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Introduction

If a differentiable manifold M is provided with an affine connection whose
torsion and curvature vanish identically, we call M an affine manifold. The study
of affine manifolds has been the subject of a number of recent publications in-
cluding the papers by Auslander, Charlap, Koszul, Kamber and Tondeur, and
Wolf. A general reference for the study of affine manifolds is [3], [4] or [6]. The
subject of this paper is to study homogeneous affine manifolds.

If, for an affine manifold M, aut (M) denotes the Lie algebra of all in-
finitesimal affine transformations, then aut (M) has an associative algebra struc-
ture satisfying 1) X-Y—Y.X=[X, Y] and 2) the isotropy subalgebra aut (11},
={Xcaut (M)| X,=0} at pcM is a left ideal of aut (M) (Theorem 1.2).
Our study is essentially based upon these properties of aut (). A pair (g, a) of
a Lie algebra g and a subalgebra a of g is called an _{-pair if g has an associative
algebra structure satisfying the above 1) and 2) for the subalgebra a.

Let G be a Lie group with Lie algebra g and 4 a closed subgroup of G with
Lie subalgebra a of g. Then if (g, a) is an (A-pair, then the homogeneous
space G/A has a unique G-invariant flat affine connection V satisfying Vy»Y*
=(Y-X)* where X* denotes the vector field on G/4 induced by the action of
exp tX (Theorem 2.2). We call such a homogeneous affine manifold an  A-
space. Then a compact homogeneous affine manifold turns out to be an
A-space (Theorem 2.4).

To each A-pair (g, a), we can associate in a canonical way a pair (G, 4) of
Lie groups such that the Lie algebras of G'and A4 are g and a respectively, and
A is a closed subgroup of G (§4). Then for such a pair (G, 4) of a Lie
group and a closed subgroup, the A-space G/4 is embedded equivariantly into an
affine space as a domain, which is called an (4-domain (Theorem 4.5).

The F-Stiefel manifold V,(F"), consisting of all r linear frames in
F"(F=R, C orH), is naturally imbedded into the affine space " as a domain,

This work was presented to the Graduate School of the University of Notre Dame in
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458 K. Yacr

and moreover V,(F™) turns out to be an /-domain (Theorem 5.1). By using
a well known theorem, the so called Wedderburn Theorem on associative
algebras, we determine /-domains; an ./-domain is affinely diffeomorphic to a
direct product of an affine space and Stiefel manifolds (Theorem 5.5).

The following theorem shows the importance of Theorem 5.5 in the study
of compact homogeneous affine manifolds: if M is a compact homogeneous
affine manifold which is a quotient space of a domain D in an affine space, then
the domain D is an _{-domain (Theorem 6.1). By applying this theorem, we
consider the case in which M is convex or complete (Theorem 6.3 and 6.4).

I would like to express my deep appreciation to Professor Yozo Matsushima,
whose guidance and encouragement made this work possible.

1. Affine manifolds

In what follows, by differentiable we always mean differentiable of class
C=. All manifolds and affine connections are assumed differentiable. For
general notations and definitions we refer to [4].

An affine connection is said to be flat if the torsion and curvature tensors
vanish identically. A manifold provided with a flat affine connection is called an
affine manifold. An affine transformation of an affine manifold is called an
automorphism. Aut (M) denotes the Lie group of all automorphisms of an
affine manifold M. M is said to be homogeneous if Aut (M) acts on M transitively.

Let N be a totally geodesic submanifold of an affine manifold M. Then
N is an affine manifold and the inclusion of N into M is an affine mapping. N
is called an affine submanifold of M.

Let V be a finite dimensional vector space over R. In the canonical way,
V is considered as an affine manifold, which is called an affine space. In general,
an n dimensional affine space will be denoted by A”. Let U be a vector subspace
of V" and x&V. Then the subset x+ U= {x-+y< V|y< U} is an affine subman-
ifold of the affine space V, which is called the affine subspace through x as-
sociated to U. We can easily see that if M is a connected affine submanifold of A™
then there exists a unique affine subspace S of A™ such that M is an open subset of S.

A connected open subset in A" is called a domain. Let D be a domain
of A” and T" a discrete group acting on D freely and properly discontinuously
as a group of affine automorphisms of D. Then the quotient space T'\D is
an affine manifold and the projection is affine. When an affine manifold M
is of the form T'\D, M is said to be regular. Moreover if D is a convex domain
in A", then M is said to be convex. It is well known that an affine manifold M
is complete (i.e., the flat affine connection is complete) if and only if M is a regular
affine manifold T\A4”. That is to say, a simply connected complete affine
manifold is affinely diffeomorphic to A”.
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In general we have the following:

Proposition 1.1 Let M be an n dimensional simply connected affine manifold.
Then there exists an affine immersion @ of M into A™ with the following universal
property; if \r is an affine mapping of M into A™ then there exists a unique affine
mapping g of A* into A™ such that yr=gop.

Proof. Let V be the vector space of all parallel differential forms of degree

1 on M. Since M is simply connected, dim V=n. Take a point p,=M as a
reference point and define a mapping @ of M into the dual space V* of V' by
b

pph o> = o

0

for peM and w= V. Since M is simply connected, the integral does not
depend on the choice of a path from p, to p and hence @(p) is well defined.
Then @ is an affine immersion of M into the affine space '* and satisfies the
universal property. Q.E.D.

Let M be an affine manifold with flat affine connection V. An infini-
tesimal automorphism of M is, by definition, a vector field whose local one para-
meter group of local transformations consists of affine mappings. The set
of all infinitesimal automorphisms of M forms a finite dimensional Lie subalgebra

aut (M) of X(M).

