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Abstract—We study some properties of a reduced semigroup C∗-algebra of a semigroup S. For
the semigroup C∗-algebra generated by the deformation of the algebra of continuous functions on
a compact abelian group we obtain a structure of a compact quantum semigroup. We also consider
morphisms of constructed compact quantum semigroups.
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1. Introduction. There exist two different approaches to quantization, namely, the algebraic and
topological ones. The first of them (proposed by V. G. Drinfeld [1]) implies the deformation of universal
enveloping algebras. The second approach (proposed later by S. L. Woronowicz [2]) is related to the
theory of compact quantum groups and semigroups. In [3] one has proved that these two approaches
are equivalent. Let us illustrate the quantization process in the framework of the theory of C∗-algebras.

Let P be a compact semigroup, i.e., a compact Hausdorff space with a continuous associative
operation (x, y) → xy. Denote by C(P ) the algebra of continuous functions on P . Then C(P ) is
a commutative unital C∗-algebra which contains all topological information on the space P . Let us
identify C(P × P ) and C(P ) ⊗ C(P ), and define a map ∆ : C(P ) → C(P ) ⊗ C(P ) as follows:

∆(f)(x, y) = f(xy).

Evidently, ∆ is a continuous unital ∗-homomorphism. The associativity of multiplication in P consists
in the so-called co-associativity condition for ∆, namely,

(∆ ⊗ id)∆ = (id ⊗ ∆)∆.

Thus, all information on the compact semigroup P is contained in the pair (C(P ),∆).
Now, conversely, let A be some commutative unital C∗-algebra. Then by the Gelfand theorem, A is

isomorphic to the algebra of continuous functions C(P ) on some compact Hausdorff space P . If onA an
∗-homomorphism ∆ : A→ A⊗A satisfying the co-associativity condition is given, then the equality
f(xy) = ∆(f)(x, y) defines a semigroup structure on P .

In essence, a quantization results in the transfer from the commutative algebra C(P ) to the
noncommutative unital C∗-algebra A. We can treat A as the algebra of continuous functions on some
imaginary compact geometric object, which is said to be a quantum space.

A unital ∗-homomorphism ∆ : A → A⊗A satisfying the co-associativity condition is called the co-
product. Analogously to the classical case, ∆ turns a quantum space into a quantum semigroup. Then
the algebra A with a (given on it) co-product is the algebra of functions on a quantum semigroup.
The pair (A,∆) is usually called a compact quantum semigroup [4]. See [5] for an example of a compact
quantum semigroup on a noncommutative C∗-algebra. Such objects were also studied by K. Kawamura
[6].
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