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INTRODUCTION

Reflexive algebras have been studied intensively by many authors interested in
invariant subspace problem. Among the most interesting results in this direction
the reflexivity of the algebra generated by a single isometry, by a normal, and by
a subnorinal operator was proved by J. A. Deddens ([2]), D. Sarason ([9]), and by
R. Olin and J. E. Thomson ([5]), respectively.

The reflexivity of algebra generated by two isometries was studied by M. Ptak
in [6], [7]. He obtained the positive result for certain class of shifts which were
called compatible (for definition see [4]) and which include doubly commuting shifts.
The present authors conjecture that algebra generated by any family of commuting
isometries is reflexive. The aim of this paper is to present some partial results in
that direction.

Let T = (Ta)aea be a family of operators on a Hilbert space H. As usual we
denote by Lat T the lattice of all subspaces of H invariant with respect to any T,
(a € A). Further AlgLat T denotes the (weakly closed) algebra of operators leaving
invariant every subspace from Lat T.

A weakly closed algebra generated by T, is called reflexive if it is equal to AlgLat T.
The commutant of family T is the set of all operators which commute with every
Ts (o € A) and is denoted by T’. The cominutant T of T/ is called the double
commutant of T.

The main result of this paper is that AlgLat V is contained in the double commu-
tant V' for any family V = (V,)aea of commuting isometries. Moreover, it is proved
that T belongs to the double conmutant of (Va)aGA where (‘70)05,4, Va € B(K), are
unitary extensions of given isometries Vo and T € B(K) the corresponding extension
of T € AlgLat V. This means that T is a function of V.
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Throughout the paper we shall use the following well-known Wold decomposition:
Is V is an isometry on a Hilbert space H then H can be decomposed into two parts
M (L)DRy where V|M (L) is the unilateral shift on M (L) = LOVLDVILD. ..,
L =H © VH being the corresponding wandering subspace, and V|Ry is unitary on

the (residue) subspace Rv = | V"H.
n20

We begin with a simple lemma.

Lemma 1. Let V € B(H) be an isometry, let £ € HOVH and let « be a complex
number such that |a| < 1. Then

(I-av) 'z L(a=V)H.

Proof. The equality
a—-V=aV'V-V=(aV* -1V
gives for |a] < 1
V=(aV*=1)y"Ha-V).
Let h € H. Then

0=(z,Vh) =(z,(aV*" =) (a=V)h) =
={@Vv-D""z,(a=V)h),

hence (I —aV) 'z L (« — V)H. a

Lemma 2. Let V € B(H) be an isometry, and let T € B(H) be an operator
that leaves invariant every subspace (a« — VYH with jo| < 1. Then (VT - TVYH C
N V*H.
n20

Proof. For h € H let us denote mg = Th. As T leaves VM invariant, TVh €
VM, which means that TVh = Vi, forsome my € H. fz e HO VH, and |o| < 1,
then T(a — V)h € (« — V)H and by the preceding Lemma

0= <T(a - V)h, (I - 6V)_11:> = (amy — Vmy, i 6jij) =
i=o

M2

o+t (mg, Viz) - % o (Vi Viz) =
7i=0

[
1
(=3

o+ (mg —my, Viz).

<
1]
(=]

|
e
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Hence <mo —my, VJ:c) = 0 for any integer j > 0 and z € H © V'H, which implies

that mo—m; € | VIH, and (VT ~TV)h = V(Tllg—nl]) € N ViH. The inclusion
iz0 jz0
is proved. a

Theorem 1. Let V = (Vo )aea be a commuting system of isometries on a Hilbert
space H. If T € AlgLatV then TV, = VoT (a € A).

Proof. For any finite subset F = {a,,...,ar} C A let us denote

Ve =Va, .. Ve, Rrp=[)ViH
n2o0

The subspace R reduces Vp and is invariant for any isometry V,, a € A.

Further the common residue subspace R of all V,, is defined by

N =

FcaA
|Fl<o0

Clearly, R is invariant for any V, (a € A).
Let ag € Ag. For any finite subset F' C A containing ag, F' = {ag, ay, ..., ar},
Ry also reduces V,, as

VaRer = Vi (Vi Vi )(Vay -+ VauJREr C ViRer C R,
Thus for any finite subset £ C A we have

VaoR C Vi Rruges) C RFufas} C RF,
ViRc [) Rr=R

which proves that R reduces every V, (o € A) and Val”R, are unitary operators.

By our assumption on T, it follows that R reduces T', and by an application of
the von Neumann double commutant theorem (sce e.g. [3] or [1]) its restriction TI'R
commnutes with every VGIR, l.e. TVQ|R = VQTIR for any a € A.