Theorem 1.2. Let M be an affine manifold with flat affine connection V.
Then

1) If X and Yecaut (M), then VxY caut (M).
2) If we define a multiplication X+Y in aut (M) by setting

X-Y=-V,X,
then aut (M) forms an associative algebra over R such that
[X,Y]=X-Y-Y-X.

3) Let peM and a={X€<aut (M)|X,=0}. Then a is a left ideal of
the associative algebra aut (M).

In order to make the computation easier, we introduce a tensor field Ay
associated to a vector field X as follows: for X & ¥(M),

AX = LX'""VX

where Ly denotes the Lie derivative by X. We have the following formulae
on an affine manifold M.
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1°) AxY = —V,X for X, YEeX¥M).
2°) Xeaut (M) if and only if V(4x)=0.
3°) Aypy=AxAy for Xsaut (M), YEX(M).

Proof of Theorem 1.2. To prove 1), let X, Yeaut(M). By 2°) it
suffices to show (Vy(Ay,y))V=0 for any U, VeX(M). In fact (Vy(dezy))
V=V AeryV)—Aory(VulV) =—Vi(A ayxV)+ 4 a,x(VoV) = —Vi(4yAxV)
+AyAx(VoV )= —((Vyd ) AxV+AxVAx) V4 AyAxV V) + AyAx(VoV)
=0 since Ay and A, are parallel by 2°). This proves 1). The second asser-
tion of 2) follows from the triviality of the torsion of V. To complete the proof
of 2), it is sufficient to prove that (X-Y)-Z=X:(Y-Z) for X, Y and
Zeaut(M). In fact, (X-Y):Z=(—VyX)-Z=VAVyX)=—V(4AxY)=
—AxV;Y=—Vy., X=X-(Y-Z). This proves 2). Let Xca and Ycaut
(M). Then Y-X=—V,Y. Since X,=0, (Y-X),=0, and hence Y-Xea.
This proves 3). Q.E.D.

Let g be a Lie algebra over the field R. g is called an A-Lie algebra
if g is also an associative algebra over R such that for X and Yeg

X.Y-Y-X=[X, Y]

where X-Y denotes the associative algebra multiplication. If a is a left ideal
of the underlying associative algebra of g, the pair (g, a) is called an A-pair of
algebras.

One can show easily that the underlying Lie algebra of an ({-Lie algebra is
not semi-simple,

2. (A)-Lie groups and (_{)-spaces.

Let G be a Lie group. The Lie algebra g of G is, by definition, the Lie
algebra of all left invariant vector fields on G. For ae G, R, and L, denote the
right and left translations of G by a, respectively; R,(g)=ga, L,(g)=ag. Let
H be a closed subgroup of G. The action of G on the homogeneous space
G/H is denoted by T; for ac G and gHeG|H, T (¢gH)=(ag)H. This action
induces an anti-Lie homomorphism of g into %(G/H) as follows: for any X &g,let
a,=exptX<G. The one parameter group {T,} of transformations of G/H
defines a vector field X* on G/H. Then the mapping, which assigns X* to each
X, is an anti-Lie homomorphism of g into ¥(G/H). The image of g by this
mapping will be denoted by g’. A vector field X* in g’ is called the induced
vector field of X =q.

A Lie group G is called an A-Lie group with algebra g if the Lie algebra g of
G is an  A-Lie algebra over R. A4 pair (G, A) of an _J-Lie group G and its
subgroup 4 is called an A-pair of groups with algebras (g, a) if the pair (g, a) of
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Lie algebras of G and 4 is an 4-pair of algebras and if 4 is a closed subgroup
of G.

Lemma 2.1. Let G be a connected A-Lie group with algebra g. Then for
acG and X, Yeq,

Ad(a)( X Y) = (4d(a)X)-(4d(a)Y) .
That is, Ad(a) is an automorphism of the associative algebra g.
This follows from the following formula; for any X, Y and Zg,
[Z, X-Y]=[Z, X]- Y+ X:[Z, Y].

An affine connection on a homogeneous space G/H is said to be G-invariant
if the transformation T, of G/H is an affine mapping for any a=G.

Theorem 2.2. Let (G, A) be an A-pair of groups with algebras (g, a).
Then there exists a unique G-invariant flat affine connection V on G|A such that

Ve Y*=(Y - X)* for X, Yegq,
where Y+ X denotes the multiplication of the associative algebra g.

The invariant flat affine connection on G/4 in Theorem 2.2 is called the
canonical flat affine connection. The homogeneous space G/A provided with
the canonical flat affine connection is called an A-space.

Proof of Theorem 2.2. We shall construct an affine connection V on G/4
step by step.

1°) Let peG/A4,u=THGJ/A) and Yeg. V., Y*¥*=T ,(G/A) is defined by
V.V — (V- X}

where Xeg and X =u. We show that this is well defined. It suffices to
show that if Xeg and X}=0, then (V-X)¥=0 for any Y=g. For g&G and
Zeg, T (Z*)=(Ad(g)Z)* on G|A. Let O denote the class of A in G/4 and
p=T,0). Suppose Xcg and X}=0. Then (Ad(a™)X)f=0 and hence
Ada((X)ea. Let Yeg. (V- X)F=T ((Ad(a* Y - X))§)=T ((Ad(a™")Y)-
(Ad(a™")X))¥ by Lemma 2.1. Since Ad(a )X <a and a is a left ideal of g,
(Ad(a™)Y)-(Ad(a ") X)=a and hence (Y- X)F=0. Therefore the definition is

consistent.

