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Abstract

Feature encoding with an overcomplete dic-
tionary has demonstrated good performance
in many applications, especially computer vi-
sion. In this paper we analyze the classifica-
tion accuracy with respect to dictionary size
by linking the encoding stage to kernel meth-
ods and Nyström sampling, and obtain use-
ful bounds on accuracy as a function of size.
The Nyström method also inspires us to re-
visit dictionary learning from local patches,
and we propose to learn the dictionary in an
end-to-end fashion taking into account pool-
ing, a common computational layer in vision.
We validate our contribution by showing how
the derived bounds are able to explain the
observed behavior of multiple datasets, and
show that the pooling aware method effi-
ciently reduces the dictionary size by a factor
of two for a given accuracy.

1. Introduction

In the recent decade, overcompletely encoded features
have been shown to provide state-of-the-art perfor-
mance on various applications. In computer vision,
locally encoded and spatially pooled feature extrac-
tion pipelines work particularly well for image clas-
sification. Such pipelines usually start from densely
extracted local image patches (either normalized raw
pixel values or hand-crafted descriptors such as SIFT
or HOG), and perform dictionary learning to obtain a
dictionary of codes (filters). The patches are then en-
coded into an over-complete representation using var-
ious algorithms such as sparse coding (Olshausen &
Field, 1997; Wang et al., 2010) or simple inner prod-
uct with a non-linear post-processing (Coates & Ng,
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2011; Krizhevsky et al., 2012). After encoding, spa-
tial pooling with average or max operations are car-
ried out to form a global image representation (Yang
et al., 2009; Boureau et al., 2010). The encoding and
pooling pipeline may be stacked in a deep structure to
produce a final feature vector, which is then used to
predict the labels for the images usually via a linear
classifier.

There is an abundance of literature on single-layered
networks for unsupervised feature encoding. Various
dictionary learning methods have been proposed to
find a set of basis that reconstructs local image patches
or descriptors well (Mairal et al., 2010; Coates & Ng,
2011), and encoding methods have been proposed to
map the original data to a high-dimensional space that
emphasizes certain properties, such as sparsity (Ol-
shausen & Field, 1997; Yang et al., 2009; 2010) or
locality (Wang et al., 2010). Among these, a particu-
larly interesting finding in the literature (Coates et al.,
2011; Rigamonti et al., 2011; Coates & Ng, 2011; Saxe
et al., 2011) is that very simple patch-based algorithms
like K-means or even random selection, combined with
feed-forward encoding methods with a naive nonlinear-
ity, produces state-of-the-art performance on various
datasets. Explanation of such phenomenon often fo-
cuses on the local image patch statistics, such as the
frequency selectivity of random samples (Saxe et al.,
2011), but does not offer an asymptotic theory on the
dictionary learning behavior.

In addition, a potential problem with local patch-
based dictionary learning methods for vision is that
they may learn redundant features when we consider
the pooling stage, as two codes that are uncorrelated
may become highly correlated after pooling due to the
introduction of spatial invariance. While using a larger
dictionary almost always alleviates this problem, in
practice we often want the dictionary to have a lim-
ited number of codes, as feature computation has be-
come the dominant factor in the state-of-the-art image
classification pipelines, even with purely feed-forward
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Figure 1. The feature extraction pipeline, composed of dense local patch extraction, encoding, and pooling. Illustrated is
the average pooling over the whole image for simplicity, and in practice the pooling can be carried out over finer grids of
the image as well as with different operations (such as max).

methods (Coates & Ng, 2011) or speedup algorithms
(Wang et al., 2010). A reasonably sized dictionary also
helps to more easily learn further tasks that depends
on the encoded features; this is especially true when
we have more than one coding-pooling stage such as
stacked deep networks, or when one applies more com-
plex pooling stages such as second-order pooling (Car-
reira et al., 2012), as a large encoding output would
immediately drive up the number of parameters in the
next layer. Thus, it would be beneficial to design a
dictionary learning algorithm that takes pooling into
consideration and learns a compact dictionary.

In this paper we address the above questions by pro-
viding a novel view of the single-layer feature encoding
based on kernel methods and Nyström sampling. In
particular, we view the coding of a data point with a
local representation based on a dictionary with fewer
elements than the number of total data points as a
proxy to approximate the actual function that would
compute pair-wise similarity to all data points (often
too many to compute in practice), where the approx-
imation is done by a random or K-means based selec-
tion of data points.

