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ON COMPACT* SPACES AND COMPACTIFICATIONS

SERGIO SALBANY *

ABSTRACT.  The space  ßX of Z-ultrafilters on  X  with the standard

filter space topology is shown to be compact*.  Without considering the

reflection associated with compact* spaces, we also prove that products

of compact* spaces are compact*, in response to a request for a direct

proof.

Introduction.  Compact* spaces were defined by W. W. Comfort [2] as com-

pletely regular Hausdorff spaces  X for which every maximal ideal in  C (X)

is fixed.  He proved without the axiom of choice that every completely regu-

lar Hausdorff space  X can be densely C  -embedded in a compact* space  ßX

and deduced that products of compact* spaces are compact*.  The problem of

proving directly the productivity of compactness* was raised and left open.

In §1 of this note we establish a one-to-one correspondence between the

maximal ideals of  C (X)  and the Z-ultrafilters on  X without the axiom of

choice and show that X is compact* if and only if every Z-ultrafilter on X

converges.  We then have a topological method for the study of compactness*.

We use the above method to show in §2 that the space   ßX of Z-ultra-

filters on  X [3] is compact* and that the classical characterizations of ßX

[3] hold independently of the axiom of choice.

Finally, in §3 we prove directly that products of compact* spaces are

compact* and that closed subspaces of compact* spaces are compact*.  The

method of proof differs from that of §2 in that it involves a consideration of

maximal ideals in rings of real valued bounded continuous functions.  W. W.

Comfort's theorem referred to above is a consequence of the results of this

section.

An alternative construction of ßX has recently been given by R. E.

Chandler [l].
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Our standard reference is L. Gillman and M. Jerison's Rings of con-

tinuous functions [3]. D indicates the end of a proof.

We wish to thank two referees for pointing out a number of inaccuracies

in earlier versions of this paper and for their comments concerning the pre-

sentation.  We also want to thank Dr. K, Hardie for the many ways he has

helped our research.

1.  Alternative characterization of compactness*.  We  establish directly

a one-to-one correspondence between the maximal ideals of  C (X)(and CTX))

and the Z-ultrafilters on  X without the axiom of choice.  In what follows,

let  C denote  C*(X) or C(X).

Proposition 1. Let M be a maximal ideal in C. Let A(M) consist of

the nonempty zero sets Z such that inf |t7z| [Z] = 0 /07- all m in M. Then

A(M)  is a Z'ultrafilter on  X.

Proof.  It is clear that zero sets which contain a zero set in A = A(M)

ate also in  A.  Also, by definition of A, if Z £ A, then  Z intersects every

Z 5(772) = 17721   [0, 8], 772 £ M, 8 > 0.  Moreover, if  m £ M, then  Z 5(772) £ A  fot

every  8> 0.  Otherwise there is  772   £ M and S   > 0   such that  Z 4m) and-

Z^i(m')  are disjoint, but then  772    + (m ')    imin(S , (8') ) which is im-

possible since  M  contains no invertible elements.  We now show that A  is

a filter.  Suppose  ZQ, Zl  ate in  A, and that ZQC\Z.   is not in  A.  Then

there is  m£M and  ¿5 > 0  suchthat  Z„ O Z jO Z 5(772) =0.  Thus  ZQ   and

Z.O Z 5(772)  are disjoint zero sets, so there is  h: X —► [O, 2]   such that  h =

0  on  ZQ  and h = 2 on  Z ,C\ Z 5(772).  Now  h £ M, otherwise  2 = kh + m ', fot

some k £ C and 722 e M. Hence 772   = 2 on  ZQ, which is impossible since

then  Z,(m ) and  Zfl   would be disjoint, contradicting  Z„  £ A.  But now we

get that Z .(h)  is disjoint from  Z, n Z 5(772), which is not possible as  Z .(h)

OZjO Z 5(772) ̂> Zx^ Zk(h2 + m2), where  k = min {S2, 1 i, since  Zj  £ A  and

h2 + m2 £ M.  Thus  Z^Z,  e/t   if  Z^Zj e A.  Finally the Z-ultrafilter

property is an immediate consequence of the fact that Z 5(772) £ A  for all

772 £ M, and  8 > 0.  D

The inverse correspondence has a more straightforward proof which we

omit.

Proposition 2. Lei A be a Z-ultrafilter on X. Let M(A) consist of the

functions m in C such that inf jgTTz] [Z] = 0 for all g £ C and Z £ A. Then

M(A)   is a maximal ideal in  C.

