) iytb)c = ciyib) = yiibc)

for every b and c of 33. We also define

(51) (yMyic) = MV e) = Mc b)       (i, j = 0, • • • , m),

where the functions fi¡(b, c) are bilinear functions of the variables b and c
in 33 with values in 33. We have then defined a commutative algebra X, and
we also assume that

(52) Ml, 1) = 0 (i, j = 0, • • • , m).
We shall now determine all functions /,•/(&, c) such that the corresponding
algebra X is power-associative, that is, such that (5) holds for every x, y, z, w
oiX.

We first substitute x = a, y=yib, z = y¡c, w = ykd in (5) where a, b, c, d
are in 33, and we obtain

(53) ytA i + y ¡A ¡ + ykAk-= 0,

where we use the fact that 33 is associative to derive the coefficient formulas

(54) At =  [2afjk(c, d) — fjk(ac, d) — fjk(c, ad)]b,
(55) Ai = [2afik(b, d) - fik(ab, d) - fik(b, ad)]c,
(56) Ak = [2afn(b, c) - fa(ab, c) - Mb, ac)]d.

Since m>0, we may select i and j to be distinct integers and take k—j. By
our assumption about the dimension of X we obtain Ai = Aj+Ak = 0. Take
b — l in Ai and a"=l in Aj+Ak to obtain the identities

(57) 2afjjic d) - fjjiac, d) - fa(c, ad) = 0,
[2aMb, 1) - Mob, 1) - Mb, a)]c

+ [2aMb, c) - Mab, c) - Mb, ac) ] = 0.

If we take c= 1 in (58) and use the fact that the characteristic of ft is not two,
we obtain

(59) 2aMb, 1) = Mab, 1) + Mb, a).

But then (58) reduces to our fundamental relation
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(60) Mb, ac) +fij(ab, c) = 2afij(b, c),

for Í5¿j, and the relation also holds for i—j by (57). Note that (59) is the case
c=l of (60). If we also take ô = l and use the hypothesis that/i/1, 1)=0,
relation (59) yields
(61) Ma, I) + Ml, a) = 0.

Replace b by 1, c by a, and a by o in (60). The result is

(62) Ml, ba) + Mb, a) = 2i/iy(l, a).
Since ba — ab, we may use (61) to write/¿/(o, a) —fi¡(ab, l)—2bfi¡(a, 1) and
we substitute this result in (59) to obtain

(63) Mob, I) = aMb, 1) + bfaia, 1).
But (63) implies that the linear transformation

(64) a —» Ma, 1) = aDu

is a derivation 7>,y of 33. Since fail, a) = —fa(a, 1) = —aD,■,■=//»(a, 1) =aD¡i,
we have

(65) Da = - Da,       DH = 0 (i = 0, • • • , m).

Also Ma, b)=2b(aDi])-(ab)Dij = 2b(aDij)-[a(bDiJ) + (aDil)b] and so

(66) Ma, b) = (aDi3)b - a(bDi¡},       fa(a, b) = 0.
Conversely (60) follows formally from (66).

We now assume (66) and its consequence (60) and propose to show that
X is power-associative. Let

(67) Y = £ etyt

with a in 33. Then (aY)(bY) = T,uM™t, be,) = (bY)(aY) = £*.//«(*«* ac,)
and so F2= ?u.t ft^Ct. c¡). Since Y2 is in the associative algebra 33, we may
use (69) to obtain 4a(è Y2) = J^t.J2a [faibd, cj) +/</(c,-, bej) ] = 2*.í ¡fn(abci,c¿)
+fa(bci, ac,)+fn(aci, bc,)+fn(ci, abc,)]. But then (69) implies that 4a(oF2)
= 4(aè)F2 = 2(aô)F2 + 2(aF)(oF) and so

(68) (aY)(bY) = (ab)Y2

for every a and b of S3. Since F2 is in S3, it follows immediately that (Y2Y)Y
= Y2Y2, and it is easy to see that (t2t)t = t2t2 for every t = a+ Y of X. Thus X
is power associative (7) and we have completed our proof of the following
result.

Theorem 5. Let £=33+yo33+ ■ • ■ +ymS3 be the algebra defined by (49),
(') The author is indebted to the referee for suggesting this simple proof of power associa-

tivity.
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(50), (51), (52) where 33 is a commutative associative algebra with unity quantity
over a field ft of characteristic prime to 30. Then X is power-associative if and
only if the defining functions fa(a, b) satisfy the relation fa(a, b) = (aDi,)b
— a(bDij) for derivations Di,- = — 7>3i o/33.

