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ON COMPACT OPERATORS ON SOME SPACES

RELATED TO MATRIX B(r, s)

Ivana Djolović

Abstract

Many sequence spaces arise from different concepts of summability. Recent
results obtained by Altay, Başar and Malkowsky [2] are related to strong
Cesàro summability and boundedness. They determined β−duals of the new
sequence spaces and characterized some classes of matrix transformations on
them. Here, we will present new results supplementing their research with the
characterization of classes of compact operators on those spaces.

1 Introduction

Denote by ω and φ the set of all complex and finite sequences x = (xk)∞k=0, re-
spectively. A Banach space X ⊂ ω is a BK space if each projection x 7→ xn on
the n–th coordinate is continuous. A BK space X ⊃ φ is said to have AK if
x[m] =

∑m
k=0 xke(k) → x (m →∞) for every sequence x = (xk)∞k=0 ∈ X. As usual,

let e and e(n) (n = 0, 1, . . . ) be the sequences with ek = 1 for all k, and e
(n)
n = 1

and e
(n)
k = 0 (k 6= n).

Let 1 ≤ p < ∞.The sets of strongly C1−summable to zero, strongly C1−summable
and strongly C1−bounded sequences, denoted by wp

0 , wp and wp
∞, respectively, are

defined and studied by Maddox [6]:

wp
0 =

{
x ∈ ω | lim

n→∞

(
1
n

n∑

k=1

|xk|p
)

= 0

}
,

wp = {x ∈ ω | x− ` · e ∈ wp
0 for some complex number `}
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and

wp
∞ =

{
x ∈ ω | sup

n

(
1
n

n∑

k=1

|xk|p
)

< ∞
}

For such defined spaces he obtained that all these spaces are BK with the norm

‖x‖ = sup
ν≥0


 1

2ν

2ν+1−1∑

k=2ν

|xk|p



1/p

,

wp
0 has AK, and every sequence x ∈wp has a unique representation

x = ` · e +
∞∑

k=1

(xk − ξ)e(k)

where ` is the strong limit of the sequence x.
For our work we need some additional well-known results and notations. So, let

us first recall that.
By (X,Y ) we denote the set of all matrices that map X into Y . B(X, Y ) denotes

the set of all bounded linear operators L : X → Y . If we denote by A = (ank)∞n,k=0

an infinite matrix with complex entries and by An its n-th row, we write

An(x) =
∞∑

k=0

ankxk and A(x) = (An(x))∞n=0;

then

A ∈ (X,Y ) if and only if An(x) converges for all x ∈ X and all n and A(x) ∈ Y.

Furthermore,

Xβ = {a ∈ ω |
∑

k

akxk converges for all x ∈ X}

denotes the β–dual of X. The set

XA = {a ∈ ω | A(x) ∈ X}.
is called the matrix domain of A in X. Specially, we are interested in matrix domains
of triangle. We say that T = (tnk)∞n,k=0 is a triangle if tnk = 0 for k > n and tnn 6= 0
(n = 0, 1, . . . ). Such matrix has inverse ([11, 1.4.8, p. 9], [1, Remark 22 (a), p. 22]).
Throughout, where it is necessary, we will write T for triangle, S for its inverse and
R transpose of S.

If X ⊃ φ is a BK space and a ∈ ω we write

‖a‖∗X = sup{|
∞∑

k=0

akxk| | ‖x‖ = 1}.
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2 Auxiliary results and motivation

In [3] authors studied matrix domains of triangles on mentioned spaces. Further,
in [2] they dealt with the special case, when the triangle is matrix 4 = (4nk)∞n,k=1

with such entries: 4nn = 1, 4n,n−1 = −1 and 4nk = 0 otherwise. Actually, in
such way they obtained and studied the spaces wp

0(4), wp(4)and wp
∞(4)which are

matrix domains of 4 in wp
0 , wp and wp

∞ respectively.
This motivated us to extend this research supplementing their research with the

characterization of classes of compact operators on those spaces. But not only this.
The idea is to generalize this replacing mentioned matrix 4 with new one, B(r, s)
(r 6= 0):

B(r, s) =




r 0 0 . . .
s r 0 . . .
0 s r . . .
...