2°) Let p=GJ/A, ucTHG|A) and Z&X(G/A). V, ZeT,(G/A) is defined
as follows: obviously there exist Y, -+, Y, &g and smooth functions f, -, f,
defined around p such that Z= >} f*Y¥ around p. Then let V,Z be defined by
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Vi = 2 (wf )Y+ Ef’(P)vuY;k ’

where the second term of the right hand side has been defined in 1°). We show
that this is well defined. It suffices to show that if >3 f*Y¥=0 around p, then
D ()Y E+Z fi(p)V. Y F=0. Take X&g such that XF=u. Then 3] (uf’)

Va4 S SV E= S (XY 5 AV XF=IX% 5 Y1,
SADIXE, Y+ D fApNY.X)¥. Since > f'YF=0 around p, the first
term vanishes. The rest is equal to 31 fi(p)(X-Y,)f since [X*, Y¥],=
—IX, VR=(VXi—(X- Y. SO V=X (/P On
the other hand 3 f/Y¥=0 around p, in particular 0=(3] Fip)Y )k
=(f(p)Y.)¥. By a method similar to that of 1°), (X-( X f{(p)Y.))i=0.
3°) Let X and Ye¥(G/4). VxY<X(G/A) is defined by
(VxY), = VX;;Y

where the right hand side has been defined in 2°). The differentiability of VY

is clear.
4°) Obviously V satisfies the condition to be an affine connection on G/A.

By the definition of V, we get Vx«Y*=(Y-X)* on G/4 for X, Yeg. To
show that V is G-invariant, it is sufficient to prove that T ,((Vx+ Y *¥)=V 1« T x ¥ *
forany ac=G and X, Yeg. In fact T (Vi Y*)=T (Y X)*=(4d(a) Y - X)*
=((A4d(a)Y)-(Ad(@)X))*=V 1 33T« Y* since T qZ*=(Ad(a)Z)* for acG,
Zeg. V is flat. In fact, for any X, ¥ and Z&g, we have VY *¥—V . X*
=[X*, Y*] and [Vx+, V y+]Z*=Vx+ yZ*. Therefore we have proved the
existence of such a flat affine connection on G/4. The uniqueness is trivial.

Q. E.D.

Suppose M is a homogeneous space G/H where G acts almost effectively
(i.e., {g= G| T ,=the identity} is a discrete subgroup of G). Then g is anti-Lie
isomorphic to the Lie subalgebra g’ of vector fields on M induced by g. If V¥
is a G-invariant flat affine connection on M, then clearly g’ is a Lie subalgebra of
aut (M). We recall that aut (M) is an i-Lie algebra.

Proposition 2.3. Let M be a homogeneous space G[H and V a G-invariant
flat affine connection on M where G acts on M almost effectively. If ' is an
assoctative subalgebra of aut (M), then (G, H) is an A-pair of groups and V is the
canonical flat affine connection on the A-space G|H.

Proof. Let g and § be the Lie algebras of G and H respectively. We
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define a multiplication Y-X on g as follows; Vx+YV*=(Y-X)* for X, Yegq.

Since g’ is an associative subalgebra of aut (M) and the mapping of g into g’ is
bijective, V4« Y *<g’, and hence there exists a unique element Z in g such that
VxxY*=7%*_ Thus this multiplication Y-X is well defined and g forms an
associative algebra such that [X, ¥]=X.-Y—Y-X. Obviously § is a left ideal
of the associative algebra g. Thus (G, H) is an A-pair of groups with algebras
(8, 9). The last assertion follows from the definition of the canonical flat
affine connection on the 4-space G/H. Q.E.D.

In the case where M is compact, we have the following as a corollary of
Proposition 2.3.

Theorem 2.4. If M is a compact homogeneous affine manifold, then M is
affinely diffeomorphic to an A-space with the canonical flat affine connection.

Let G be an i-Lie group with algebra g. Naturally G=G/(e) is an
A-space. As an J-space, G has the canonical flat affine connection V. In this
case, for Xeg, X* is the right invariant vector field on G such that X*=X,.

Proposition 2.5. Let V be the canonical flat affine connection on an _A-Lie
group G. Then :

1) ViV =(Y - Xy*and VyY=X-Y for X,=g.
2) 'V is two sided invariant by G.

Proof. The first assertion in 1) is the definition of V. Let X, Ye&g.
(VxY), =V, Y=V3 Y=V, X*4[X* Y], since the torsion vanishes. Ob-
viously the second term vanishes. Then (VxY),=Vy X*=(VyX*),=(X. Y)¥
=(X-Y), Since V is left invariant, for acG, (VxY),=L(V, 3ixLaY),
=L AVxY)=LAX-Y),=(X-Y),. Thisprovesl). Takeain G. R, (Vx:Y*)
=R MY - X)*=(Y - X)*=V 3« Y*=Vp «x+R+Y* for X. Yeg. This shows that
V is invariant by R, for ac G. Therefore V is two sided invariant by G.

Q.E.D.

As a consequence of Proposition 2.3 and Proposition 2.5, we have following
characterization of ({-Lie groups.

Theorem 2.6. A Lie group G is an _A-Lie group if and only if G has a two
sided invariant flat affine connection.

Proof. Suppose G has a two sided invariant flat affine connection V. Let
X, Yeg. Since Vis left invariant, X* and Y* are in aut (G) and hence Vy+Y'*
is in aut (G).Vx+Y* is a right invariant vector field since V is right invariant.
Therefore ¢'={X*caut(G)|X g} is an associative subalgebra. By Propo-
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sition 2.3, G is an JI-Lie group. The converse is Proposition 2.5.
Q.E.D.

