ON COMPACT* SPACES AND COMPACTIFICATIONS

SERGIO SALBANY¹

ABSTRACT. The space βX of Z-ultrafilters on X with the standard filter space topology is shown to be compact^{*}. Without considering the reflection associated with compact^{*} spaces, we also prove that products of compact^{*} spaces are compact^{*}, in response to a request for a direct proof.

Introduction. Compact* spaces were defined by W. W. Comfort [2] as completely regular Hausdorff spaces X for which every maximal ideal in $C^*(X)$ is fixed. He proved without the axiom of choice that every completely regular Hausdorff space X can be densely C^* -embedded in a compact* space βX and deduced that products of compact* spaces are compact*. The problem of proving directly the productivity of compactness* was raised and left open.

In §1 of this note we establish a one-to-one correspondence between the maximal ideals of $C^*(X)$ and the Z-ultrafilters on X without the axiom of choice and show that X is compact* if and only if every Z-ultrafilter on X converges. We then have a topological method for the study of compactness*.

We use the above method to show in §2 that the space βX of Z-ultrafilters on X [3] is compact* and that the classical characterizations of βX [3] hold independently of the axiom of choice.

Finally, in §3 we prove directly that products of compact* spaces are compact* and that closed subspaces of compact* spaces are compact*. The method of proof differs from that of §2 in that it involves a consideration of maximal ideals in rings of real valued bounded continuous functions. W. W. Comfort's theorem referred to above is a consequence of the results of this section.

An alternative construction of βX has recently been given by R. E. Chandler [1].

Received by the editors October 26, 1972 and, in revised form, February 11, 1973. AMS (MOS) subject classifications (1970). Primary 54C45, 54D30; Secondary 04A25. Key words and phrases. Stone-Čech compactification, compact* spaces, products of compact* spaces, axiom of choice.

¹Grants from the University of Cape Town and the South African Council for Scientific and Industrial Research are acknowledged.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-ol-use

Our standard reference is L. Gillman and M. Jerison's Rings of continuous functions [3]. □ indicates the end of a proof.

We wish to thank two referees for pointing out a number of inaccuracies in earlier versions of this paper and for their comments concerning the presentation. We also want to thank Dr. K. Hardie for the many ways he has helped our research.

1. Alternative characterization of compactness^{*}. We establish directly a one-to-one correspondence between the maximal ideals of $C^*(X)$ (and C(X)) and the Z-ultrafilters on X without the axiom of choice. In what follows, let C denote $C^*(X)$ or C(X).

Proposition 1. Let M be a maximal ideal in C. Let A(M) consist of the nonempty zero sets Z such that $\inf |m|[Z] = 0$ for all m in M. Then A(M) is a Z-ultrafilter on X.

Proof. It is clear that zero sets which contain a zero set in A = A(M)are also in A. Also, by definition of A, if $Z \in A$, then Z intersects every $Z_{\delta}(m) = |m| [0, \delta], m \in M, \delta > 0.$ Moreover, if $m \in M$, then $Z_{\delta}(m) \in A$ for every $\delta > 0$. Otherwise there is $m' \in M$ and $\delta' > 0$ such that $Z_{\delta}(m)$ and $Z_{\delta'}(m')$ are disjoint, but then $m^2 + (m')^2 \ge \min(\delta^2, (\delta')^2)$ which is impossible since M contains no invertible elements. We now show that A is a filter. Suppose Z_0, Z_1 are in A, and that $Z_0 \cap Z_1$ is not in A. Then there is $m \in M$ and $\delta > 0$ such that $Z_0 \cap Z_1 \cap Z_{\delta}(m) = \emptyset$. Thus Z_0 and $Z_1 \cap Z_{\delta}(m)$ are disjoint zero sets, so there is $h: X \to [0, 2]$ such that h =0 on Z_0 and h = 2 on $Z_1 \cap Z_{\delta}(m)$. Now $h \in M$, otherwise 2 = kh + m'', for some $k \in C$ and $m' \in M$. Hence m'' = 2 on Z_0 , which is impossible since then $Z_1(m'')$ and Z_0 would be disjoint, contradicting $Z_0 \in A$. But now we get that $Z_1(h)$ is disjoint from $Z_1 \cap Z_{\delta}(m)$, which is not possible as $Z_1(h)$ $\cap Z_1 \cap Z_{\delta}(m) \supset Z_1 \cap Z_k(h^2 + m^2)$, where $k = \min{\{\delta^2, 1\}}$, since $Z_1 \in A$ and $h^2 + m^2 \in M$. Thus $Z_0 \cap Z_1 \in A$ if $Z_0, Z_1 \in A$. Finally the Z-ultrafilter property is an immediate consequence of the fact that $Z_{n}(m) \in A$ for all $m \in M$, and $\delta > 0$. \Box