Furthermore, since bounds are known on the approx-
imation power of Nyström sampling as a function of
how many samples we consider (i.e. the dictionary
size), we derive bounds on the approximation of the
exact (but expensive to compute) kernel matrix, and
use it as a proxy to predict accuracy as a function
of the dictionary size, which has been observed to in-
crease but also to saturate as we increase its size. The
Nyström view helps explain the behavior of feature
learning with increasing dictionary sizes, and justifies
the use of simple algorithms such as K-means in dictio-
nary learning (Kumar et al., 2012). It may also help
justify the need to stack more layers (often referred
to as deep learning), as flat models are guaranteed to
saturate as we add more complexity.

We then show that the empirical findings in Nyström
sampling view lead to a particularly simple yet effec-
tive algorithm that is analogous to the patch-based K-

means method for dictionary learning, but that takes
into account the additional redundancy introduced in
the pooling stage. Specifically, we present a two-stage
clustering method to learn a dictionary that identifies
post-pooling invariant features. The resulting dictio-
nary yields a higher classification accuracy while in-
troducing no additional computation overhead during
classifier training and testing time.

We believe that the Nyström sampling based explana-
tion provides a new view on the unsupervised visual
feature extraction pipeline, and may inspire new algo-
rithms to perform efficient unsupervised feature learn-
ing in a deeper structure, as we have demonstrated for
learning a pooling invariant dictionary.

2. Background

Figure 1 illustrates the feature extraction pipeline
that is composed of encoding dense local patches and
pooling encoded features. This pipeline is architec-
turally very similar to the basic structure of convolu-
tional neural networks (LeCun et al., 1998; Krizhevsky
et al., 2012), but instead relies on unsupervised learn-
ing (rather than fine tuning) of the network parame-
ters. Specifically, starting with an input image I, we
formally define the encoding and pooling stages as fol-
lows.

(1) Coding. In the coding step, we extract local
image patches1, and encode each patch to c activation
values based on a dictionary of size c (learned via a
separate dictionary learning step). These activations
are typically binary (in the case of vector quantization)
or continuous (in the case of e.g. sparse coding), and it
is generally believed that having an over-complete (c >
the dimension of patches) dictionary while keeping the
activations sparse helps classification, especially when
linear classifiers are used in the later steps.

We will mainly focus on what we call the decoupled

1Although we use the term “patches”, the pipeline
works with local descriptors such as SIFT as well.
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encoding methods, in which the activation of one code
does not rely on other codes, such as threshold encod-
ing (Coates & Ng, 2011), which computes the inner
product between a local patch x and each code, with a
fixed threshold parameter α: c(x) = max{0,x⊤D−α}
where D ∈ R

d×c is the dictionary. Such methods
have been increasingly popular mainly for their effi-
ciency over coupled encoding methods such as sparse
coding, for which a joint optimization needs to be
carried out. Their use in several deep models, e.g.
(Krizhevsky et al., 2012), also suggests that such sim-
ple non-linearity may suffice to learn a good classifier
in the later stages.

(2) Learning the dictionary: Recently, it has
been found that relatively simple dictionary learn-
ing and encoding approaches lead to surprisingly
good performance (Coates et al., 2011; Saxe et al.,
2011). For example, to learn a dictionary D =
[d1,d2, · · · ,dc] of size K from a set of local patches
X = {x1,x2, · · · ,xN} each reshaped as a vec-
tor of pixel values, one could simply adopt the K-
means algorithm, which aims to minimize the squared
distance between each patch and its nearest code:
minD

∑N
i=1

minj ‖xi−dj‖
2
2. We refer to (Coates et al.,

2011) for a detailed comparison about different dictio-
nary learning and encoding algorithms.

(3) Pooling. Since the coding results are highly
over-complete and highly redundant, the pooling layer
aggregates the activations over a spatial region of the
image to obtain a c dimensional vector, where each di-
mension of the pooled feature is obtained by taking the
output of the corresponding code in the given spatial
region (also called receptive field in the literature) and
performing a predefined operator (usually average or
max). Figure 1 shows an example when average pool-
ing is carried out over the whole image. In practice we
may define multiple spatial regions per image (such as
a regular grid or a spatial pyramid), and the global
representation for the image will then be a vector of
size c times the number of spatial regions.