Let (G, A) be an JA-pair of groups with algebras (g, a). V¢ and V¢4
denote the canonical flat affine connections on G and G/4 respectively.

Proposition 2.7. The projection of G onto G|A is an affine mapping with
respect to V€ and VC/4,

Proof. Each Ze<g induces a right invariant vector field on G and a vector
field on G/A. As before, they will be denoted by the same letter Z*.
Then p(Z¥)=Z*. Let X, YEg. px(VeY*)=pu(V - X)*=(V - X)*=VYAY*
=V$/&p«Y*. Thus p is an affine mapping. Q.E.D.

We state the following proposition without proof. The proof is straight-
forward.

Proposition 2.8. Let (G, A) and (H, B) be A-pairs of groups with algebras
(g, a) and (Y, b) respectively. Then

1) If @ is a homomorphism of G into H whose differential is an associative
algebra homomorphism, then @ is an affine mapping. If, moreover, p(A)C B,
then the mapping of G|A into H|B induced by ¢ is also affine. In particular, a
Lie subgroup of H whose algebra is an associative subalgebra of % is an affine
submanifold of H.

2) Let N be a closed normal subgroup of G which is contained in A. If the
Lie subalgebra v of N is a two sided ideal of g, then (G|N, A|N) is an A-pair
of groups with (g/n, a/n), and (G|N)/(A|N) and G| A are affinely diffeomorphic.

3) (GxH, AXB) is an J-pair of groups with algebras (gDh, adb), and
Sfurthermore GXx HIAX B and G|AXH|B are affinely diffeomorphic.

By using the structure of an affine manifold on an .4-Lie group, we shall
prove the following theorem, which gives a sufficient condition for a subgroup
of an A-Lie group to be closed.

Theorem 2.9. Let H be a connected Lie subgroup of an - Lie group G whose
Lie algebra Yy is an associative subalgebra of §. If there exists an affine immersion
of G into the n dimensional affine space (n=dim G), then H is a closed subgroup of G.

Proof. Let @ be an affine immersion of G into the » dimensional affine
space A". Since H is a connected affine submanifold of G and @(G) is an open
subset of A", @(H) is a connected affine submanifold of 4”. 'Thus, there exists
an affine subspace S of A” such that o(H) is an open subset of S. Since locally

@ is a diffeomorphism, H is locally closed in G and hence H is a closed subgroup
of G. Q.E.D.
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Since any simply connected affine manifold can be affinely immersed into
the affine space with the same dimension by Proposition 1.1, we have the following
as a corollary to Theorem 2.9.

Corollary. Let G be a simply connected A-Lie group with algebra g.
Then any connected Lie subgroup of G whose Lie algebra is an associative subalgebra
of g is a closed subgroup of G.

3. The structure of _/-Lie algebras and _/-pairs of algebras

We assume that an associative algebra is always finite dimensional throughout
this section. A general reference of associative algebras is [2] or [5].

Let g be an associative algebra over R. For each positive integer &, g* is
defined by

gk = {3 x,---x,: finite sum|x,Eq} .

We have g=q'Dg’D:--. ¢ is said to be nilpotent if g#=(0) for some k.
Any associative algebra has the maximal nilpotent two sided ideal, which will
be called the radical. When the radical is zero, the associative algebra is said
to be semi-simple. If 1t is the radical of g, then g/t is semisimple. An
associative algebra is said to be simple if it has no non-trivial two sided ideal.
When K is a ring, gl(n; K) denotes the set of all Xz matrices with coefficients
in K. If K is a division algebra over R, then gl(n; K) is a simple associative
algebra over R. We denote by C and H the fields of complex numbers and
quaternions respectively. Then if K is a divison algebra over R, then K is R,
C or H. The following is known as the Wedderburn Theorem ([2], [5]).

Theorem 3.1.

1) Any simple associative algebra over R is isomorphic to ome of gl(n; R),
gl(n; C) and gl(n; H) for some integer n. 4

2) A semi-simple associative algebra is isomorphic to a direct sum of simple
-associative algebras.

Let g be an associative algebra over R. Let § be the semi-direct
sum R-e+g where R-e is a one dimensional vector space with the base (e) and

the multiplication in § is given by
(e, X)+(Be, Y) = (afe, a Y+ BX+X-Y)

for ¢, BER and X, Y=g. Then § is an associative algebra with the identity
(e, 0) and g is a two sided ideal of §. § is called the trivial extension of g by
adding the identity e.

Let g be a semi-simple associative algebra over R. By Wedderburn’s
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theorem, ¢ is isomorphic to a direct sumZgi where g,=gl(n;; F;) and

F,=R,C or H. Let abe aleft ideal of g.Then a,=aNg, is a left ideal of g,
and a= 3 a,. Let a,(n; F) denote the subspace of gl(zn; F) of all elements
(x%) such that x}=0, (1=i=Zn, 1<j=7); ie.,

v

a,(n; F)= <0

o[+ )n.

Lemma 3.2. If ais a left ideal of g(n; F), then there exists g GL(n; F)
such that

a,(n; F)is a left ideal of gl(n; F).

Ad(gya=a,(n; F)  for somer.

The proof of this lemma is well-known. Since Ad(g) is an automorphism of the
associative algebra by Lemma 2.1, without loss of generality we may always
assume that a=a,(n, F) if a is a left ideal of gl(n; F).

An J-pair (g, a) of algebras is said to be effective if a contains no non-
trivial two sided ideal of the associative algebra g. This condition is equivalent
to saying that a contains no non-trivial ideal of the Lie algebra g.

