On Compact Quantum Semigroup QS_{red}

M. A. Aukhadiev^{*}, **S. A. Grigoryan**^{**}, and **E. V. Lipacheva**^{***} (Submitted by D.Kh. Mushtari)

Kazan State Power Engineering University, ul. Krasnosel'skaya 51, Kazan, 420066 Russia

Received February 22, 2013

Abstract—We study some properties of a reduced semigroup C^* -algebra of a semigroup S. For the semigroup C^* -algebra generated by the deformation of the algebra of continuous functions on a compact abelian group we obtain a structure of a compact quantum semigroup. We also consider morphisms of constructed compact quantum semigroups.

DOI: 10.3103/S1066369X1310006X

Keywords and phrases: C^* -algebra, compact quantum semigroup, isometric representation, morphisms of quantum semigroups.

1. Introduction. There exist two different approaches to quantization, namely, the algebraic and topological ones. The first of them (proposed by V. G. Drinfeld [1]) implies the deformation of universal enveloping algebras. The second approach (proposed later by S. L. Woronowicz [2]) is related to the theory of compact quantum groups and semigroups. In [3] one has proved that these two approaches are equivalent. Let us illustrate the quantization process in the framework of the theory of C^* -algebras.

Let *P* be a compact semigroup, i.e., a compact Hausdorff space with a continuous associative operation $(x, y) \rightarrow xy$. Denote by C(P) the algebra of continuous functions on *P*. Then C(P) is a commutative unital *C*^{*}-algebra which contains all topological information on the space *P*. Let us identify $C(P \times P)$ and $C(P) \otimes C(P)$, and define a map $\Delta : C(P) \rightarrow C(P) \otimes C(P)$ as follows:

$$\Delta(f)(x,y) = f(xy).$$

Evidently, Δ is a continuous unital *-homomorphism. The associativity of multiplication in *P* consists in the so-called *co-associativity* condition for Δ , namely,

$$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$$

Thus, all information on the compact semigroup P is contained in the pair $(C(P), \Delta)$.

Now, conversely, let \mathcal{A} be some commutative unital C^* -algebra. Then by the Gelfand theorem, \mathcal{A} is isomorphic to the algebra of continuous functions C(P) on some compact Hausdorff space P. If on \mathcal{A} an *-homomorphism $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ satisfying the co-associativity condition is given, then the equality $f(xy) = \Delta(f)(x, y)$ defines a semigroup structure on P.

In essence, a quantization results in the transfer from the commutative algebra C(P) to the noncommutative unital C^* -algebra \mathcal{A} . We can treat \mathcal{A} as the algebra of continuous functions on some imaginary compact geometric object, which is said to be a *quantum space*.

A unital *-homomorphism $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ satisfying the co-associativity condition is called the *co-product*. Analogously to the classical case, Δ turns a quantum space into a quantum semigroup. Then the algebra \mathcal{A} with a (given on it) co-product is the *algebra of functions on a quantum semigroup*. The pair (\mathcal{A}, Δ) is usually called a *compact quantum semigroup* [4]. See [5] for an example of a compact quantum semigroup on a noncommutative C^* -algebra. Such objects were also studied by K. Kawamura [6].

^{*}E-mail:m.aukhadiev@gmail.com.

^{***}E-mail: gsuren@inbox.ru.

^{****}E-mail: elipacheva@gmail.com.