3. Relationship Between Random

Dictionaries and Nyström Sampling

An important empirical observation was made in
(Coates & Ng, 2011) regarding the importance of the
dictionary learned from the data and the encoding
technique. The authors observed that, with a rather
simple coding scheme and dictionary learning, results
were in most cases comparable to the widely used but
more computationally expensive sparse coding tech-
nique. It was particularly noteworthy that selecting

random dictionaries yielded close to state-of-the-art
results. Further work on this domain (Denil & de Fre-
itas, 2012) suggests that the encoding technique used
is a proxy to solving sparse coding (but in a simple
and faster fashion).

The fact that random dictionaries perform well when
operating with large codebook sizes poses interesting
questions such as how the dictionary size affects perfor-
mance, and why sufficiently large random dictionaries
match learned dictionaries. In addition, even though
the size of the dictionary (or codebook) is important,
the accuracy seems to saturate, which is a phenomenon
that was empirically verified in many tasks, and for
which we now give a theoretical interpretation by link-
ing random dictionaries with Nyström sampling.

3.1. The Nyström Sampling View

Nyström sampling has been proposed as an efficient
way to approximate large PSD matrices (such as kernel
matrices) by sampling columns of the matrix. Specifi-
cally, let K be an N ×N matrix, the Nyström method
defines an approximation as K′ = EW+E⊤, where E
is a N × c matrix with the c columns randomly sam-
pled from those of K, and W is the square c×c matrix
formed by picking the same c columns and rows from
K. Such a sampling perspective have been shown to be
very effective in kernel machines (Zhang et al., 2008;
Cortes et al., 2010; Kumar et al., 2012).

We consider forming a dictionary by sampling our
training set (although, as discussed below, better tech-
niques exist that lead to further gains in performance).
To encode a new data point x ∈ R

d, we apply a (gen-
erally non-linear) coding function c so that c(x) ∈ R

c.
The standard classification pipeline considers c(x) as
the new feature space, and typically uses a linear clas-
sifier on this space. In this section, we consider the
threshold encoding function as in (Coates & Ng, 2011),
c(x) = max(0,x⊤D−α), but the derivations are valid
for other different coding schemes.

In the ideal case (infinite computation and memory),
we encode each sample x using the whole training set
X ∈ R

d×N , which can be seen as the best local coding
of the training set X, to the extent that overfitting is
handled by the classification algorithm. In fact, larger
dictionary sizes yield better performance assuming the
linear classifier is well regularized, as it can be seen as
a way to do manifold learning (Wang et al., 2010).
We define the new features in this high-dimensional
coded space as C = max(0,X⊤X− α), where the i-th
row of C corresponds to coding the i-th sample c(xi).
The linear kernel function between samples i and j
is K(xi,xj) = c(xi)

⊤c(xj). Thus, performing linear
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classification on the coded features effectively uses the
kernel matrix K = CC⊤.

In the conventional context of Nyström sampling for
kernels, one randomly samples a subset of the columns
of K and then replaces the original matrix K with a
low-rank approximation K̂. However, in our problem,
naively applying Nyström sampling to the matrix K
does not save any computation, as every column of
K requires to encode the corresponding feature with
the large dictionary of all N samples. However, if we
approximate the matrix C with Nyström sampling to
obtain C′ ≈ C, we would get an efficient approxima-
tion of the kernel matrix as K′ ≈ K:

C′ = EW−1E⊤, and (1)

K′ = C′C′⊤ = EW−1E⊤EW−1E⊤ = EΛE⊤, (2)

where the first equation comes from applying Nyström
sampling to C, E is a random subsample of the
columns of C, and W the corresponding square ma-
trix with the same random subsample of both columns
and rows of C.

We note that in the traditional coding scheme pro-
posed in (Coates & Ng, 2011), if the dictionary is
taken randomly then Kcoding = EE⊤, and by apply-
ing Nyström sampling to C we obtain almost the same
kernel, where the matrixΛ acts as an additional Maha-
lanobis metric on the coded space. Adding the term Λ
seemed to help in some cases, when the dictionary size
is small (for example, in the CIFAR10 dataset, classifi-
cation performance was improved by about 0.5% when
c < 500.). We refer to the supplementary material to
discuss the effect of Λ and how to efficiently find it
without explicitly computing the original N ×N ma-
trix.