The inverse correspondence has a more straightforward proof which we omit.

Proposition 2. Let A be a Z-ultrafilter on X. Let M(A) consist of the functions m in C such that $\inf |gm|[Z] = 0$ for all $g \in C$ and $Z \in A$. Then M(A) is a maximal ideal in C.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

It is interesting to note that it is the maximality of A that ensures that

SERGIO SALBANY

M(A) is closed under addition. Also, if $C = C^*(X)$, then M(A) consists of those m such that inf |m|[Z] = 0, for all $Z \in A$.

The requirements of maximality in both propositions cannot be dropped as shown in the following example.

Example. Let $X = \{0, \pm 1, \pm 2, \dots\}$ have the discrete topology.

(a) Let M be the ideal generated by j(n) = 1/n. Then $\{-1, -2, \dots\}$ and $\{1, 2, \dots\}$ are disjoint zero sets in A(M).

(b) Let F be the filter generated by the sets $A_n = \{x \in X | x^2 \ge n^2\}$. Then M(F) contains both functions f, g given below but does not contain f + g, where f(n) = 1/n if n > 0 and f(n) = 1 if $n \le 0$; g(n) = 1 if $n \ge 0$ and g(n) = 1/n if n < 0.

Proposition 3. There is a one-to-one correspondence between the maximal ideals of C and the Z-ultrafilters on X given by M(A(M)) = M and A(M(A)) = A.

If C = C(X), the above correspondence coincides with the Z-correspondence in [3].

It is now simple to prove an alternative characterization of compactness*. Again we omit the proof.

Proposition 4. X is compact* if and only if every Z-ultrafilter on X converges.

2. Characterization of βX . The following proposition is analogous to Theorem 6.4 of [3] and serves as a preparation for the characterizations of βX given in Theorem 1.

Proposition 5. Let T be a topological space and X a subspace such that every point of T is the limit of a Z-ultrafilter on X. The statements (1) to (4) are equivalent and (4) implies (5).

(1) Every continuous map into a compact^{*} space Y has an extension to a continuous map from T into Y.

(2) X is C^* -embedded in T.

(3) Any two disjoint zero sets in X have disjoint closures in T.

(4) For any two zero sets Z_1, Z_2 in X, $cl_T(Z_1 \cap Z_2) = cl_T Z_1 \cap cl_T Z_2$.

(5) Every point p of T is the limit of a unique Z-ultrafilter A_p in X.

Proof. It is clear that $(1) \Rightarrow (2) \Rightarrow (3)$ without the axiom of choice. (3) \Rightarrow (4): It follows from (3) that if A is a Z-ultrafilter on X which converges to p and if $p \in cl_T Z$, then $Z \in A$. Thus, if $p \in cl_T Z_1 \cap cl_T Z_2$ Lither coZright Zatictions Any homeometry for the Zation Southware Southwa

276

It is clear that $(4) \Rightarrow (5)$. We now prove that $(3) \Rightarrow (1)$. Let $f: X \rightarrow Y$ be continuous and suppose Y is compact^{*}. Let $p \in T$ and let A_p be the unique Z-ultrafilter on X which converges to p. Let ${}_{p}A$ be the family of zero sets $E \subseteq Y$ which intersect every zero set F such that $f^{-}[F] \in A_{p}$. We show that ${}_{p}A$ is a Z-ultrafilter.