...
...

. . .




It is obvious, that 4 can be obtained as special case of B(r, s) for r = 1 and s = −1.
Matrix B(r, s) is triangle, hence it has inverse, denote it by S = (snk)∞n,k=1. It is
easy to obtain that entries of this matrix are defined in this way:

snk =





(−s)n−k

rn−k+1 , 1 ≤ k ≤ n

0 , k > n.

Now, let us consider the sequence spaces wp
0(r, s), wp(r, s) and wp

∞(r, s) obtained
as matrix domain of B(r, s) in wp

0 , wp and wp
∞ respectively, that is, wp

0(r, s) =
(wp

0)B(r,s), wp(r, s) = (wp)B(r,s) and wp
∞(r, s) = (wp

∞)B(r,s).
The following result is important for the characterization of the classes (XT , Y )

where X is one of the strongly C1−summable or bounded sequences. Before we
give it, let us mention that we will write, as usual, l∞, c and c0 for the sets of all
bounded, convergent and null sequences.

Lemma 2.1. [3, Lemma 4.1] (a) Let X = wp
0 or X = wp

∞, and Y be an arbitrary
subset of ω. Then we have A ∈ (XT , Y ) if and only if Â ∈ (X,Y ) and W (n) ∈
(X, c0) for all n = 1, 2, . . . , where the matrix Â = (ânk)∞n,k=1 and the triangles

W (n) = (w(n)
mk)∞m,k=1 are defined by

ânk =
∞∑

j=k

anjsjk for all n, k ∈ IN

and

w
(n)
mk =

∞∑

j=m

anjsjk for 1 ≤ k ≤ m;

moreover, if A ∈ (XT , Y ) then we have
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Az = Â(Tz) for all z ∈ Z = XT .

(b) Let Y be an arbitrary linear subspace of ω. Then we have A ∈ (wp(T ), Y ) if
and only if

Â ∈ (wp
0 , Y ), W (n) ∈ (wp, c) for all n

and

Âe− (ρn)∞n=1 ∈ Y where ρn = lim
m→∞

m∑

k=1

w
(n)
mk for all n ∈IN;

moreover, if A ∈ (wp(T ), Y ) then we have

Az = Â(Tz)− ξ (ρn)∞n=1 for all z ∈ wp(T ), (2.1)

where ξ ∈ |C is the strong limit of z in wp(T ), that is

1
n

n∑

k=1

|Tkz − ξ|p = 0. (2.2)

Here, we will omit the part with the characterization of appropriate classes.
One can achieve that very easy using the previous theorem and result from [7]. The
conditions will be obtained putting T = B(r, s) and hence the following will be
used:

ânk =
∞∑

j=k

anj · (−s)j−k

rj−k+1
for all n, k ∈ IN; (2.3)

w
(n)
mk =

∞∑

j=m

anj · (−s)j−k

rj−k+1
for 1 ≤ k ≤ m; (2.4)

So, throughout, we will suppose that necessary and sufficient conditions are
obtained, that is, we have the characterizations of appropriate classes of matrix
transformations. It is well-known that if X and Y are BK spaces, then (X, Y ) ⊂
B(X, Y ), that is, every A ∈ (X, Y ) defines a linear operator LA ∈ B(X, Y ) where
LA(x) = Ax (x ∈ X) ([8, Theorem 1.23]; [11, Theorem 4.2.8]). Also, very im-
portant result for the characterizations of matrix transformations between sequence
spaces is the following one.