3.2. Error Bounds on the Approximation

Many existing analyses have computed bounds on the
error made in estimating C by C′ by sampling c
columns, such as (Talwalkar & Rostamizadeh, 2010;
Kumar et al., 2012), but not between K = CC⊤ and
K′ = C′C′⊤, which we aim to analyze in this section.
The bound we start with is (Kumar et al., 2012):

||C−C′||F ≤ ||C−Ck||F + ǫmax(nCii), (3)

valid if c ≥ 64k/ǫ4 (c is the number of columns that
we sample from C to form E, i.e. the codebook size),
where k is the sufficient rank to estimate the structure
of C, and Ck is the optimal rank k approximation
(given by Singular Value Decomposition (SVD), which
we cannot compute in practice).

Fixing k to the value that retains enough energy from
C, we get a bound that gives a minimum ǫ to plug in

Eqn. 3 for every c (sample dictionary size). This gives

us a useful bound of the form ǫ ≥ M̂ (1/c)
1/4

for some
constant M̂ (that depends on k). Hence:

||C−C′||F ≤ O +M (1/c)
1/4

, (4)

where O and M constants that are dataset specific.

However, having bounded the error C is not yet suf-
ficient to establish how the code size will affect the
classifier performance. In particular, it is not clear
how the error on C affect the error on the kernel ma-
trix K. Similarly, having a kernel matrix of different
quality will affect classification performance. Recent
work (Cortes et al., 2010) proves a linear relationship
between kernel matrix degradation and classification
accuracy. Furthermore, in the supplementary mate-
rial, we provide a proof that shows the degradation of
K is also proportional to the degradation of C. Hence,
the error bound on K′ is of the same form as the one
we obtained for C:

||K−K′||F ≤ O′ +M ′ (1/c)
1/4

. (5)

We note that the bound above also applies to the case
when further steps, such as pooling, is carried out after
coding, provided that such steps produce output fea-
ture dimensions that have a one-to-one correspondence
with the dictionary entries. Pooling over multiple spa-
tial regions does not change the analysis as it could be
deemed as concatenating multiple kernel matrices for
the data.

3.3. Evaluating Bounds

We empirically evaluate the bound on the kernel ma-
trix, used as a proxy to model classification accuracy,
which is the measure of interest. To estimate the con-
stants in the bounds, we do interpolation of the ob-
served accuracy using the first three samples of ac-
curacy versus codebook size, which is of practical in-
terest: one may want to quickly run a new dataset
through the pipeline with small dictionary sizes, and
then quickly estimate what the accuracy would be
when running a full experiment with a much larger
dictionary (which would take much longer to run) with
our formulation. We always performed Nyström sam-
pling schemes by doing K-means instead of random
selection (although the accuracy between both meth-
ods does not change too much when c is sufficiently
large).

In Figure 2 we plot the accuracy (on both train and
test sets) on four datasets: CIFAR-10 and STL from
vision, and WSJ and TIMIT from speech. For each
dataset we used the first three samples to determine
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Figure 2. The actual training and testing accuracy (solid) and the predicted accuracy using our bound (dashed), on four
datasets: CIFAR, STL, WSJ and TIMIT from left to right.

the constants given in the bound. One may practically
favor this approach to evaluate performance, as small
dictionary sizes are fast to try while large dictionary
sizes are of interest. The bound is designed to predict
training accuracy (Cortes et al., 2010), but we also do
regression on testing accuracy for completeness. We
note that testing accuracy will in general also be af-
fected by the generalization gap, which is not captured
by the bound analysis.

The results show that in all cases, the red dashed line
is a lower bound of the training actual accuracy, and
follows the shape of the empirical accuracy, predict-
ing its saturation. In the testing case, our model is
slightly optimistic when overfitting exists (e.g. STL
and TIMIT), but correctly predicts the trend with re-
spect to the number of dictionary entries.

The implication of linking Nyström sampling theory to
current learning pipelines has several immediate con-
sequences: first, it clarifies why random sampling or
K-means produce very reasonable dictionaries that are
able to perform well in terms of classification accuracy
(Zhang et al., 2008; Coates et al., 2011; Kumar et al.,
2012); more importantly, due to known bounds such
as the one derived in this section, we can model how
the codebook size will affect performance by running
a few experiments with smaller codebook sizes, and
extrapolating to larger (and more computationally ex-
pensive to compute) codebook sizes by means of Eq. 5,
thus predicting accuracies before running potentially
long jobs.