4. Canonical _/-Lie groups and . /-domains

Let § be an  f-Lie algebra over R whose underlying associative algebra,
contains the identity. We denote by H* the group of all invertible elements of
§. Obviously §* is an open subset of § and a Lie group with respect to the
relative topology. The Lie algebra of §* can be identified with the underlying
Lie algebra of § in a natural way since §* is an open subset of §). Therefore H*
is an JA-Lie group with algebra §. Moreover, §* can be considered as a real
algebraic group in a natural way. The Lie group )™ acts affinely on the affine
space Y on the left side through the multiplication of the underlying associative

algebra of . Obviously the inclusion of §* into § is compatible with the actions
of §* on H* itself and on §.

Proposiiton 4.1. The inclusion mapping of an A-Lie group %*, provided
with the canonical flat affine connection, into the affine space §is an affine mapping.

Proof. Let {X,, ---, X,} be a base for the vector space Y), and C}, the
structure constant with respect to {X,};

XX, =3 ClX, (1=i,j<n).

{u', ---, u™} denotes the coordinate of the affine space Y) defined by
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X =u(X)X, for Xep.

Let V be the affine connection on the affine space § and V* the canonical
flat affine connection on the J-Lie group §*. To prove the proposition, it is
sufficient to show that

(VXY)g = (V?:'Y)g

for any g=b* and X, Y &) where § is considered as the Lie algebra of the Lie
group §*. By the definition,

Xy = 2 u/(g- X)(0/ou),

= 23 w(g)uk(X)Cu(0/0w),

i
where g- X deontes the multiplication of g and X in . Thus,
(VxY), :i_j.zk‘lvuf(g'X)('r)/aui)guj uk(Y)Cj.(0/0u’)
= SYug- X)BK(Y)C1(0jou’),
= S uilg- X)uk(Y)Ch(0/ou')
= S1ul(g-X)- Y)(0/ou),
= (X-Y), = (V%Y).
Therefore the inclusion is an affine mapping. Q.E.D.

Let us consider the case where the underlying associative algebra may not
contain the identity. Let g be an A-Lie algebra over B. We denote by §
the trivial extension of g by adding the identity e; g=R-e+g(§3). Since §
contains the identity e, the group * of all invertible elements in § is an algebraic
group. Let G* be the set of all invertible elements of § which are contained
in the subset e+g=/{(e, x)eg| X =g}; G*=F*N(e+g). Clearly G* is a real
algebraic subgroup of §*. Thus G* has only finitely many (topological) con-
nected components. Obviously we have the identification between the Lie
algebra g and the Lie algebra of G¥, corresponding to that between § and the
Lie algebra of §*. Hence G* is an _A-Lie group with Lie algebra g.

Since §* acts on the affine space § on the left side affinely and effectively, so
does G*. Moreover G* leaves the affine subspace e+g of § invariant, and
hence G* acts affinely on the affine subspace e+g on the left side affinely and
effectively.  On the other hand G* is a Lie subgroup of §* and the algebra of G*
is an associative subalgebra (ideal) g of §. It follows from Proposition 3.1 that
the inclusion of the (A-Lie group G*, with the canonical flat affine connection,
into the affine subspace e+g of § is an affine mapping.
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The topological identity component of the Lie group G* is called the
canonical A-Lie group of the _1-Lie algebra g. One can show easily that the
canonical f-Lie group of aut (A4") is nothing but the connected component of
the group Aut (A") of all affine transformations on A".

Theorem 4.2. Let G be the canonical A-Lie group of an JA-Lie algebra
g. Then we have an affine diffeomorphism ¢ of the A-Lie group G with the canonical
flat affine connection onto a domain of the affine subspace e-g of § and a faithful
affine representation @ of G on the affine subspace e+-g of § such that

ugi+g:) = p(g)-ug2)
for g;.€G.

The affine imbedding ¢ of G into e--g is called the canonical affine imbedding
and the faithful affine representation @ of G on e-+g is called the canonical affine
representation.

The following propositions give characterizations of canonical 4-Lie groups.

Proposition 4.3. An A-Lie group G with algebra g is the canonical -
Lie group of g if and only if G is affinely diffeomorphic to a domain in an affine
space.

Proof. Suppose G is affinely diffeomorphic to a domain in an affine space.
Let G, be the canonical J-Lie group of g and G the simply connected A-Lie
group with algebra g. G is a universal covering space of G and G, with pro-
jection p and p,. Then p and p, are affine immersions of G into an affine space.
By Proposition 1.1, there exists an affine diffeomorphism @ of G onto G, such
that pop==p,. Since p and p, are _A-homomorphisms, ¢ is also an 4-homo-
morphism and hence @ is an f-isomorphism of G onto G,. Therefore G is
the canonical ( 4-Lie group of g. 'The converse is Theorem 4.2. Q.E. D.

Proposition 4.4. Let G be a canonical A-Lie group with algebra g, and
H a connected Lie subgroup of G with algebra Y) such that § is an associative
subalgebra of . Then H is the canonical _J-Lie group of §.

Proof. By Proposition 2.8, H is a connected affine submanifold of G.
G is affinely diffeomorphic to a domain in an n-dimensional affine space A”.
Thus, H is a connected affine submanifold of A” and hence H is a domain in an
affine subspace of A”. By Proposition 4.3, H is the canonical _-Lie group
with §. Q.E.D.