Suppose now that h € Rt = H O R, and a € A are given. For any finite subset
F C A we have by Lemma 2 (for the isometry Vp)

(T'Vr — VPT)H C RF,
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and for the isometry V,Vp we obtain analogously
Rrutey = [ J(VeVa)*H C () VEH C RF,
k20 k20
which gives the inclusion
(VPVQT = TVpVo)H C RF.
Then
(VEVLT — VETV ) = (VEVQT = TVeVo)h + (TVE — VET)Voh € R
which implies that
(VaT = TVo)h € VERF =Rp
for any finite subset F C A, h € Rt, a € A. llence
(VuT =TV )he | Rr=TR.
FCA
|F|< o0

On the other haud, as R reduces any V,, and T leaves invariant every subspace from

{1 Lat V,, we have TRY ¢ Rt and V,RL € R* which implies that (VuT =TV }h €
a€A

R*L, hence VoTh = TV,h for any h € RL, « € A. This finishes the proof. O

Lemna 3. Let V, T, € B(H) (o € A) be commuting operators, V an isometry.
Then there exist commuting extensions V, Tyona larger Hilbert space K D 'H such
that VI'H =V, Ta |H = T., V is unitary, ||Ti|| = ||T;||, and T is an isometry (unitary,
resp.) if T; is.

Proof. Taking V the minimal unitary extension of V on some Hilbert space
K D H (where the condition of minimality gives K = \/ V*k('H)) we define

k20

~ m mo._
Ta (z V*k/lk> = z V"kTahk,

k=0 k=0

fora e A, m >0, hg, ..., h,, € H. The definition is correct as

"
Z vrn—kf]wahk

k=0

m
S VAT,
k=0

mo__ ]
S VPR,
k=0

< 175l

mo
Z Vm—kh v
k=0

(1) = (|Ta Z Vm_khk
k=0

Wom
<l | & 741

k=0

376



C lmrl), ' can be extended to A in such a way that

| T TV = VTy, 7~’c,']~}3 = ']N'gﬁ, («, B € A).

If T, is an sometry then the eqlmllty in (1) holds and Ta is also an isomelry
Analogously, if T, is unitary then Ta 1s an isometry with range dense in A’ as I KD
TuV**H = V*T, " = V**H for any nonnegative intcger k. Therefore T.K = K
and 'f‘u is unitary. (]

Corollary. Let V,, T' € B(H) be a commuting system of operators on a Hilbert
space 'H, V, isometries (v € A). Then there exist commuting extensions ‘7(,, T €
B(K)) on a larger Hilbert space K D H such that \Z,I'H = Vo, T‘I'H =T, and V4 are
unitary for any o € A.

Proof. 'Take a good ordering {(\1,(!’2, ...} of A. Using the previous Lemma
we construct the space K and operators Vo, T € B(X') by the transfinite induction.

]

Note that the Hilbert space K constructed above depends on isometries V,, only,
not on 7.

Let V.= (V,)aea be a Commulmb systewm of isometries on a Hilbert space H, let
T € AlgLatV and let V= (V,,)(.EA 7 be the extensions to the Hilbert space K D H
constructed above. Let I(-) be the spectral measure of the commuting systein of
unitary operators V. (o € A) (F is the projection-valued function on the Borel
subsets of T4). For 2 € M let us denote by Zy(z) (Z(x)) the smallest subspace
containing x which is invariant (reducing) with respect to all Ve (a € A).

Clearly, Z4(x) C 2Z(x), and Z4(z) is the closure in H of all p(V ), p € P, where
P is sct of all polynomials with |A] conumuting variables.

As T € AlgLatV, T ‘_,+( ') C Z4(z). The extensions Va are unitary on K, hence
T commutes with all V(,, V" (a € A). 1t follows that

TZ(e)C Z(Tz) C Z(x).

Further let us denote g = || E(-)z|]* the positive scalar measure (spectral measure)
corresponding to & € 'H.

Lemma 4. If ¢, y € ‘H then there exists a complex number X such that the
meastres ji; V pry and o4, are equivalent (i.e. absolutely continuous with respect
to each other).
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Proof. Let us denote yt = pip Vpry. As
fraag(B) = [E(B)(x + Al = | E(B)z + AE(B)y||*

for any complex A and a Borel subsct B C T4, ji,4., < p. Hence there exists a
measurable function (the spectral density) fy € L'(;) such that dpyq4ay = fi djt.
If Cy = {z € TA: fi(2) = 0} denotes the set of zeros of fy then

pean(Cn) = [ fudp=0.
Cx

To obtain the equivalence g ~ pip4ay for some A € C, it is sufficient to prove that
1(Cy) = 0. If Cy, C, are the corresponding zero sets for two different coniplex
nummbers A # k, for C = C) NCy it holds

0< /‘x+z\y(c) < llr+ky(("A) =0,
and analogously pir4xy (C') = 0, which implies that

E(C)(z + My) = E(C)(x + ry) = 0,
(A= R)E(C)y = 0,

and as A — x # 0 we get E(C)y = E(C)e = 0, i.e. ;1:(C) = py(C) = 0, hence

#{(C) = 0. Summing up these equalitics we obtain that
H(CA U Cy) = p(Cr) + p(Cy).