The algebras X depend only on 33 and the set 3Dm of the (m + l)2 deriva-
tions Dij of 33 and we shall write

(69) £=£(33,3D„,).
Each algebra X can be imbedded in an algebra

(70) © = ©(33, 3D™) = £(33, 3Dm) + «S3,
such that © contains an idempotent u and is «-stable. We define © by the
relations

(71) ub = bu,        a(ub) = (au)b = (ab)u

for a and b in 33, and by

(72) (yib)(ua) = (ua)(yib) = ( 1/2)y<(a6) (i = 0, I, ■ ■ ■ , m)

for every a and b of 33. If © is power-associative, so is X. The converse follows
readily by direct computation if we use (69) and the fact that Y(bu) = (1/2) Yb
for every & of 33 and F= 23 ,• y>ci-

Theorem 6. The commutative algebra © defined by (70), (71), (72) is power-
associative if and only if the corresponding subalgebra X is power-associative.

6. On the simplicity of X. Let 33 be any algebra and 3D be the derivation
algebra of 33, D be in 3D. Then an ideal 9JÎ of 33 will be called a 79-ideal if 9Jc
contains c7> for every c of 9JÎ. We call 9JÎ a 3D-ideal if 50? is a TMdeal for every
D of 3D.

An algebra 33 with a unity quantity will be called D-simple if 33 and 0 are
the only 7)-ideals of 33. We say that 33 is X)-simple if 33 and 0 are the only
3D-ideals of 33.

Let us now consider the algebra X of §5 where 33 is an associative algebra
with a unity quantity. We shall prove:

Theorem 7. The algebra X is simple only if 33 is X)-simple.

For let S3 contain a 3D-ideal 9JÎ. Then © = 9JÎ + £¡"-0 y M has the property
that ®S3C®. Also (yi9Dî)33=y,(9)ÎS3)Çy1717 and (yi2R)(y<a)C2R since
(Vib) (Vic) = (bDij)c — b(cDij) is in W for every b of 9JÍ and c of S3. Thus ® is an
ideal of X. But © 9e X since 9J? is a proper ideal of S3.

Theorem 8. Let 33 be a commutative associative algebra with a unity quantity
over ft and 33 be Xi-simple. Then ft has characteristic p, 33 = t$;+9c where 91 is the
radical of 33, xp = 0 for every x of 9c.
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For if 33 contained an idempotent w^l it would be true that 33=33«
©33(1-«). Now m2 = m, 2u(uD)=uD, [2u(uD)]u = 2u(uD)=u(uD), u(uD)
= uD=0, ibu)D = ibD)u is in S3« for every D of 3D and b of 33. But then
$8u?¿S8 is a 3D-ideal of S3 contrary to hypothesis. Hence 33 = i5+3ic- If * is
any element of 9c and x' = 0, x'-19£0, then tx'~lixD) =0. li ft has character-
istic zero, then xi_1(x7?)=0, x7> is singular for every x of 91 and D of 3D,
xD is in 9Î for every x of 9Î, 9c is a 3D-ideal of 33. Hence 33 must have character-
istic p. Let 9JÎ be the set of all xp for x in 9Í, © = 9JÎ33. Clearly © is a proper
ideal of S3. Also © is a 3D-ideal since (xpb)D = xp(bD)+p[xp~l(xD)]b = xp(bD)
is in © for every x of 9Í and b of 33. Thus © = 0, xp = 0 for every x of 9Î.

It is not known whether there exist any 3D-simple algebras other than the
class we shall consider in the next section.

7. The algebra 33r. Let ft be a field of characteristic p>5 and

(73) 33=S3r = g[x1, ■•• ,xr]

be the commutative associative algebra of all polynomials

p-i f
b   =   b(Xi,   •  •   •   ,   Xr)   =     X) ßif-*»*t    "   '   '   Xr ,

t„-0

with coefficients ßiv--i„ in ft such that x\=l, x£ = 0. We assume that S3 has
dimension n = pr over ft, that is, that ¿> = 0 if and only if ßir..ir = 0. We shall
prove that 33 is 3D-simple and shall actually prove the stronger result which
states that there exists a derivation D of S3 such that S3 is 7>-simple.

Consider the set © of all nonzero power products

g = g [ai, • • • , a,] = xV ■ ■ ■ Xr' (0 ^ ap < p).

The set © contains precisely pr elements and we may order © by writing
g[ai, • ■ • , ar]<g[ßi, ■ ■ ■ , ßr] if ak+i = ßk+i for i=\, 2, • • • , r — k but a*
<ßk. Then the least element of © is 1 =g[0, • • • , 0]. The greatest element of
© is

Z  =  Zr  =  g[p  -   1,  ■■  -,  p -   I]   =   (Xl ■■  ■   Xr)*~l.