Suppose $E_0, E_1 \in {}_{p}A$. If $E_0 \cap E_1 \notin {}_{p}A$, then there is F such that $f^{-}[F] \in A_{p}$ and $E_{0} \cap E_{1} \cap F = \emptyset$. Let $h: Y \to [0, 2]$ be such that h = 0 on E_0 and h = 2 on $E_1 \cap F$. Now $h^{-}[1, 2] \cap E_0 = \emptyset$, so $f^{-}[h^{-}[1, 2]] \notin A_p$, hence $f[h[0, 1]] \in A_{h}$. But then E_{1} is disjoint from the zero set $F_{1} =$ $b^{-}[0, 1] \cap F$ and $f^{-}[F_1] \in A_p$, which is impossible. Hence A is closed under finite intersections. It is simple to prove that A is in fact a Z-ultrafilter. Now Y is compact* so A converges to a unique point, $\overline{f}(p)$, say. Thus $\overline{f}(p)$ is the only element of $\bigcap \{F | F \in A\}$. If $x \in X$, then $x \in A$ $\bigcap \{E | E \in A_x\}$ and $f(x) \in \bigcap \{F | F \in A\}$, otherwise there is $F \in A$ such that $f(x) \notin F$ so that there is a zero set H which contains f(x) and is disjoint from F, but this is not possible since F must intersect H by definition of _xA. Thus $\overline{f}(x) = f(x)$, if $x \in X$. Finally, the continuity of \overline{f} . Note that if F is a zero set in Y which is not in ${}_{p}A$, then by definition of ${}_{p}A$, there is a zero set E disjoint from F such that $f[E] \in A_p$ and (3) implies $\operatorname{cl}_T / [E] \cap \operatorname{cl}_T / [F] = \emptyset$, and we have remarked that $p \in \operatorname{cl}_T / [E]$, hence $p \notin \operatorname{cl}_T f^{-}[F]$. The proof that \overline{f} is continuous can now be completed as in [3]. 🗆

Note. The above proposition requires a more elaborate proof than that of Theorem 6.4 of [3]. This is due to two factors. Firstly we do not assume T is completely regular, so the proof of $(3) \rightarrow (4)$ in [3] does not apply. Secondly,we have not been able to prove that $(5) \rightarrow (1)$ without the axiom of choice. However (5) does imply (1) under an added assumption on how X is embedded in T, as shown in Proposition 6.

Proposition 6. Let X be dense in T and such that if Z is a zero set in X and $p \in cl_T Z$, then there is a Z-ultrafilter on X which contains Z and converges to p. Then, any two disjoint zero sets in X have disjoint closures in T if and only if every point of T is the limit of a unique Z-ultrafilter on X.

Proof. The hypotheses of the theorem ensure that every point of T is the limit of a Z-ultrafilter on X, so one implication has been proved in Proposition 5. Conversely, suppose $p \in \operatorname{cl}_T Z_1 \cap \operatorname{cl}_T Z_2$. Let A_p be the unique Z-ultrafilter on X converging to p. By hypothesis, Z_1 and Z_2 are both memlicense pscoopfightesticitience app Z_1° redshifting Zee hard wroots disjoints. Here

SERGIO SALBANY

Proposition 7. Let T be a topological space and X a subspace such that every point of T is the limit of some Z-filter on X. If the sets cl_TZ , Z a zero set in X, form a base for the closed sets of T and any of (1) to (4) hold, then T is completely regular.