Corollary. Let H be a connected Lie group with Lie algebra Y acting on
an affine space A" affinely and effectively. If the Lie algebra Y of vector fields
on A" induced by Y) is an associative subalgebra of aut (A”), then H is the canonical
A-Lie group with .
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Proof. Let G be the connected component of Aut(A4”). Then G is the
canonical (A-Lie group with the algebra g of Aut (4”). The action of H on 4"
defines an embedding of H into G and furthermore the condition that %’ is an
associative subalgebra of aut (A4™) implies that § is an associative subalgebra of
g. It follows from Proposition 4.4 that H is the canonical _4-Lie group with .

Q.E.D.

Let (g, a) be an A-pair of algebras and G the canonical _4-Lie group of
g; G=(G*,Cc G*=(g)*N(e+g). Let A be GN(e+a). A isa subgroup of G.

Clearly A4 is a closed subgroup of G whose Lie algebra is a under the
identification of g and the Lie algebra of G. Therefore (G, A4) is an (A-pair of
groups with algebras (g, a), which is called the canonical A-pair of groups with
(g, @). Let ¢ be the canonical affine imbedding of G into the affine subspace
e+g of §, and ¢ the canonical affine representation of G on e+4g in Theorem 4.2
such that ¢(g,g,)=9(g,)-«(g,) for g;&G. We show that the affine representation
@ of G induces an affine representation of G on the affine space [¢]4-g/a, where
[e]+g/a denotes the affine subspace of §/a through [e] associated to the vector
subspace g/a of §/a. Let g=e+ZeGCe+gand Xeg. Then

Pg)e+ X+a) = e+ Z+X+Z-X+a = (p(g)e+ X)) +a

since a is a left ideal of g. Therefore we have a unique affine automorphism,
denoted by the same letter @(g), of [¢]4-g/a such that

et+g —= etg C §
o(8) l
[e]+g/a?£2[e]+g/acg/a

is commutative. Clearly @ is an affine representation of G on the affine subspace
[e]-+g/a of §/a.

Through the above representation @ of G, G acts on [e]+g/a affinely.
Suppose g=e+Z=GCe+g and @(g)le]=[e]. Then [e4+Z]=[e] and hence
Zea. Therefore the isotropy subgroup of G at [e] is G\ (e+a), which is,
by definition, A. Thus, we have an injective mapping ¢ of G/A into
[e]+ g/a such that

Ugd) = p(g)le]  forgeG.

Since @(g)[e]=[p(g)e]=[c(g)] for g= G, we have the following commutative
diagram:

G > etg cCg

G/A ——[e]1glacqa.
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Therefore the inclusion of an f-space G/4 into [e]+g/a is an affine mapping.

Theorem 4.5. Let (G, A) be the canonical A-pair of groups with algebra
(a, a). Then we have an affine diffeomorphism o of the A-space G[A onto a
domain in the affine space [e]+g/a and an affine representation @ of G on [e]4-g/a
such that for ac G, gAd=G|A4,

(To(g4)) = p(a)-(g4) -
Moreover (g, a) is effective if and only if G acts on G|A effectively.

Proof. To complete the theorem, we prove the last assertion. Suppose
(g, a) is effective. Let g=e+X&GCe+gsuch that gad=aA forallad=G/A.
Since A=GN(e+a) and a is a left ideal of g, aA=GN(a+a) for acG.
Thus, GN{(ga+a)=GN(a+a), and hence gat+a=a-+g since G is an open
subset of e4-g. Thus Xacsa for any acG. Hence X=a and Xgca. Since
ais aleft ideal of gand X=a, X-g+g+X-gis a two sided ideal of g contained in
a. Since (g, a) is effective, X -g=(0) and hence R-X+}g-X is a two sided ideal
contained in g. 'Therefore by the effectiveness of (g, a), X=0and g=e. This
proves the effectiveness of the action of G on G/4. The converse is trivial.

Q.E.D.

If (G, A) is a canonical f-pair of groups with (g, a), then by Theorem
3.5 the A-space G/A is affinely diffeomorphic to a domain in an affine space.
This A-space G/A4 is called the A-domain of (g, a) and is denoted by Qcg,0

The following proposition gives a sufficient condition for an /-space to be
an  A-domain.

Proposition 4.6. Let (G, A) be an JA-pair of groups with algebras (g, a)
such that G is connected. If the JA-space is affinely diffeomorphic to a domain in
an affine space, then G[A is affinely diffeomorphic to the A-domain of (g, a).
Furthermore if G acts on G|A effectively, then (G, A) is the canonical A-pair of
(9, ).

Proof. Let (G,, 4,) be the canonical A-pair of (g, a), and G the simply
connected /A-Lie group with algebra g, and 4 the connected Lie subgroup
of G with algebra a. Then (G, 4) is an -pair of groups with algebras (g, a)
since 4 is a closed subgroup of G by the corollary to Proposition 2.9. Let p
and p, be the covering projections of G onto G and G, respectively. Then p
and p, induce affine mappings of G/4 onto G/4 and G,/A,, respectively, which
are covering projections. By Proposition 1.1, we have an affine diffeomorphism
o of G/A4 onto G,/4, since p and p, are affine immersions of a simply connected
affine manifold G/4 into an affine space. Therefore G/4 is affinely diffeomorphic
to the /-domain G,/4, of (g, a). Assume G acts on G/4 effectively and G/4 is
affinely diffeomorphic to a domain D in an affine space 4. We identify G/4
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with D. The action of G on G/A4 is uniquely extended to that of G on A" since
G/A is a domain in A”. Clearly the action of G on A™ is effective. Since G/4
is an A-space, the condition in the corollary to Proposition 4.4 is satisfied and
hence G is the canonical (4-Lie group with g. By a method similar to that
of the proof for the first assertion, we can show that (G, A4) is the canonical (4-
pair of groups with (g, a). Q.E.D.