4. Pooling Aware Dictionary Learning

The Nyström sampling view suggests that one could
find a better subset of a large (potentially infinite)
dictionary to obtain more informative features. In ad-
dition, existing work suggests that this could be often
done in an efficient way with methods such as cluster-
ing. However, current clustering algorithms for dictio-
nary learning (Coates et al., 2011; Coates & Ng, 2011)
only apply to the local coding step, and do not con-
sider the pooling effect. In this section, we show that
by explicitly taking into account the whole pipeline
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Figure 3. Two codes learned from a patch-based K-means
algorithm that produce lowly correlated patch-based re-
sponses (left), but highly correlated responses after pooling
(right). Such phenomenon may root from various causes,
such as codes with translational difference (above) and
color difference (below).

shown in Figure 1 to include both local coding and
pooling when learning the dictionary, one gets a much
more compact feature representation.

Figure 3 shows two examples why pooling-aware dic-
tionary learning may be necessary, as local patch-
based dictionary learning algorithms often yield sim-
ilar filters with small translations. Such filters, even
when uncorrelated on the patch level, produce highly
correlated responses when pooled over a certain spatial
region, leading to redundancy in the feature represen-
tation.

Observing the effectiveness of clustering methods in
patch-based dictionary learning, we propose to learn
a final dictionary of size K in two stages: first, we
adopt the K-means algorithm to learn a more over-
complete starting dictionary of size M (M >> c) on
patches, effectively “overshooting” the dictionary we
aim to obtain. We then perform encoding and pooling
using the dictionary, and learn the final smaller dictio-
nary of size c from the statistics of the M -dimensional
pooled features.
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4.1. Post-Pooling Feature Selection

The first step of our algorithm is identical to the patch-
based K-means algorithm with a dictionary size M .
After this, we can sample a set of image super-patches
of the same size as the pooling regions, and obtain the
M dimensional pooled features from them. Randomly
sampling a large number of pooled features in this way
allows us to analyze the pairwise similarities between
the codes in the starting dictionary in a post-pooling
fashion. We would then like to find a c-dimensional,
lower dimensional subspace that best represents the
M pooled features.

If we simply would like to find a low-dimensional rep-
resentation from the M -dimensional pooled features,
one would naturally choose SVD to find the K most
significant projections of the covariance matrix. With
a little abuse of terminology and denoting the matrix
of randomly selected pooled feature as X where each
column is a feature vector, the SVD is carried out as

X ≈ UcΛcV
⊤
c , (6)

where R is the covariance matrix computed using the
random sample of pooled features, theM×cmatrix Uc

contains the left singular vectors, and the c×c diagonal
matrix Λc contains the corresponding singular values.
The low-dimensional features are then computed as
xc = U⊤

c x.

While the “oracle” low-dimensional representation by
SVD guarantees the best c-dimensional approxima-
tion, it does not meet our goal since the dictionary size
is not reduced, as SVD almost always yields non-zero
coefficients for all the dimensions. Linearly combin-
ing the dictionary entries does not work either due
to the nonlinear nature of the encoding algorithm.
In our case, we would need the coefficients of only a
subset of the features to be non-zero, so that a mini-
mum number of filters need to be applied during test-
ing time. Various machine learning algorithms aim to
solve this, most notably structured sparse PCA (Je-
natton et al., 2010). However, these methods often
requires a structured sparsity term to be applied dur-
ing learning, making the training time-consuming and
difficult to scale up.

Based on the analysis of the last section, the problem
above could again be viewed as a Nyström sampling
problem by subsampling the rows of the matrixX (cor-
responding to selecting codes from the large dictio-
nary). Empirical results from the Nyström sampling
then suggests the use of clustering algorithms to solve
this. Thus, we resort to a simpler K-centroids method.