Lemma 2.2. Let X be a BK space and Y be any of the spaces c0, c or `∞. If
A ∈ (X, Y ) then

‖LA‖ = ‖A‖(X,∞) = sup
n
‖An‖∗X < ∞ ([8, Theorem 1.23]). (2.5)

Considering ”the nature” of the sequence spaces which are the subject of our
paper, the next result will be of great importance.
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Proposition 2.3. ([3, Theorem 3.2 (d)]) We write maxν = max2ν≤k≤2ν+1−1 and∑
ν =

∑2ν+1−1
k=2ν for ν = 0, 1, . . . , and put Mp = {a ∈ ω | ‖a‖Mp

< ∞}, where

‖a‖Mp =





∞∑
ν=0

2ν maxν |ak| (p = 1)

∞∑
ν=0

2
ν
p (

∑
ν |ak|q)

1
q (1 < p < ∞; q = p/(p− 1)).

Let X = wp
0 or X = wp

∞. If a ∈ (XT )β then we have

‖a‖∗XT
= ‖Ra‖Mp

. (2.6)

If a ∈ (wp(T ))βthen

‖a‖∗wp(T ) = ‖Ra‖Mp
+ |η| where η = lim

m→∞

m∑

k=1

∞∑

j=m

ajsjk. (2.7)

In our case, for T = B(r, s), we obtain:

Ra = (Rka)∞k=0 =




∞∑

j=k

aj
(−s)j−k

rj−k+1



∞

k=0

3 Compact operators and Hausdorff measure of
noncompactness

The final goal we want to achieve in this paper is characterization of some subclasses
of compact operators in terms of conditions for the entries of appropriate infinite
matrix. That can be achieved applying the Hausdorff measure of noncompactness.

Here, we will recall some basic definitions and results. More results about mea-
sures of noncompactness can be found in [8, 10].

Let X and Y be Banach spaces. A linear operator L : X → Y is called com-
pact if its domain is all of X and for every bounded sequence (xn)∞n=0 in X, the
sequence (L(xn))∞n=0 has a convergent subsequence in Y . We denote the class of
such operators by K(X,Y ).

Definition 3.1. Let (X, d) be a metric space, Q ∈ MX and B(x, r) = {y ∈ X |
d(x, y) < r}. Then the Hausdorff measure of noncompactness of Q, denoted by
χ(Q), is defined by

χ(Q) = inf{ε > 0 | Q ⊂
n⋃

i=1

B(xi, ri), xi ∈ X, ri < ε (i = 1, . . . , n), n ∈ IN};

the function χ is called the Hausdorff measure of noncompactness.
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If Q,Q1 and Q2 are bounded subsets of the metric space (X, d), then we have

χ(Q) = 0 if and only if Q is a totally bounded set,

χ(Q) = χ(Q),

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2),

χ(Q1 ∪Q2) = max{χ(Q1), χ(Q2)}
and

χ(Q1 ∩Q2) ≤ min{χ(Q1), χ(Q2)}.
If Q,Q1 and Q2 are bounded subsets of the normed space X, then we have

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),

χ(Q + x) = χ(Q) (x ∈ X)

and
χ(λQ) = |λ|χ(Q) for all λ ∈ |C.

Definition 3.2. Let X and Y be Banach spaces and χ1 and χ2 be Hausdorff
measures on X and Y . Then the operator L : X → Y is called (χ1, χ2)− bounded
if L(Q) is bounded subset of Y for every bounded subset Q of X and there exists
a positive constant K such that χ2(L(Q)) ≤ Kχ1(Q) for every bounded subset Q
of X. If an operator L is (χ1, χ2)− bounded then the number‖L‖(χ1,χ2) = inf{K >
0 | χ2(L(Q)) ≤ Kχ1(Q) for all bounded Q ⊂ X} is called (χ1, χ2)- measure of
noncompactness of L. In particular, if χ1 = χ2 = χ, then we write ‖L‖(χ,χ) = ‖L‖χ.