The following proposition gives us a sufficient condition for an affinely
homogeneous domain in A" to be an /4-domain.

Proposition 4.7. Suppose a connected Lie group G acts on a domain D in
A" affinely, transitively and effectively. Let A be an isotropy subgroup of G at a
point in D. If the Lie algebra g’ of vector fields on D induced by g is an associative
subalgebra of aut (D), the (g, a) is an A-pair of algebras and (G, A) is the
canonical A-pair of (g, a) and hence D=G|A is an A-domain of (g, a).

Proof. By Proposition 2.3, (g, a) 1s an f-pair of algebras and the last
assertion follows from Proposition 4.6. Q.E.D.

For later use, we state the following proposition. The proof, which is not
shown here, is straightforward.

Proposition 4.8. Let (G, A) be the canonical J-pair of groups of (g, a),
and 1 a two sided ideal of g contained in a. If (G, N) denotes the canonical
A-pair of groups of (g, 1), then N is a normal subgroup of G, and (G|N, A|N) is
the canonical A-pair of groups of (g/n, a/n), and Q,a, is affinely diffeomorphic to
Qegm,am.

5. The determination of _/-domains

In this section Fdenotes a division algebra over R. Thatis, Fis R, C or H.

Let g be an _4-Lie algebra over R whose underlying associative algebra is
simple. Then g is isomorphic to gl(z; F) for some n and the canonical -
Lie group of g is the topological component of GL(n; F). GL(n; R) denotes
the topological component of GL(n; R). Let a be a left ideal. By Lemma
3.2, without loss of generality we may assume that g=gl(n; F) and a=a,(n; F).
Let 4,(n; F)be GL(n: F)N(1,+a,(n; F)) where 1, denotes the identity matrix.
Then the Lie algebra of 4,(n; F) is a,(n; F). And moreover (GL*(n; R),
A,"(n; R)), (GL(n; C), A,(n; C)) and (GL(n; H), A,(n; H)) are the canonical
A-pairs of groups of (g, a) if F=R, C and H respectively, where 4,"(n; R)
=A,(n; RYNGL*(n; R). Let V,(F")denote the homogeneous space GL(n; F)/
A,(n; F), which is called the F-Stiefel manifold. We note that GL*(n; R)/
A, (n; R)=V,(R") (rn). Therefore the F-Stiefel manifold V,(F") s the
A-domain of (gl(n; F), a,(n; F)). It follows from Theorem 4.5 that the -
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domain V. (F*) is affinely imebdded in an affine space F"* as follows: for
a=(a})eGL(n; F)

V,(F”) . 3 Fr.1
w w
amod 4,(n; F)— (az.

1§i§n>
J

1<i<y

We have the following assertion.

Theorem 5.1. If (g, a) is an A-pair of algebras and if g is a semi-simple
associative algebra, then the A-domain of (g, a) is a direct product of Stiefel
manifolds.

Let g be a semi-simple associative algebra over R. Then g can be decom-
posed as follows:

g= 8,8, (direct sum)

where 8, is a direct sum of gl(1; R) and no simple factor of 3,is gl(1; R). Leta
be a left ideal and a=a,Pa, the corresponding decomposition of a. Then if
Qeg, a5 15 convex, then 8,=a, and Qg,a; s affinely diffeomorphic to a direct product
of half lines. And Qg,0a, 1s not complete if g==a.

Let g be an J{-Lie algebra over R whose underlying associative algebra
is nilpotent. § denotes the trivial extension of g by adding e. Using the
notation in §4, we have the following:

Lemam 5.2. e+g=G™ if the assosiative algebra g is nilpotent.

Proof. By the definition of G¥*, e+g>DG*. Let e+ Xce+qg. Since X
is a nilpotent element, kzzo(—l)ka is a finite sum, which is in e4g. (e+X)
(’,ZZO (—1)eX*)=e. Thus e+-Xe=g*. Hence we have e+gCg*N (e+g)=G*.

Q.E.D.

The following assertion follows from Lemma 5.2 and Theorem 4.2.

Theorem 5.3. Let (g, a) be an A-pair of algebras such that g is a nilpotent
associative algebra. Then the J-domain of (g, a) is affinely diffeomorphic to an
affine space.

Let (g, a) be an A-pair of algebras and r the radical of the associative
algebra g. Since ris a two sided ideal of the associative algebra g, (g, r) and
(g, a+1) are A-pairs of algebras. Let G denote the canonical A-Lie group
of g; G is the identity component of G*=§* N (e-+g) where § is the trivial exten-
sion of g by adding the identity e. We denote by 4 and R the Lie subgroups
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of G with algebras a and t respectievely such that (G, 4) and (G, R) are
the canonical (A-pairs of (g, a) and (g, t) respectively. That is, A=G N (e-+a)
and R=GN(e41). By Lemma 5.2, R=e-+1. Since R is a normal subgroup
of G, A-R is a subgroup of G. By the definition of 4 and R, 4:-R
=(G'N(e+a))-(e+1)=GN(e+a+1), and hence (G, A-R) is the canonical -
pair of (g, a+1). We have the following commutative diagram:

Qg0 = G[A—>[e]+g/a C§la
lA-R/A
Qg0 = G[A+-R—[e]+glatrCd/att

where the vertical mappings are the canonical projections and the horizontal
mappings are defined in §4. First we are concerned with the fibre of the fibre
bundle. The fibre 4+ R/A is an A-space, which is an affine submanifold of G/A4.
Since G/4 is a domain in an affine space, so is 4-R/A. On the other hand we
have the following commutative diagram:

R—— A4-R

RIRNA —>A-R/A

where the vertical mappings are the canonical projection and the above horizontal
is the inclusion. Since the inclusion of R into 4-R is an affine mapping, the
bijective mapping of R/RNA onto A-R/A is an affine diffeomorphism. It
follows from Theorem 5.3 that A-R/A4 is an affine space. Let us consider
Qq,a) and Qg,q+1, as domains in affine spaces [e]4-g/a and [e]+g/a+1 respec-
tively. Let p be the projection of [e]4g/a onto [e]4+g/a+Tt. Then g, a
=p 7 p({dg,0,) since each fibre of p is affinely diffeomorphic to an affine space
A-R/A. 1t follows easily that Qg a, is affinely diffeomorphic to the product
affine manifold Qg a+yX 4+ RJ/A. On the other hand r is a two sided ideal of
g and rca+r. By Proposition 4.8, Qg,a+r, is affinely diffeomorphic to
Qqr,a+rm.  Since g/t is a semi-simple associative algebra, by Theorem 5.1,
Qg a+xm 1s affinely diffeomorphic to a direct product of Stiefel manifolds.
Therefore we have the following:

Theorem 5.5. An A-domain of an A-pair of algebras is affinely diffeo-
morphic to a product of Stiefel manifolds and an affine space.

REMARK. Theorem 4.5 determines the underlying affine manifold of an
A-domain completely. That is to say, an _J-domain splits to Stiefel manifolds
and an affine space. However, in general the action of group does not split.
Namely, the description in Theorem 4.5 is not equivariant.
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6. Compact regular homogeneous affine manifolds

Theorem 6.1. Let D be a domain in A” and T a discrete group acting on
D properly discontinuously and freely as an affine transformation group. Suppose
M=T\D is a compact homogeneous affine manifold and let g=aut (M) and
a={Xcg|X,=0} (0 is a fixed point in M). Then

1) D is the A-domain Qy,a.
2y M is the A-space G|A,, where (G, A) is the canonical J-pair of (g, a)
and A, is a closed subgroup of G with algebra a and A, DA.

Proof. A linear mapping & of g into aut (D) is defined as follows: for
Xeg, o(X) is a unique vector field on D whose projection image is X.
Clearly o is well defined and injective. Then the image o(g) is an associative
subalgebra of aut (D). Let G be the connected Lie group generated by
{ExptX|Xe&o(g)}. G acts on D affinely, effectively and transitively. Hence
by Proposition 4.7, (G, 4) is the canonical J-pair of (g, a) and D={Q,q, where
A is the isotropy subgroup of G at 0. Since, for X &g, o(X) is T-invariant,
the action of G on D induces that of G on M=T\D. Let 4, be the isotropy
subgroup of G at 0. Then A,DA4 and M=G/A4,. Q.E.D.

Let (g, a) be an f-pair of algebras. Then it is easy to show that the
normalizer of a in the associative algebra g is equal to that of a in the Lie
algebra g, since a is a left ideal of the associative algebra g. We denote it by
ng(x). Let gbe the radical of the associative algebra g. Then g/t is a semi-simple
associative algebra over R, which is a direct sum of gi(n; F)(F=R, Cor H).
Then g/t=8 @8, where 8 is a direct sum of gl(1; R) and 8, contains no
gl(1; R) as a simple factor.

Lemma 6.2. Suppose (G, A) is the canonical A-pair of (g, a) and A, is a
closed subgroup of G with algebra a such that G| A, is compact. Then ng(a) D and
ng(a)/r D8,.

Proof. By definition, G is a topological component of an algebraic group
G*. Letting A*=G*N(e+q), Ng«(A*¥)DA,. Since A* is an algebraic sub-
group of G¥*, so is Ng«(A4*¥)=N. G*/N is compact. Therefore N contains a
maximal solvable irreducible real algebraic subgroup of G* [1]. In particular,
ng(a) Or. By a similar argument on G*/R* and N/R¥*, we can get ng(a)/t D8,
where R¥*=G*N (e+71). Q.E.D.

We recall that a convex or complete affine manifold is always regular.

Theorem 6.3. Let M be a compact convex homogeneous affine manifold.
Then M is an A-space G|T where G is the canonical _A-Lie group of g and is
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the topological component of an irreducible real triangulable algebraic group and T
is a discrete subgroup of G.

Proof. Since M is convex, M is regular and hence by Theorem 6.1,
M=G|A, where (G, A4) is the canonical _4-pair of (g, a) and 4, is a closed sub-
group of G with algebra a and 4,54. Moreover (g, a) is effective. Then M
is a quotient space of (g,a, by some discrete group. Then Q,q, is convex
and hence, so is Qg atty="Cqr,arrm.  Let g/t=38,P8, as before. By Lemma
6.2, ng(a) Ot and ng(a)/t>8,. On the other hand, since Qqn,a+1r, 1s convex,
at+r/rD8, by §5. Obviously ng(a)/tDa+1/t and hence ng(a)/xr D8PS, =g/t
and g=ng(a). Since (g, a) is effective, a must be trivial. Therefore 4, is a
discrete subgroup of G. Namely Qqa,=G is convex. Thus, G is the canonical
A-Lie group of g and the topological component of an irreducible real trian-
gulable algebraic group. Q.E.D.

As a corollary to Theorem 6.3, we can show the following theorem.

Theorem 6.4. Let M be a compact complete homogeneous affine manifold.
Then M is an J-space G|T where G is the canonical A-Lie group of g and g is
a nilpotent associative algebra and T is a discrete subgroup of G.

UnNiversiTY OF NOTRE DaME
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