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ON COMPACT™* SPACES AND COMPACTIFICATIONS
SERGIO SALBANY !

ABSTRACT. The space BX of Z-ultrafilters on X with the standard
filter space topology is shown to be compact®. Without considering the
reflection associated with compact* spaces, we also prove that products
of compact® spaces are compact®, in response to a request for a direct
proof.

Introduction. Compact* spaces were defined by W. W. Comfort [2] as com-
pletely regular Hausdorff spaces X for which every maximal ideal in c*(x)
is fixed. He proved without the axiom of choice that every completely regu-
lar Hausdorff space X can be densely C*-embedded in a compact* space BX
and deduced that products of compact® spaces are compact* The problem of
proving directly the productivity of compactness* was raised and left open.

In §1 of this note we establish a one-to-one correspondence between the
maximal ideals of C*(X) and the Z-ultrafilters on X without the axiom of
choice and show that X is compact* if and only if every Z-ultrafilter on X
converges. We then have a topological method for the study of compactness*.

We use the above method to show in $2 that the space BX of Z-ultra-
filters on X [3] is compact* and that the classical characterizations of 8X
[3] hold independently of the axiom of choice.

Finally, in §3 we prove directly that products of compact* spaces are
compact* and that closed subspaces of compact* spaces are compact*. The
method of proof differs from that of $2 in that it involves a consideration of
maximal ideals in rings of real valued bounded continuous functions. W. W.
Comfort’s theorem referred to above is a consequence of the results of this
section.

An alternative construction of 8X has recently been given by R. E.
Chandler [1].
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Our standard reference is L. Gillman and M. Jerison’s Rings of con-
tinuous functions [3]. O indicates the end of a proof.

We wish to thank two referees for pointing out a number of inaccuracies
in earlier versions of this paper and for their comments concerning the pre-
sentation. We also want to thank Dr. K. Hardie for the many ways he has

helped our research.

1. Alternative characterization of compactness* We establish directly
a one-to-one correspondence between the maximal ideals of C*(X) (and A X))
and the Z-ultrafilters on X without the axiom of choice. In what follows,
let C denote C*(X) or C(X).

Proposition 1. Let M be a maximal ideal in C. Let A(M) consist of
the nonempty zero sets Z such that inf|m|[Z] =0 for all m in M. Then
A(M) is a Z-ultrafilter on X.

Proof. It is clear that zero sets which contain a zero set in A = A(M)
are also in A. Also, by definition of A, if Z € A, then Z intersects every
Z §(m) = |m|'—[0, 8], m €M, 8> 0. Moreover, if m € M, then Zg(m) € A for
every 6 > 0. Otherwise there is m' €M and 8'>0 such that Z (m) and
Zgsi(m') are disjoint, but then m? + (m')? 2 min(8%, (6')?) which is im-
possible since M contains no invertible elements. We now show that 4 is
a filter. Suppose Z, Z are in A, and that Z N Z | is not in A. Then
there is m € M and & > 0 such that zZ,NnzN Z(m) =g. Thus ZO and
Z N Z(m) are disjoint zero sets, so there is h: X — [0, 2] such that » =
Oon Z;and h=2on Z N Z {(m). Now h € M, otherwise 2 = kb + m", for

some k € C and m"e M. Hence m"=2 on Z,, which is impossible since

then Zl(m") and Z; would be disjoint, cont(;adicting Z, € A. But now we
get that Zl(h) is disjoint from Z1 N Zs(m), which is not possible as Zl(h)
NZ,NZm)>DZ N Z,e(b2 + m?), where k= min{8?, 1}, since Z, €A and
h? + m? €M. Thus Z,NZ, €A if Z;, Z, € A. Finally the Z-ultrafilter
property is an immediate consequence of the fact that Z (m) € A for all
m €M, and 6§>0. O

The inverse correspondence has a more straightforward proof which we

omit.

Proposition 2. Let A be a Z-ultrafilter on X. Let M(A) consist of the
functions m in C such that inf |gm|[Z] =0 forall g € C and Z € A. Then
M(A) is a maximal ideal in C.
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M(A) is closed under addition. Also, if C = C*(X), then M(A) consists of
those m such that inf |m|[Z] = 0, for all Z € A.

The requirements of maximality in both propositions cannot be dropped
as shown in the following example.

Example. Let X = {0, 1, 2, -+ have the discrete topology.

(a) Let M be the ideal generated by j(n) = 1/n. Then {-1, =2, ---} and
{1,2,- -+ } are disjoint zero sets in A(M).

(b) Let F be the filter generated by the sets A = {x € X|x2 > n?}. Then
M(F) contains both functions f, g given below but does not contain f + g,
where f(n) = 1/n if >0 and f(n) =1 if nL0; gm) =1 if n20 and gln) =
1/n if n<O0.

Proposition 3. There is a one-to-one correspondence between the maxi-
mal ideals of C and the Z-ultrafilters on X given by M(A(M)) = M and
A(M(A)) = A.

If C = C(X), the above correspondence coincides with the Z-correspon-
dence in [3].
It is now simple to prove an alternative characterization of compactness*.