The last equality implies that there could be only countable nummber of those A € C
for which g(C)) # 0, which proves the existence of the desired complex A. O

For any x € H the restriction le(:)) is unitarily equivalent to the multiplication
M;_ on the space L*(jiz) by some function £, € L®(y,). The equivalence is given
by the unitary operator

@, Z(x) — L (1),

with
&V, =M, &, &, T =2 b, ¢or=1.

Hence, the operator T' € B(K)) can be viewed as {,(V) on Z(z). Moreover, we
may suppose that
eelloo = sup L) < T = (IT1]-
2€TA
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Lemma 5. Let ¢, y € H be any vectors in a Hilbert space H such that the

corresponding spectral measures satisfy ji < pty. Then

ly =ty ppae

Proof. Lete > 0 andlet f € L'(yy) satisfy du, = fduy. For given § > 0
let. us denote N5 = {z: |f(z)| > 6}. From the inclusion T(z + y) € Zy(z +y) =
{p(V)(z + y)}~ we can deduce that there exists a polynomn p such that

V8

Denoting by = = (T' - p({’))(z +y)=(t — p)(\~’)y + (tz — p)(\?)z we obtain

- - 3
D T =l = D+~ (Pl < 222,
~ ~ - 3
Iy (V)1 = |ty (ty — 2)(V)y + Ly (tz — p)(V)z|| < zsequA |ly(z)|4_\7—m <
e al)
~ &3
(3)  t=(V)zll = {lt=(ty = P)(V)y+ otz - P)(V )z|| < ;/3
By substracting (2) — (1) and (1) — (3) we have
- 3
Ity = o)t = (Ve < S22,
23

Ity = t=)(y p)(V)yII <

which means that

N
”(ty — e )(ts — P)”L“(u,) = ”(ty — )tz —P)Ifll/z”L’(,u £ 5
V6 ¢

1ty — t2)(ty _P)”Li‘(py) < 5 < 5

hence
Ity = )t = PINsllauy) < Nty = te)(te = P12 NollLoga, ) - 612 < &
53
l1(ty = =)tz ~ PINsll2guyy < 5
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which by subtracting results into
2 3
”(ty - tr))lNéHL"(;‘yl <e

and
o ((= € N2 1ty = t)()] 3 €) < .

As € was arbitrary we have obtained

ny({z € Ns: ty(2) # te(2)}) =

and

e ({2 € T ty(2) # :(2)}) <
< ez € N ty(2) £ () =

n=|

a

Theorem 2. Let V = (Vo )aea be a commuting system of isometries on a Hilbert

space M. Then AlglLatV C V",

Proof. Let T € AlgLatV and let S € B(H) be any operator in commutant
of (Va)aca, SVa = VoS (0 € A). l‘%mg C orollany of Lenunma 3 we can construct
Hilbert space A D H and operators h, S and T such that Vaﬁ = b\/(, ‘/ |H = Va,
S|H =5, T|H =

Let z € H be arbitrary, and y be a linear combination (which exists by Lemima 4)
of vectors & and Sz such that g, < gy, ptsr < pty. Then 'I~’|7(1 =1 (\7)|Z(.L-) =

(V)|Z(.L ) and T|Z(Sz) = 15,(V)|Z Se) =t V)‘Z Sz) by the previous result.
It follows that

~ ~

STz = STx = 5t,(V)z = 1,(V)Se = t,(V)Sz = TSz = TS,
hence
ST =TS8, T € (Vo).
a
Theorem 3. Let (Vi,)aca be a commuting system of isometries on a Hilbert space
H and suppose that T € Alglat V. Then 7 the extension of T defined in Corollary of

Lemma 3, belongs to the double commutant of V= (i wJaea, the minimal extension

of V.
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Proof. Let S € B(K) be any operator in commutant of (‘7 )(.EA, SV, = VoS
(o € A), and let u € K be any vector of K. Let ¢ > 0 be given. As XK' = \ Z(z),

r€H
one can ﬁnd vectors xy, ..., &, € H, X}, ..., 2], € H, and vectors uy, ..., u, € X,

ul, ..., ul, € A such that

v

n m
“u -3 ui" <€, NSU -y ul

i=1 i=1

w; € Z(x;) (1 <i<n), vl € Z(eh) (1 <igm).

n m
By Lemma 4 and 5 there exists a function [ € L™ (p), where =\ p;, V V et
i=1 i=1

such that T|Z,, = f(V)|Ze, (i =1, ...on) and T| 2 = f(V)| 2 (i =1, .., m).
Then

ISTu — TSul| <

STu~ ST > tl +

i=1

_——n m
ST Z 1,-1 > uj II

i=1

'fz wh — bu“
i=1
w—~ Z u,jn + “;f(\?) S oup— f(\Nf) ;u:“ + ||f|| “; ul — gu“

i=1 i=1

- - m
Z ; — Su H + ”S’u -5 u

= i=1

<USUTle + 17V (
e,

; ) 1Tl
< 2|3 1Te

As £ was arbitrary we have STu = T'Su, i.e. ST =TS and T € (V,)". 0
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