Proof. Let $p \in T$ and $F \subseteq T$ be a closed set not containing p. By hypothesis there is a zero set Z in X such that $F \subseteq cl_T Z$ and $p \notin cl_T Z$. Hence there is $Z_1 \in A_p$ such that $Z_1 \cap cl_T Z = \emptyset$. Thus $Z_1 \cap Z = \emptyset$, so there is a continuous map $h: X \to [0, 1]$ such that h = 0 on Z and h = 1 on Z₁. But X is C^{*}-embedded in T so h has an extension \overline{h} to T. Then $\overline{h} = 1$ on $cl_T Z_1$ and $\overline{b} = 0$ on $cl_T Z$, proving complete regularity of T, since $p \in$ $cl_T Z_1$. \Box

Proposition 8. If X is C^* -embedded as a dense subspace of a completely regular space T and every Z-ultrafilter on X converges in T, then every Z-ultrafilter on T converges.

Proof. Let A be a Z-ultrafilter in T. Let A_0 denote the family of zero sets in X which intersect every $Z_{\delta}(f) = |f|^{-1}[0, \delta]$, where $Z(f) \in A$. The proof that A_0 is a Z-ultrafilter on X, is analogous to the proof that A_0 is a Z-ultrafilter in Proposition 5, (3) \Rightarrow (1). Let $p \in T$ be the limit of A_0 . It is easy to see that A also converges to p. \Box

We can now prove that there is a *-compactification βX of X, as in [3].

Theorem 1. For every completely regular Hausdorff space X there is a compact* space βX containing X as a dense subspace with the following equivalent properties.

(1) Every continuous map into a compact* space Y has an extension to a continuous map from βX into Y.

(2) X is C^* -embedded in βX .

(3) Any two disjoint zero sets in X have disjoint closures in βX .

(4) For any two zero sets Z_1, Z_2 in X, $cl_{\beta X}(Z_1 \cap Z_2) = cl_{\beta X}Z_1 \cap$ $cl_{\beta X}Z_{2}$.

(5) Every point p of βX is the limit of a unique Z-untrafilter in X, A_p .

Proof. Let βX be the set of all Z-ultrafilters on X. For each zero set Z in X, define $p \in \overline{Z}$ if $Z \in p$, where $p \in \beta X$. As shown in [3], the sets \overline{Z} form a base for closed sets, $cl_{\beta X}Z = \overline{Z}$ and $cl_{\beta X}Z_1 \cap cl_{\beta X}Z_2 =$ $\operatorname{cl}_{\beta X}(Z_2 \cap Z_2)$. By Propositions 5 and 6 it follows that βX has all the properties (1) to (5) stated in the theorem and these properties are equivalent. The proof that βX is Hausdorff is the same as in [3]. By Propositions conse or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 7 and 8 it follows that βX is compact*. \Box

²⁷⁸

It is interesting to note that the characterizations of the maximal ideals of $C^*(X)$ and C(X) using the points of βX (see [3]) also hold without the axiom of choice.

3. Products and closed subspaces of compact* spaces. In [2] W. W. Comfort posed the problem of giving a direct proof that products of compact* spaces are compact*. We could give such a direct proof. In fact our proof shows that products of compact* spaces are compact* and that products of realcompact spaces are realcompact all at once. As before, let C denote $C^*(X)$ or C(X).

Definition. A completely regular space is C-compact if every maximal ideal M such that C/M is isomorphic to **R** is fixed.

Note that when C = C(X), C-compact is identical to realcompact. When $C = C^*(X)$, C-compact and compact* are identical, since $C^*(X)/M \cong \mathbf{R}$ as shown by W. W. Comfort in [2].

Theorem 2. Products of C-compact spaces are C-compact.