Again we omit the proof.

Proposition 4. X is compact* if and only if every Z-ultrafilter on X con-

verges.

2. Characterization of B8X. The following proposition is analogous to
Theorem 6.4 of [3] and serves as a preparation for the characterizations of

BX given in Theorem 1.

Proposition 5. Let T be a topological space and X a subspace such
that every point of T is the limit of a Z-ultrafilter on X. The statements
(1) to (4) are equivalent and (4) implies (5).

(1) Every continuous map into a compact* space Y has an extension to
a continuous map from T into Y.

(2) X is C*embedded in T.

(3) Any two disjoint zero sets in X have disjoint closures in T.

(4) For any two zero sets Z, Z, in X, cl(Z N Z)=cl Z,Nncl.Z,.

(5) Every point p of T is the limit of a unique Z-ultrafilter Ap in X.

Proof. It is clear that (1) = (2) = (3) without the axiom of choice.
(3) = (4): It follows from (3) that if A is a Z-ultrafilter on X which
converges to p and if p €cl..Z, then Z €A. Thus, ifpeclpZyNecl Z,
Lichen ch/rPht Zt@cti@sAay Jﬂlﬁ/ﬂﬁﬁist&&o&ez?ﬁM,ansﬂg&h@t-teﬂs-é-@slT(Z lﬁ ZZ)' Thus (4)

is proved.
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It is clear that (4) = (5). We now prove that (3) =>(1). Let f: X— Y
be continuous and suppose Y is compact*. Let p €T and let Ap be the
unique Z-ultrafilter on X which converges to p. Let pA be the family of
zero sets E C Y which intersect every zero set F such that {7 [F] € Ap.
We show that pA is a Z-ultrafilter.

Suppose E, E,| € pA. If E)NE, 4 pA, then there is F such that
[TIFl €A, and EgN E;NF =g. Let h: Y — [0, 2] be such that 5 =0 on
Eyand h=2 on E;N F. Now b~ [1, 210 E =g, so [ [5[1,211 ¢ 4,
hence [~ [» [0, 1]] € A,. But then E, is disjoint from the zero set F, =
b [0, 11 nF and fb[Fl] EAD’ which is impossible. Hence pA is closed
under finite intersections. It is simple to prove that pA is in fact a Z-ultra-
filter. Now Y is compact® so A converges to a unique point, f(p), say.
Thus f(p) is the only element of n{F|F € pA l. If x € X, then x €
MEIE €A} and [(x)€ NWF|F € A}, otherwise there is F€ A such that
f(x) ¢ F so that there is a zero set H which contains f(x) and is disjoint
from F, but this is not possible since F must intersect H by definition of
A+ Thus f(x) = (%), if x € X. Finally, the continuity of /. Note that if
F is a zero set in Y which is not in pA, then by definition of pA, there is
a zero set E disjoint from F such that f [E] € Ap and (3) implies
cl fTLEIN cl/ [F] =&, and we have remarked that p € clT/*[E], hence
[ A clT/'_-[F]. The proof that [ is continuous can now be completed as in
3. o

Note. The above proposition requires a more elaborate proof than that
of Theorem 6.4 of [3]. This is due to two factors. Firstly we do not assume
T is completely regular, so the proof of (3) = (4) in [3] does not apply.
Secondly we have not been able to prove that (5)= (1) without the axiom of
choice. However (5) does imply (1) under an added assumption on how X is

embedded in T, as shown in Proposition 6.

Proposition 6. Let X be dense in T and such that if Z is a zero set
in X and p €cl,Z, then there is a Z-ultrafilter on X which contains Z and
converges to p. Then, any two disjoint zero sets in X have disjoint clo-
sures in T if and only if every point of T is the limit of a unique Z-ultra-
filter on X.

Proof. The hypotheses of the theorem ensure that every point of T is
the limit of a Z-ultrafilter on X, so one implication has been proved in Prop-
osition 5. Conversely, suppose p €cl.Z; Ncl,Z,. Let Ap be the unique
Z-ultrafilter on X converging to p. By hypothesis, Z; and Z, are both mem-
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Proposition 7. Let T be a topological space and X a subspace such
that every point of T is the limit of some Z-filter on X. If the sets cl. .Z,
Z a zero set in X, form a base for the closed sets of T and any of (1) to
(4) bold, then T is completely regular.

Proof. Let p € T and F C T be a closed set not containing p. By hypoth-
esis there is a zero set Z in X such that F Ccl, Z and p d cl..Z. Hence
there is Z, €Ap such that Z, ﬂclTZ =@. Thus Z N Z = &, so there is a
continuous map h: X — [0, 1] suchthat »=0 on Z and h=1 on Z,. But
X is Cembedded in T so b has an extension » to T. Then 5 =1 on
cl;Z, and h =0 on cl;Z, proving complete regularity of T, since p €
cl.Z,.o

Proposition 8. If X is C*embedded as a dense subspace of a complete-
ly regular space T and every Z-ultrafilter on X converges in T, then every

Z-ultrafilter on T converges.