Specifically, we use affinity propagation (Frey &

Dueck, 2007), which is a version of the K-centroids
algorithm, to select exemplars from the existing dictio-
nary. Intuitively, codes that produce redundant pooled
output (such as translated versions of the same code)
would have high similarity between them, and only
one exemplar would be chosen by the algorithm. We
briefly explain the affinity propagation procedure here:
it finds exemplars from a set of candidates where pair-
wise similarity s(i, j) (1 ≤ i, j ≤M) can be computed.
It iteratively updates two terms, the “responsibility”
r(i, j) and the “availability” a(i, j) via a message pass-
ing method following such rules (Frey & Dueck, 2007):

r(i, k)← s(i, k)−max
k′ 6=k
{a(i, k′) + s(i, k′)} (7)

a(i, k)← min{0, r(k, k) +
∑

i′ /∈{i,k}
max{0, r(i′, k)}}

(if i 6= k) (8)

a(k, k)←
∑

i′ 6=k
max{0, r(i′, k)} (9)

Upon convergence, the centroid that represents any
candidate i is given by argmaxk(a(i, k) + r(i, k)), and
the set of centroids S is obtained by

S = {k|∃i, k s.t. k = argmax
k′

(a(i, k′)+r(i, k′))} (10)

And we refer to (Frey & Dueck, 2007) for details about
the nature of such message passing algorithms. The
similarity between two pooled dimensions (which cor-
respond to two codes in the starting dictionary) i and
code j, as in Eqn. (7)-(9), is computed as

s(i, j) =
2Rij

√

RiiRjj

− 2. (11)

Note that this is equivalent to the negative Euclidean
distance between the coded output i and the coded
output j when the outputs are normalized to have zero
mean and standard deviation 1. We note that related
work such as (Coates et al., 2012) adopt a similar ap-
proach by max-pooling the outputs of similar codes
to generate next-layer features in a deep fashion. Our
method shares the same merit while focusing on model
compression by bounding the computation time in a
single layer.

Clustering algorithms has shown to be very effective in
the context of Nyström sampling (Kumar et al., 2012),
and are often highly parallelizeable, easily being scaled
up by simply distributing the data over multiple ma-
chines. This allows us to maintain the efficiency of dic-
tionary learning. Using a large, overshooting starting
dictionary allows us to preserve most information from
the patch-level, and the second step prunes away the
redundancy due to pooling. Note that the large dic-
tionary is only used during the feature learning time -



On Compact Codes for Spatially Pooled Features

Figure 4. Visualization of the learned codes. Left: the selected subset of 256 centroids from an original set of 3200 codes.
Right: The similarity between each centroid and the other codes in its cluster. For each column, the first code is the
selected centroid, and the remaining codes are in the same cluster represented by it. Notice that while translational
invariance is the most dominant factor, our algorithm does find invariances beyond that (e.g., notice the different colors
on the last column). Best viewed in color.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ρ = 0.282

0 1 2 3 4 5 6
0

1

2

3

4

5

6
ρ = 0.756

0 1 2 3 4 5 6
0

1

2

3

4

5

6
ρ = 0.165

0 100 200 300 400 500 600

−2

0

2

4

6

Eigenvalues and Approximation

eigval

eigval pca

eigval ap

(a) (b) (c) (d)

Figure 5. (a)-(c): The filter responses before and after pooling: (a) before pooling, between codes in the same cluster
(correlation ρ = 0.282), (b) after pooling, between codes in the same cluster (ρ = 0.756), and (c) after pooling, between
the selected centroids (ρ = 0.165), (d): the eigenvalues of the approximated matrix (in log scale).

after this, for each input image, we only need to encode
local patches with the selected, relatively smaller dic-
tionary of size c, not any more expensive than existing
feature extraction methods.

5. Experiments

In this section we empirically evaluate two sets of ex-
periments: using the bound to approximate the classi-
fication accuracy, and using the two-staged clustering
algorithm to find better pooling invariant dictionaries.

5.1. Analysis of Selected Filters

To visually show what codes are selected by affinity
propagation, we applied our approach to the CIFAR-
10 dataset by first training an over-complete dictio-
nary of 3200 codes following (Coates & Ng, 2011),
and then performing affinity propagation on the 3200-
dimensional pooled features to obtain 256 centroids,
which we visualize in Figure 4. Translational invari-
ance appears to be the most dominant factor, as many
clusters contain translated versions of the same Ga-
bor like code, especially for gray scale codes. On the
other hand, clusters capture more than translation:
clusters such as column 5 focus on finding the con-
trasting colors more than finding edges of exactly the

same angle, and clusters such as the last column finds
invariant edges of varied color. We note that the se-
lected codes are not necessarily centered, as the cen-
troids are selected solely from the pooled response co-
variance statistics, which does not explicitly favor cen-
tered patches.