Lemma 21. Let b^O be in 33r- Then there exists an element g of & such that
bg=yzr where 75*0 is in ft.

For gZr = 0 for every g> 1 in @. If the constant term of b is 7^0, it should
be clear that 2>zr = 7zr. Otherwise bzr = 0, bl ¿¿0, and there must exist an ele-
ment g in © such that c = bg?¿0, bh{ = 0 for every A¿=gxf. Then cxj = 0 for
i = l, ■ ■ ■ , r and (30) implies that c = 7zr for 77ÍO in ft.

Nathan Jacobson has shown(8) that the derivation algebra of S3, is the
set of all linear transformations b—>bD(ai, ■ • • , an) of 33r where

(8) Classes of restricted Lie algebras of characteristic p. II, Duke Math. J. vol. 10 (1943) pp.
107-121.
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db db
bD(ah ■ ■ ■ , ar) = -»»+•••+ •—■ ar

dxi dxT

for oi, • • • , ar in 33r, and the symbol db/dxi is the ordinary partial derivative.
We shall actually show that 33r is PF-simple where

W  =  D(Z0,   ■   •■   ,  Zr-l)

and Zo = l. We now prove:

Lemma 22. Let g^l be in ®. Then gW=ah where a is an integer, h is in
© and h<g.

For let g = g[ai, • • • , ar] such that ai= • • • =a._1 = 0 and a.^0. Then
g=x"g where a = a,>0 and q = g[0, ■ ■ ■ , 0, a,+i, • • • , ar], gJF = ax"_1z,_ig
+xf(qW). Since qWhasz, asa factor and x,z. = 0, we see thatgW = ax"~1zt~iq
= ah where h=g[p—l, ■ ■ ■ , p — 1, a—1, a.+i, ■ • • , ar]<g as desired.

Since © is a finite set and g>gJFa-1>gIF2/3_1> • • • , we may combine
this result with Lemma 21 and have:

Lemma 23. Let b be any nonzero quantity of S3r. Then there exists a quantity
g in 33 and an integer k such that bg = z, zWk= 1. Thus S3 is W-simple.

8. New central simple algebras. Let 33=S3r = 3:[l, xi, • • • , xr] be the
commutative associative polynomial algebra of dimension pT over ft of char-
acteristic p where xf = 0. The definition of a set 3Dm of derivations 2?,-/results
in a corresponding algebra

X = £(33,3Dm)
of dimension pr over ft. The subspace

(74) 8 = 8(33; 9Jc0, • • • , 9Jcm) = 33 + y09Jco + • • ■ + yJSlm
is a subalgebra of £(33, 3D«) for all ideals 9J?o, ■ ■ • , 9Jcm of 33. Moreover, if

(75) 9JÎ0 = 9)ci = • • • = 9Jc. = S3,       9Jc.+1 = • • • = 9Jcm = 0,
then
(76) ?(S3;9Jc0, • • • , ü»„) =£(33,3D,),
where 3D, is obtained from 3Dro by deleting all derivations D,-y with either *>j
or j>s.

We shall define a class of central simple algebras £(33, 3Dm) by defining a
set E of derivations 7?<y for all integers j>i'^0. The sets 3Dm will then be ob-
tained by deleting those derivations D,j with i>m or j>m. We first define
the derivations which are actually in the set E by

db db
(77) Di = W,        bG = -xr,        bDk = - (k = 2, ■ ■ ■ , r).

dXr ÔXk
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We then assume that 7>¿y = 0 except when i = tr, j = lr+k for all integers
¿^0 and k = l, ■ ■ ■ , r. For the latter values of i and j we define

(78) Dtr.tr+t = 7», (/ = 0, 2, • • • ; k = 1, • • • , r),
and
(79) Dr.r+k   =   Dk, Dr.2r   = G (* -   1,  •  •  ■  , T ~   1).

This completes our definition of the set S and the corresponding algebras
£(33, 3D„).

We shall show that the algebras £(33, 3Dm) are central simple over ft.
Indeed this is the special case with 9Jt,=33 of the following result.

Theorem 9. Let 8 = 8(33; 9Jc0, • • • , Wm) where the 9Jc¿ are ideals of 33 = 33'
suchthat 9Jci = 9Jcir = 33/o?' allt in the set defined by0^tr<m. Then 8 is a centra^
simple algebra.

We shall use the fact that 8 may be regarded as a subalgebra of £(33, 3D„)
where

(80) r(s - 1) < *» £ n = rs, s > 0.

Then 8 contains ytr for t = 0, ■ ■ ■ ,5—1. The general element of 8 now has
the form

(81) h - S + yobo H-+ ymbm

for b, bo, • • ■ , bm in S3 where actually the bi are in 9JÎ,-. We shall require the
following preliminary result.