Proof. Suppose X_i is C-compact for each *i* in a set *l*. Let $X = \prod X_i$. Suppose X is not empty and let M be a maximal ideal in $C (= C^*(X)$ or C(X)). Let $\pi_i: X \to X_i$ denote the projection map and $\pi_i^*: C_i \to C$, the induced ring homomorphism $(C_i = C^*(X_i) \text{ or } C(X_i))$. Let q denote the quotient map $q: C \to C/M \cong \mathbb{R}$. Then $q_i = q \circ \pi_i^*$ is a ring homomorphism from C_i onto \mathbb{R} for each *i* (note that $q_i(c) = q(c) = c$ for all *c* in \mathbb{R}). Hence $M_i = q_i^{-1}[0] = \pi_i^{*-1}[M]$ is a maximal ideal in C_i . Since each X_i is C-compact, it follows that there is an element $x_0 \in X$ such that $M_i = \{f \in C_i | f(\pi_i(x_0)) = 0\}$. We show that $M = \{f \in C | f(x_0) = 0\}$, or equivalently, that q(f) = 0 iff $f(x_0) = 0$. First observe that if $f(x_0) \neq 0$, then $f^2 + m$ is invertible in C for some $m \in M$. For suppose $f^2(x_0) = 2\delta > 0$, then there are open sets V_{ij} in X_{ij} , $j = 1, 2, \dots, n$, such that $x_0 \in V = \bigcap \pi_{ij}^{-1}[V_{ij}]$ and $f^2 > \delta$ on V.

Let $g_{ij} \ge 0$ be such that $g_{ij}(x_{ij}) = 0$ and $g_{ij} = 1$ off V_{ij} , where $x_{ij} = \pi_{ij}(x_0)$ fixes M_{ij} . Then $g_{ij} \in M_{ij}$, hence $\pi_{ij}^*(g_{ij}) = g_{ij} \circ \pi_{ij} \in M$. Now the function $g = f^2 + \sum g_{ij} \circ \pi_{ij}$ is bounded away from zero, hence invertible in C. As a consequence, we have that q(f) = 0 implies $f(x_0) = 0$.

For the converse implication, suppose $f(x_0) = 0$ and $q(f) \neq 0$. Then $f \notin M$, so that 1 = kf + m for some $k \in C$ and some $m \in M$. Then $m(x_0) = 1$. By above there is $m' \in M$ such that $m^2 + m'$ is invertible in C, which is impossible. \Box

License or Popposition & epplored with the pares of officer and parts paces are C-compact.

SERGIO SALBANY

Proof. Let A be a closed subspace of X and $i: A \to X$ the injection map. There is an induced ring homomorphism $j: C_X \to C_A$ ($C_X = C(X)$ or $C^*(X)$, $C_A = C(A)$ or $C^*(A)$, respectively) given by $j(f) = f \circ i$. Let M be a maximal ideal in C_A , and q the quotient map $q: C_A \to C_A/M \cong \mathbb{R}$. Let $p = q \circ j$, then p is a ring homomorphism onto \mathbb{R} since p(c) = c for all $c \in \mathbb{R}$. Hence $M_1 = \ker p = j^{-1}[M]$ is a maximal ideal in C_X . X is C-compact so there is $x \in X$ such that $M_1 = \{f \in C_X | f(x) = 0\}$. Then $x \in A$, otherwise there is $h: X \to [0, 1]$, continuous, such that h(x) = 0, h = 1 on A. But then $h \in M_1$, so that $j(h) = h \circ i \in M$, which is impossible since $h \circ i =$ 1. \Box

That the category of C-compact spaces is reflective now follows from the general theory of reflections because this category is closed under taking products and closed subspaces.

REFERENCES

1. R. E. Chandler, An alternative construction of βX and νX , Proc. Amer. Math. Soc. 32 (1972), 315-318.

2. W. W. Comfort, A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues, Fund. Math 63 (1968), 97-110. MR 38 #5174.

3. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 22 #6994.

4. J. F. Kennison, Reflective functors in general topology and elsewhere, Trans. Amer. Math. Soc. 118 (1965), 303-315. MR 30 #4812.

TOPOLOGY RESEARCH GROUP, UNIVERSITY OF CAPE TOWN, CAPE TOWN, SOUTH AFRICA

280