We could also verify whether the second clustering
stage captures the pooling invariance by checking the
statistics of three types of filter responses: (a) pair-
wise filter responses before pooling between codes in
the same cluster, (b) pairwise filter responses after

pooling between codes in the same cluster, and (c)
pairwise filter responses after pooling between the se-
lected centroids. The distribution of such responses
shown in Figure 5 verifies our argument: first, codes
that produce uncorrelated responses before pooling
may become correlated after the pooling stage (Figure
5(a,b)); second, by explicitly considering the pooled
feature statistics, we are able to select a subset of the
dictionary whose responses are lowly correlated (Fig-
ure 5(b,c)), preserving more information with a fixed
number of codes. In addition, Figure 5(d) shows the
eigenvalues of the original covariance matrix and those
of the approximated matrix, showing that the approx-
imation captures the largest eigenvalues of the original
covariance matrix well.



On Compact Codes for Spatially Pooled Features

Table 1. Classification Accuracy on the CIFAR-10 and
STL datasets under different budgets.

Task Learning Method Accuracy
K-means 69.02

CIFAR-10 2x PADL 70.54 (+1.52)
200 codes 4x PADL 71.18 (+2.16)

8x PADL 71.49 (+2.47)
CIFAR-10 K-means 77.97
1600 codes 2x PADL 78.71 (+0.74)
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Figure 6. Performance improvement on CIFAR when using
different starting dictionary sizes and a final dictionary of
size 200. Shaded areas denote the standard deviation over
different runs. Note that the x-axis is in log scale.

5.2. Pooling Invariant Dictionary Learning

To evaluate the improvement introduced by learning a
pooling invariant dictionary as in Section 4, we show in
Figure 6 the relative improvement obtained on CIFAR-
10 when we use a fixed dictionary size 200, but perform
feature selection from a larger overshooting dictionary
as indicated by the X axis. The SVD performance is
also included in the figure as an “oracle” for the feature
selection performance. Learning the dictionary with
our feature selection method consistently increases the
performance as the size of the original dictionary in-
creases, and is able to get about two thirds the perfor-
mance gain as obtained by the oracle performance. We
note again that SVD still requires the large dictionary
to be used and does not save any testing time.

The detailed performance gain of our algorithm on
the two datasets, using different overshooting and fi-
nal dictionary sizes, is visualized in Figure 7. Table 1
summarizes the accuracy values of two particular cases
- final dictionary sizes of 200 and 1600 respectively, on
CIFAR. Note that our goal is not to get the best overall
performance - as performance always goes up when we
use more codes. Rather, we focus on two evaluations:
(1) how much gain we get given a fixed dictionary size
as the budget, and (2) how much computation time
we save to achieve the same accuracy.

Overall, considering the pooled feature statistics al-
ways help us to find better dictionaries, especially
when relatively small dictionaries are used. During
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Figure 7. Above: accuracy values on the CIFAR-10 (left)
and STL (right) datasets under different dictionary size
budgets. “nx PADL” means learning the dictionary from
a starting dictionary that is n times larger. Below: Rela-
tive computation time to achieve the same accuracy using
dictionary obtained from PADL.

testing time, it costs only about 60% computation time
with PADL to achieve the same accuracy as K-means
does. For the STL dataset, an overly large starting dic-
tionary may lessen the performance gain (Figure 7(b))
possibly due to feature selection being more prone to
local optimum and the small number of training data
(thus more overfitting). However, in general the code-
book learned by PADL is consistently better than its
patch-based counterpart, suggesting the applicability
of the Nyström sampling view in feature learning with
a multi-layer structure including spatial pooling.

6. Conclusion

Feature encoding with an overcomplete dictionary has
demonstrated good performance in many applications,
especially computer vision. In this paper, we proposed
a novel perspective on recent approaches to object
recognition by linking the feature extraction pipeline
to kernel methods and Nyström sampling. As a re-
sult, we obtained useful bounds on the overall accu-
racy as a function of the dictionary size. We validated
our contribution by showing how the derived bounds
are able to explain the observed asymptotic behav-
ior of dictionary learning across several datasets. We
further extended the Nyström paradigm to take into
account a pooling layer, which is a common computa-
tional layer in vision. The algorithm we propose is an
efficient, end-to-end clustering method based on affin-
ity propagation. Empirical evidence on image datasets
demonstrates that significant improvement is obtained
in learning compact, non-redundant dictionaries.
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