Lemma 24. Let d=(a0yo+ • ■ ■ +amym)z for a0, • • • , am in ft where z
= (xi • • • xr)p_1. Then ytrd = 0 for t = 0, ■ ■ ■ , s — 1 if and only if d = 0.

The definition (78) means that

(82) iy,rb)y,r+k = - ytriytr+kb) = bDk   (t = 0,2, ■ ■ ■ , s - I; k = I, ■ ■ ■ , r),

and (79) means that

(yrb)yr+k = - yr(yr+kb) = bDk,       iyrb)yi, = — yr(y2rb) = bG

(k= 1, ••• ,r- 1).

Ify0¿ = yo[(yoa0+ • • -+yrar)z] = — ((3z/dxi)ai + (3z/dx2)a2+ ■ • • +(dz/dxr)ar)
= 0, then ai= • • • =ar = 0 since the r partial derivatives dz/dx¡ are clearly
linearly independent monomials. We next form yTd= [(yoao+yr+iar+i+ ■ • ■
+y2rOi2r)z]yr = (dz/dxr)ao — ((dz/dxi)ar+i+ ■ ■ ■ +(dz/dxr-1)air-i) — a2rXrdz/dXr.
Since —Xrdz/dxr = z, we see that yrd = 0 if and only if a0 = ar+i= • • • =a2r
= 0. If a0= • • • =air = 0, then yrtd = yrt[(ytr+iatr+i+ • ■ • +yr(i+i)aHt+l))z]
= — [(dz/dxi)ari+i+ ■ ■ ■ +(dz/dxr)ar(t+i)] =0 if and only if art+i= ■ ■ •
= ar((+i) =0. This completes our proof of the lemma.
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Assume that § is a nonzero ideal of 8 and that ^)0 is the intersection of ^
and S3. If ^o^O, we use Lemma 21 to see that z is in §0- But then (yoz)yi
= zW is in §o and a trivial induction implies that (yozWk~1)yi = zWk is in §0-
By Lemma 23 we see that §0 contains the unity quantity of 33 and so §
contains 8, 4? =8.

Assume now that £>0 = 0 whence ^^8. If A is a nonzero quantity of §,
we use (81) and form y0h=y0b+c where c — y0(yobo + ■ • ■ +ymbm) is in S3.
If C9^0, then yo(yoh) =yoc is in §, (yoc)yi = cW is in §0 and must be zero,
(yi*i)(yoc( = (cW)xi — c= —c is in §o, a contradiction. Hence c = 0, y0h=y0b.
Then yi(y0o) =bWis in £>0 and is zero, (yiXi)(y0&) = —b is in £>0, o=0, h=y0b0
+ • • • +ymbmandso^>çZy0Wo+ ■ ■ • +ym9Jím. Butyírisin8 for2 = 0,1, ■ • • ,
5—1 and ytrh is in ^)0 for / = 0, • • • , s—1. Thus ytrh = 0 and Lemma 24 im-
plies that A = 0 contrary to hypothesis. This proves that 8 is a simple algebra.
Since the proof remains true under scalar extension, 8 is central simple.

Each of the algebras 8 = 8(33; 9J?o, • • • , 9JÎTO) is a subalgebra of a «-stable
algebra

O = £1(33; ÜWo, • • ■ , SOU - 8 + «33
which is defined by the multiplication table of 8 and the relation

(yib)(cu) = (cu)(yib) = (l/2)y¿(¿c)

for every b of 3D?,- and c of S3.

Theorem 10. If 8 is central simple, so is the corresponding algebra Q.

For let $ be a nonzero ideal of Q and §' be the intersection of § and 8.
Then §' is an ideal of 8 and if 8 is central simple, it follows that !£>' = 8, ^ = Q
or that §' = 0. Let §'=0 and §5¿0. Then there exists an element h = b+cu
+yobo + ■ ■ ■ +ymbm?e0 in ^j where ¿»and care in33and 6,-is in 9Jc¿. Letü = 1 — «
so that vh = bv + (l/2)(yobo+ • • • +ymbm) is in £, y0(vh) = (l/2)y0b+d is in
§' where d is in 33. Then b = d = 0, hy0=(l/2)yoC+e for e in 33, c = 0, h is in
§' contrary to hypothesis. This completes our proof.

It would be interesting to study the question of isomorphism for the
various algebras which may be constructed by the methods we have pre-
sented here. In particular it would be desirable to know whether the algebras
8 contain idempotents « such that 8 is «-stable. We leave these questions for
later study.

The University of Chicago,
Chicago, III.
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