It is interesting to note that it is the maximality of A   that ensures that
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M(A) is closed under addition.  Also, if  C = C (X), then M(A) consists of

those  »72 such that  inf |>72|[Z] = 0, for all  Z £ A.

The requirements of maximality in both propositions cannot be dropped

as shown in the following example.

Example.  Let  X = JO, ±1, ±2, • • • } have the discrete topology.

(a) Let Al be the ideal generated by /'(«) = 1/re. Then  }—1, -2, ••• ! and

il,2,- • • S are disjoint zero sets in  A(M).

(b) Let F be the filter generated by the sets  A    = \x £ X\x   ^ «   i.  Then

AI(F)  contains both functions  /, g given below but does not contain  f + g,

where /(«) = 1/«  if « > 0  and /(«) = 1   if « ¿ 0; g(n) = 1   if « i 0  and  g(n) =

\/n if « <0.

Proposition 3.  There is a one-to-one correspondence between the maxi-

mal ideals of C and the Z-ultrafilters on  X given by A1(A(A1)) = Al and

A(M(A)) = A.

If C = C(X), the above correspondence coincides with the Z-correspon-

dence in [3].

It is now simple to prove an alternative characterization of compactness*.

Again we omit the proof.

Proposition 4.   X  z's compact* if and only if every Z-ultrafilter on  X con-

verges.

2. Characterization of ßX. The following proposition is analogous to

Theorem 6.4 of [3] and serves as a preparation for the characterizations of

ßX given in Theorem 1.

Proposition 5.  Let T  be a topological space and X a subspace such

that every point of T is the limit of a Z-ultrafilter on  X.  The statements

(1) to (4) are equivalent and (A) implies (5).

(1) Every continuous map into a compact* space  Y has an extension to

a continuous map from  T into  Y.

(2) X  is C*-embedded in  T.

(3) Any two disjoint zero sets in X have disjoint closures in  T.

(A)  For any two zero sets Z ., Z 2   in  X, cXAZ ,dZA) = c\—Z , d cffZ  .

(5)  Every point p  of T  is the limit of a unique Z-ultrafilter A     in  X.

Proof.  It is clear that (1) =» (2) => (3)  without the axiom of choice.

(3) => (4): It follows from (3) that if A  is a Z-ultrafilter on  X which

converges to  p and if p £ cl_Z, then Z £ A.  Thus, if p £ cI^Zj d c\fZ2

then Zj, Z2 £ A, hence Z {d Z2 £ A, so that p £ cl^ZjH Z2). Thus (4)

is proved.
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It is clear that (4) —» (5).  We now prove that (3) => (1).  Let /: X—» Y

be continuous and suppose   Y is compact*.  Let  p £T and let  A     be the

unique Z-ultrafilter on  X which converges to  p.  Let    A  be the family of

zero sets  E CY which intersect every zero set  F such that f~[F] £ A   .

We show that    A  is a Z-ultrafilter.
P

Suppose  EQ, Ej £   A. If E„ n E l 4 bA, then there is  F suchthat

f~[F] £ A     and  EQn E^^n F = 0. Let h: Y —* [0, 2]  be such that h = 0  on

E0  and /> = 2 on  EjPi E. Now fT'[l, 2] n EQ =0, so /*""[**" [l, 2]] 4 A   ,

hence  /   \_K~ [0, l]] £ A   .  But then  E.   is disjoint from the zero set  F. =

h    [0, l] O E  and  f*~[F¡] eA, which is impossible.  Hence    A  is closed

under finite intersections.  It is simple to prove that    A  is in fact a Z-ultra-

filter.  Now   Y is compact* so    A  converges to a unique point,  / (p), say.

Thus / (p) is the only element of fïÎE|E £   A \. If x £ X, then x £

DiE|E £Af¡ and f(x)£ (\\F\F £   A \, otherwise there is F £   A  such that

f(x) 4 F so that there is a zero set  H which contains f(x) and is disjoint

from  F, but this is not possible since   F must intersect  H by definition of

A.  Thus f (x) = f(x), if x £ X. Finally, the continuity of / . Note that if

F  is a zero set in   Y which is not in   ..A, then by definition of  ^A, there is
P   \_ P

a zero set  E  disjoint from  F  such that  /   [E] £ A     and (3) implies

clTf~[E]C\ clTf   [F] =0, and we have remarked that p £ cl-./   [E], hence

p 4 d-rf   [F].  The proof that /   is continuous can now be completed as in

[31. □
Note.  The above proposition requires a more elaborate proof than that

of Theorem 6.4 of [3].  This is due to two factors.  Firstly we do not assume

T is completely regular, so the proof of (3) =>(4) in [3]  does not apply.