Lemma 3.3. Let X and Y be Banach spaces and L ∈ B(X, Y ). Then we have

‖L‖χ = χ(L(B̄X)) = χ(L(SX)) ([8, Theorem 2.25]); (3.1)

L ∈ K(X, Y ) if anf only if ‖L‖χ = 0 ([8, Corollary 2.26 (2.58)]); (3.2)

‖L‖χ ≤ ‖L‖ ([8, Corollary 2.26 (2.59)]). (3.3)

Lemma 3.4 (Goldenštein, Gohberg, Markus). ([8, Theorem 2.23]) Let X be a
Banach space with Schauder basis (bn)∞n=0, Q ∈ MX , and Pn : X → X be the
projector onto the linear span of {b1, b2, ..., bn}. Then we have

1
a

lim sup
n→∞

(
sup
x∈Q

‖(I − Pn)(x)‖
)
≤ χ(Q) ≤ lim sup

n→∞

(
sup
x∈Q

‖(I − Pn)(x)‖
)

, (3.4)

where a = lim supn→∞ ‖I − Pn‖.
Lemma 3.5. ([10, Theorem 2.8.]) Let Q be a bounded subset of the normed space X,
where X is lp for 1 ≤ p < ∞ or c0. If Pn : X → X is the operator defined by Pn(x) =
x[n] for x = (xk)∞k=0 ∈ X, then we have χ(Q) = limn→∞(supx∈Q ‖(I − Pn)(x)‖).
(x[n] =

∑n
k=1 xke(k))



On Compact Operators on Some Spaces Related to Matrix B(r, s) 47

Lemma 3.6. ([4, Theorem 3.4]) Let X be a BK space with AK. Then every oper-
ator L ∈ B(X, c) can be represented by an infinite complex matrix A = (ank)∞n,k=1

such that (L(x))n = Anx =
∑∞

k=1 ankxk for all n and all x ∈ X. The Hausdorff
measure of noncompactness of L satisfies

1
2
· lim sup

r→∞

(
sup
n≥r

‖An − α‖∗X
)
≤ ‖L‖χ ≤ lim sup

r→∞

(
sup
n≥r

‖An − α‖∗X
)

(3.5)

where
αk = lim

k→∞
ank for every k and α = (αk)∞k=1. (3.6)

4 Main results

Finally, our main goal is characterization of certain subclasses of compact operator.
We will consider the class (X, Y ) where X is one of the spaces wp

0(r, s), wp
∞(r, s)

or wp(r, s), and Y is one of the classical sequence spaces c0, `∞ or c. According
to the space X and the fact that wp

0(r, s) and wp
∞(r, s) have the same β−duals

(Proposotion 2.3, (2.6)), we will distinguish two cases and attempt to define the
class K(X, Y ).

Theorem 4.1. Let X be one of the spaces wp
0(r, s) or wp

∞(r, s) and set for m =
1, 2, . . .

‖A<m>‖ =





sup
n>m

(
∞∑

ν=0
2ν maxν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣

)
(p = 1)

sup
n>m


 ∞∑

ν=0
2

ν
p

(
∑

ν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣

q) 1
q


 (1 < p < ∞)

(4.1)

and

‖A<m>
c ‖ =





sup
n>m

(
∞∑

ν=0
2ν maxν

∣∣∣∣∣
∞∑

j=k

anj · (−s)j−k

rj−k+1 − α̂k

∣∣∣∣∣

)
(p = 1)

sup
n>m


 ∞∑

ν=0
2

ν
p

(
∑

ν

∣∣∣∣∣
∞∑

j=k

anj · (−s)j−k

rj−k+1 − α̂k

∣∣∣∣∣

q) 1
q


 (1 < p < ∞),

(4.2)

where α̂k = lim
n→∞

∞∑
j=k

anj · (−s)j−k

rj−k+1 (k = 1, 2, . . . ).