Proof. Let A be a Z-ultrafilter in T. Let A, denote the family of zero
sets in X which intersect every Z(f) = |f|” [0, 8], where Z(f) € A. The
proof that A is a Z-ultrafilter on X, is analogous to the proof that pA is
a Z-ultrafilter in Proposition 5, (3) = (1). Let p € T be the limit of A;. It
is easy to see that A also converges to p. O

We can now prove that there is a *-compactification BX of X, as in [3].

Theorem 1. For every completely regular Hausdorff space X there is a
compact* space X containing X as a dense subspace with the following
equivalent properties.

(1) Every continuous map into a compact® space Y has an extension to
a continuous map from BX into Y.

(2) X is C*embedded in BX.

(3) Any two disjoint zero sets in X have disjoint closures in [BX.

(4) For any two zero sets Z,, Z, in X, CI,BX(Zln zZ)= CI,szln
CI,BXZZ’

(5) Every point p of BX is the limit of a unique Z-untrafilter in X, Ap.

Proof. Let BX be the set of all Z-ultrafilters on X. For each zero set
Z in X, define p €Z if Z €p, where p € BX. As shown in [3], the sets
Z form a base for closed sets, CI,BXZ =7 and Clezl N cl,é,xZ2 =
clﬁx(z2 N Z,). By Propositions 5 and 6 it follows that BX has all the
properties (1) to (5) stated in the theorem and these properties are equiva-
lent. The proof that BX is Hausdorff is the same as in [3]. By Propositions
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It is interesting to note that the characterizations of the maximal ideals
of C*(X) and C(X) using the points of BX (see [3]) also hold without the

axiom of choice.

3. Products and closed subspaces of compact* spaces. In [2] W. W.
Comfort posed the problem of giving a direct proof that products of compact*
spaces are compact®. We could give such a direct proof. In fact our proof
shows that products of compact® spaces are compact* and that products of
realcompact spaces are realcompact all at once. As before, let C denote
C*(X) or C(X).

Definition. A completely regular space is C-compact if every maximal
ideal M such that C/M is isomorphic to R is fixed.

Note that when C = C(X), C-compact is identical to realcompact.
When C = C¥(X), C-compact and compact* are identical, since C*(X)/M
=R as shown by W. W. Comfort in [2].

Theorem 2. Products of C-compact spaces are C-compact.

Proof. Suppose X, is C-compact for each 7 in a set I. Let X = IIX..
Suppose X is not empty and let M be a maximal ideal in C (= Cc*(X) or
C(X)). Let m: X — X, denote the projection map and m¥: C; — C, the in-
duced ring homomorphism (Ci = C*(XZ.) or C(Xi)). Let g denote the quo-
tient map q: C — C/M = R. Then g, = g o« is a ring homomorphism from
C, onto R for each i (note that g (c) = g(c) = c for all c in R). Hence
M;=q; [0] = njb—[M] is a maximal ideal in C_. Since each X, is C-com-
pact, it follows that there is an element x; € X such that M, = {f € Cil
f(m(x,)) = 0}. We show that M =1/ € C|f(xy) = 01, or equivalently,
that ¢(f) =0 iff [(x,) = 0. First observe that if f(x;) # 0, then [* + m is
invertible in C for some m € M. For suppose fz(xo) = 28>0, then there
are open sets Vij in Xz.]., j=1,2, ¢, n, such that %, € Vv =ﬂn;]f[vl.l.]
and f2>8 on V.

Let g, 2 0 be such that gz.].(xl.].) =0 and g, . =1 off V, where x .=

7
m.. € M. Now the

"ij(xo) fixes Mij' Then 8 € Mij’ hence n’;.‘j(gi].) =8, o i
function g = 2+ Egij o is bounded away from zero, hence invertible in
C. As a consequence, we have that ¢(f) =0 implies f(x,) =0.

For the converse implication, suppose f(x;) =0 and g(f) #0. Then
[ £ M, so that 1 = kf + m for some k € C and some m € M. Then m(x,) = 1.
By above there is m' € M such that m? +m' is invertible in C, which is impos-

sible. O
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Proof. Let A be a closed subspace of X and i: A — X the injection
map. There is an induced ring homomorphism j: C,, — C, (Cy = C(X)
or CX(X), Cy = C(A) or C*(A), respectively) given by j(f) =/ oi. Let M
be a maximal ideal in C,, and ¢ the quotient map q: C, — CA/M =~ R.
Let p = q ©jf, then p is a ring homomorphism onto R since p(c) = ¢ for all
c € R. Hence M| =ker p = j 7 [M] is a maximal ideal in Cy. X is C-com-
pact so there is x € X such that M, = {f € Cx|/(x) =0}, Then x € A, other-
wise there is h: X — [0, 1], continuous, such that A(x) =9, h =1 on A.
But then » €M,, so that j(h) = b ©i € M, which is impossible since h ©i =
1. O

That the category of C-compact spaces is reflective now follows from
the general theory of reflections because this category is closed under tak-

ing products and closed subspaces.
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