Secondly,we have not been able to prove that (5)=>(1) without the axiom of

choice.  However (5) does imply (1) under an added assumption on how  X is

embedded in   T, as shown in Proposition 6.

Proposition 6.  Let X  be dense in  T and such that if Z  is a zero set

in X and p £ clTZ, then there is a Z-ultrafilter on X which contains Z and

converges to p.   Then, any two disjoint zero sets in  X have disjoint clo-

sures in  T  if and only if every point of T  is the limit of a unique Z-ultra-

filter on X.

Proof.  The hypotheses of the theorem ensure that every point of  T is

the limit of a Z-ultrafilter on  X, so one implication has been proved in Prop-

osition 5.  Conversely, suppose  p £clTZ.  C^cAfZ...  Let A     be the unique

Z-ultrafilter on  X converging to  p.  By hypothesis, Zj  and Z2  ate both mem-

bers of AA, hence  Z,   and Z_,  are not disjoint.  D
p' 1 2 '
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Proposition 7. Let T be a topological space and X a subspace such

that every point of T is the limit of some Z-filter on X. If the sets clAZ,

Z a zero set in X, form a base for the closed sets of T and any of (1) to

(A) hold, then T is completely regular.

Proof.  Let  p £ T acid  FCTbea closed set not containing  p.  By hypoth-

esis   there   is   a zero set  Z  in  X  such that  F C cl_Z  and p 4 c\fZ. Hence

there is  Z,   £ A     such that  Z. d cl_Z =0.  Thus  Z , O Z = 0, so there is a

continuous map h: X —> [0, l]   such that  h = 0  on  Z  and  h = I  on  Z,.  But

X is C -embedded in  T so  h  has an extension  h   to  T.  Then  h = 1   on

clj.Z.   and h = 0  on  cl^-Z, proving complete regularity of  T, since  p £

clfZ,. □

Proposition 8.  // X  is C -embedded as a dense subspace of a complete-

ly regular space  T and every Z-ultrafilter on  X converges in  T, then every

Z-ultrafilter on  T  converges.

Proof.  Let A  be a Z-ultrafilter in  T.  Let A*   denote the family of zero

sets in  X which intersect every  Z <;(/) = |/|    [0, 5], where  Z(f) £ A.  The

proof that AQ  is a Z-ultrafilter on   X, is analogous to the proof that    A  is

a Z-ultrafilter in Proposition 5, (3) =*(1).  Let  p £ T be the limit of An.  It

is easy to see that A  also converges to  p. a

We can now prove that there is a *-compactification  ßX of  X, as in [3].

Theorem 1.  For every completely regular Hausdorff space X  there is a

compact* space ßX  containing X as a dense subspace with the following

equivalent properties.

(1) Every continuous map into a compact* space  Y has an extension to

a continuous map from ßX into Y.

(2) X  is C -embedded in  ßX.

(3) Any two disjoint zero sets in  X have disjoint closures in ßX.

(A)  For any two zero sets Z,, Z2  in X, clay(Z.n Z2) = cloy-Z.Ci

cl/3xZ2.

(5)  Every point p  of ßX  is the limit of a unique Z-untrafilter in  X, A   .

Proof.  Let  ßX be the set of all Z-ultrafilters on  X.  For each zero set

Z in  X, define  p £ Z if  Z £ p, where  p £ ßX. As  shown in [3], the sets

Z form a base for closed sets, cl oxZ = Z  and  el oyZ¡ d c\nAZ2 =

cl «v(Z2 d ZA).  By Propositions 5 and 6 it follows that  ßX has all the

properties (1) to (5) stated in the theorem and these properties are equiva-

lent. The proof that  ßX is Hausdorff is the same as in [3].  By Propositions

7 and 8 it follows that ßX is compact*.  □
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It is interesting to note that the characterizations of the maximal ideals

of  C (X)  and  C(X) using the points of  ßX (see [3]) also hold without the

axiom of choice.

3.  Products and closed subspaces of compact* spaces. In [2] W. W.

Comfort posed the problem of giving a direct proof that products of compact*

spaces are compact*.  We could give such a direct proof.  In fact our proof

shows that products of compact* spaces are compact* and that products of

realcompact spaces are realcompact all at once.  As before, let  C denote

C*(X) or  C(X).