(a) If A ∈ (X, c0) then we have

‖LA‖χ = lim
m→∞

‖A<m>‖. (4.3)

(b) If A ∈ (X, `∞) then we have

0 ≤ ‖LA‖χ ≤ lim
m→∞

‖A<m>‖. (4.4)
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(c) If A ∈ (X, c) then we have

1
2

lim
m→∞

(‖A<m>
c ‖) ≤ ‖LA‖χ ≤ lim

m→∞
(‖A<m>

c ‖) (4.5)

Proof. (a) Applying Lemmas 3.3 and 3.5, we have

‖LA‖χ = χ(LA(B̄X)) = lim
m→∞

[
sup

x∈B̄X

‖(I − Pm)(Ax)‖
]

(4.6)

where Pm : c0 → c0 (m = 0, 1, . . .) is the projector such that Pm(x) = x[m] for
x = (xk)∞k=0 ∈ c0. Let A[m] = (ānk)∞n,k=0 be the infinite matrix with

ānk =





0 (0 ≤ n ≤ m)

ank (n > m)
.

Since A[m] ∈ (X, c0), hence A
[m]
n ∈ Xβ , we obtain by Lemmas 2.2 and Proposition

2.3

‖A[m]
n ‖∗X = ‖RA[m]

n ‖Mp =





∞∑
ν=0

2νmaxν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣ (p = 1)

∞∑
ν=0

2
ν
p

(
∑

ν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣

q) 1
q

(1 < p < ∞)

(4.7)
Hence, we conclude

sup
x∈B̄X

‖(I − Pm)(Ax)‖ = ‖LA[m]‖ = sup
n>m

‖A[m]
n ‖∗X = ‖A<m>‖. (4.8)

Now (4.3) follows from (4.6) and (4.8).
(b) Lemma 3.6 is of great importance for this part. Let A ∈ (wp

0(r, s), c). Then
it follows by Lemma 2.1 that Â ∈ (wp

0 , c). Now, knowing that wp
0 is BK space with

AK, by (Lemma 4.1, [9]) we have that ‖LA‖χ = ‖LÂ‖χ. Now, applying Theorem
3.6, we obtain

1
2
· lim sup

m→∞

(
sup
n≥m

‖Ân − α̂‖∗wp
0

)
≤ ‖LA‖χ = ‖LÂ‖χ ≤ lim sup

m→∞

(
sup
n≥m

‖Ân − α̂‖∗wp
0

)
.

(4.9)
Further, applying (Lemma 1, [7]), we obtain the following:

‖Ân − α̂‖∗wp
0

=





∞∑
ν=0

2ν maxν

∣∣∣∣∣
∞∑

j=k

anj · (−s)j−k

rj−k+1 − α̂k

∣∣∣∣∣ (p = 1)

∞∑
ν=0

2
ν
p

(
∑

ν

∣∣∣∣∣
∞∑

j=k

anj · (−s)j−k

rj−k+1 − α̂k

∣∣∣∣∣

q) 1
q

(1 < p < ∞),

.

(4.10)
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This implies (4.5). Let us consider the case A ∈ (wp
∞(r, s), c). We know that

wp
0(r, s) ⊂ wp

∞(r, s), so the fact that A ∈ (wp
∞(r, s), c) implies A ∈ (wp

0(r, s), c) and
the inequalities in (4.5) follows immediately.

(c) Now, let us suppose that A ∈ (X, `∞) and define the projector Pm : `∞ → `∞
(m = 0, 1, . . .) by Pm(x) = x[m] for x = (xk)∞k=0 ∈ `∞. Also, let A[m] = (ānk)∞n,k=0

be the infinite matrix defined in a way as above. It is obvious that A[m] ∈ (X, `∞)
if X is one of the spaces . Since LA(B̄X) ⊂ Pm(LA(B̄X)) + (I − Pm)(LA(B̄X)), it
follows that

χ(LA(B̄X)) ≤ χ(Pm(LA(B̄X))) + χ((I − Pm)(LA(B̄X))) = χ((I − Pm)(LA(B̄X)))

≤ sup
x∈B̄X

‖(I − Pm)(Ax)‖ = ‖LA[m]‖ = sup
n>m

‖A[m]
n ‖∗X = sup

n>m
‖RA[m]

n ‖Mp .