Definition. A completely regular space is C-compact if every maximal

ideal  Al  such that  C/AI  is isomorphic to  R  is fixed.

Note that when  C = C(X), C-compact is identical  to  realcompact.

When   C = C (X),   C-compact and compact* are identical,   since C (X)/M

= R as shown by W. W. Comfort in [2].

Theorem 2.   Products of C-compact spaces are C-compact.

Proof. Suppose X. is C-compact for each  i in a set /. Let X = IIX..

Suppose  X is not empty and let  Al  be a maximal ideal in  C (= C (X)  or.

C(X)).  Let  n.: X —» X . denote the projection map and »7*: C.~* C, the in-

duced ring homomorphism (C . = C (X ) or  C(X .)).  Let  q denote the quo-

tient map  q: C —» C/M = R.  Then  q . = q ° 77* is a ring homomorphism from

C. onto R for each   i (note that  q .(c) = q(c) = c for all   c in  R).  Hence

Al. = q 7~ [O] = 77.    [Al]  is a maximal ideal in   C .. Since each  X. is C-com-

pact, it follows that there is an element  xQ  £ X such that  Al. = \f £ C \

¡(■nfxf)) = OS.  We  show  that   Al = {/ £ C\f(xQ) = 0 }, or  equivalently,

that q(f) = 0  iff j(xA = 0.   First observe that if f(xQ) f 0, then  /   + m is

invertible in  C for some m £ AI. For suppose / (x ) = 28 > 0, then there

are   open  sets     V.. in X .., ;' = 1, 2, • • • , «, such that x    £ V =\\irA[V,]
r z; z;'  ' '      ' '      ' U IJ        11

and f2 > 8 on   V.

Let  p..¿0  be such that  g . .(x . ) =0  and g.. = 1   off  V ■ , where  x ..=
°Z7 — °IJ     if °ii if 11

7T..(xA fixes  Al...  Then   p.. £ M .., hence  77* (g) = g ■■ °n .. £ Al.  Now the
If   0 7.7 °Z7 ij' ii °it       °'i        ll

function g = /   + Sg .. ° 77 .. is bounded away from zero, hence invertible in

C.  As a consequence, we have that  q(f) = 0   implies  f(xf) = 0.

For the converse implication, suppose  f(xA) = 0  and  q(f) fO.  Then

/ ¿ AI, so that  1 = kf + m for some  k £ C and some  m £ M.  Then  m(xQ) = 1.

By above there is m   £ M such that m   + m   is invertible in   C, which is impos-

sible.  D
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Proof.  Let A  be a closed subspace of  X and  i: A  —> X the injection

map.  There is an induced ring homomorphism  /: C„ —> C, (Cx = C(X)

or C (X), CA = C(A) or C (A), respectively) given by /(/) = / ° i.  Let M

be a maximal ideal in  C., and q the quotient map q: C. —► C./M = R.

Let p = q °j, then  p is a ring homomorphism onto  R  since  p(c) = c fot all

c £ R.  Hence  Mj = ker p = /*~[M]  is a maximal ideal in  C.,.   X is C-com-

pact so there is  x £ X such that M, = !/ e Cy|/(x) = 0!. Then x e A, other-

wise there is  tj: X —► [0, l], continuous, such that h(x) = 0, h = 1  on A.

But then  h eM,, so that  j(h) = h ° i £ M, which is impossible since  h °i =

1.   D

That the category of C-compact spaces is reflective now follows from

the general theory of reflections because this category is closed under tak-

ing products and closed subspaces.

REFERENCES

1. R. E. Chandler, An alternative construction of ßX and vX, Proc. Amer. Math.

Soc. 32(1972), 315-318.

2. W. W. Comfort, A theorem of Stone-Cech type, and a theorem of Tychonoff

type, without the axiom of choice; and their realcompact analogues,   Fund. Math

63(1968), 97-110. MR 38 #5174.

3. L. Gillman and M. Jerison,  Rings of continuous functions, Van Nostrand,

Princeton, N. J., 1960. MR 22 #6994.

4. J. F. Kennison, Reflective functors in general topology and elsewhere, Trans.

Amer. Math. Soc. 118 (1965), 303-315.  MR 30 #4812.

TOPOLOGY RESEARCH GROUP, UNIVERSITY OF CAPE TOWN, CAPE TOWN, SOUTH
AFRICA

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