Since 0 ≤ ‖LA‖χ = χ(LA(B̄X)) ≤ sup
n>m

‖RA
[m]
n ‖Mp , the proof is completed.

Corollary 4.2. (a) If A ∈ (wp
0(r, s), c0) or A ∈ (wp

∞(r, s), c0), then LA is compact
if and only if

lim
m→∞

‖A<m>‖ = 0 (4.11)

with ‖A<m>‖ defined in (4.1).
(b) If A ∈ (wp

0(r, s), `∞) or A ∈ (wp
∞(r, s), `∞), then the condition in (4.11) is

sufficient for LA to be compact.
(c)If A ∈ (wp

0(r, s), c) or A ∈ (wp
∞(r, s), c), then LA is compact if and only if

lim
m→∞

‖A<m>
c ‖ = 0 (4.12)

with ‖A<m>
c ‖ defined in (4.2).

Proof. This is an immediate consequence of Theorem 4.1 and (3.2).

Theorem 4.3. Set for r = 1, 2, . . .

‖B<r>‖ =





sup
n>r

(
∞∑

ν=0
2ν maxν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣ + |ηn|
)

(p = 1)

sup
n>r


 ∞∑

ν=0
2

ν
p

(
∑

ν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣

q) 1
q

+ |ηn|

 (1 < p < ∞)

(4.13)
where

ηn = lim
m→∞

m∑

k=1

∞∑

j=m

anj
(−s)j−k

rj−k+1
for n = 1, 2, . . . . (4.14)

(a) If A ∈ (wp(r, s), c0) then we have

‖LA‖χ = lim
r→∞

‖B<r>‖. (4.15)
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(b) If A ∈ (wp(r, s), `∞) then we have

0 ≤ ‖LA‖χ ≤ lim
r→∞

‖B<r>‖. (4.16)

Proof. The proof can be done exactly in the same way as in Theorem 4.1 . The only

difference which will be used through the proof is: ‖A[r]
n ‖∗wp(r,s) =

∞∑
ν=0

2ν maxν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣+

|ηn| for p = 1 or ‖A[r]
n ‖∗wp(r,s) =

∞∑
ν=0

2
ν
p

(
∑

ν

∣∣∣∣∣
∞∑

j=k

anj
(−s)j−k

rj−k+1

∣∣∣∣∣

q) 1
q

+ |ηn| for 1 < p <

∞ where ηn = lim
m→∞

m∑
k=1

∞∑
j=m

anj
(−s)j−k

rj−k+1 for n = 1, 2, . . . .

Corollary 4.4. (a) If A ∈ (wp(r, s), c0) then LA is compact if and only if

lim
r→∞

‖B<r>‖ = 0 (4.17)

with ‖B<r>‖ defined in (4.13).
(b) If A ∈ (wp(r, s), `∞), then the condition in (4.17) is sufficient for LA to be
compact.

Proof. This is an immediate consequence of Theorem 4.3 and (3.2).

Remark 4.5. It is obvious that it is remains to consider the case A ∈ (wp(r, s), c).
This technique is not as simply as the previous which are represented. One can try
to prove this in the same way as in [4, Theorem 3.7] or use the result [5, Theorem
2.8].

References

[1] R. C. Cooke, Infinite Matrices and Sequence Spaces, MacMillan and Co. Ltd,
London, 1950.
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[10] V. Rakočević, Measures of noncompactness and some applications, Filomat,
1998, 12 , 87–120.

[11] A. Wilansky, Summability Through Functional Analysis, North-Holland Math-
ematics Studies 85, Amsterdam, 1984.

Technical Faculty, University of Belgrade, VJ 12, 19210 Bor, Serbia
E-mail: zucko@nadlanu.com


