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Abstract

In this paper, we have investigated the combined effects of Newtonian heating and internal

heat generation/absorption in the two-dimensional flow of Eyring-Powell fluid over a stretch-

ing surface. The governing non-linear analysis of partial differential equations is reduced

into the ordinary differential equations using similarity transformations. The resulting prob-

lems are computed for both series and numerical solutions. Series solution is constructed

using homotopy analysis method (HAM) whereas numerical solution is presented by two

different techniques namely shooting method and bvp4c. A comparison of homotopy solu-

tion with numerical solution is also tabulated. Both solutions are found in an excellent agree-

ment. Dimensionless velocity and temperature profiles are plotted and discussed for

various emerging physical parameters.

Introduction

Flow analysis of non-Newtonian fluid has received growing interest in the past few decades.

These types of fluids occur in engineering, biology and industry etc. Some common examples

of non-Newtonian fluids are certain paints, blood at low shear rate, ketchup, shampoo, tooth-

paste, salvia, synovial fluids, sewage sludge, foams and emulsions etc. Due to their occurrence

in biological and industrial processes, the research on non-Newtonian fluid has been presented

through different aspects. It is now well established fact that the flows of all the non-Newtonian

fluids cannot be examined by one constitutive relationship between shear rate and stress. This

happens in view of the diverse characteristics of non-Newtonian fluids. Hence several constitu-

tive equations have been proposed subject to classification of non-Newtonian fluids through

differential, rate and integral type. Also, the governing equations of non-Newtonian fluids are

more complex and non-linear than the Navier-Stokes equations. Infact, the rheological param-

eters in the constitutive equations make the governing problems more tedious[1–5].
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The flows of non-Newtonian fluids with heat transfer are also of practical interest in indus-

trial applications including multiphase mixtures, biological fluids, food products, agriculture

and dairy wastes and natural products. Interests of recent researchers in such flows has grown

regarding control of the quality of the final product in various manufacturing and processing

industries such as hot rolling, continuous casting, wire drawing, glass fiber production, aerody-

namic extrusion of polymer sheets and paper production. In all these processes, the rates of

cooling and stretching have a vital role. Therefore, several investigators even in recent times are

engaged for the boundary layer flows generated by a stretching surface. For instance, Layek

et al. [6] presented the boundary layer stagnation point flow towards a permeable stretching

surface with heat and mass transfer. Nadeem et al. [7] constructed the analytic solution for

stagnation point flow of a stretching sheet. Bhattacharyya and Layek [8] addressed the influ-

ence of suction/ blowing on the two-dimensional stagnation point flow. Yacob et al. [9]

explored the melting heat transfer analysis in stagnation point flow of micropolar fluid

bounded by a stretching/shrinking surface. The slip flow and heat transfer over a permeable

surface in a porous medium is studied by Bhattacharyya et al. [10] Influence of thermal radia-

tion on the boundary layer flow induced by a porous moving surface is discussed by Mukho-

padhyay et al. [11] Bhattacharyya and Layek [12] analyzed the MHD flow generated by a

permeable stretching sheet with chemically reactive solute distribution. Boundary layer flow of

power law fluid bounded by a stretching through Lie group approach is analyzed by Jalil and

Asghar [13] Ahmad and Asghar [14] studied the MHD flow of second grade fluid over a

stretching surface with arbitrary velocities. Hayat et al. [15] explored simultaneous effects of

heat and mass transfer in time-dependent flow by a stretching surface. MHD flow of chemical

reactive UCM fluid past a permeable surface is presented by Vajravelu et al. [16]

It is noted from the above mentioned studies and many others that heat transfer characteristic

in boundary layer flow is studied much either through prescribed heat flux or prescribed surface

temperature. No reasonable attention is given to the flows subject to Newtonian heating from the

surface. Few studies in this direction have been reported. For instance, Merkin [17] studied the

natural convection boundary layer flow on a vertical surface with Newtonian heating. Salleh et al.

[18] examined the boundary layer flow and heat transfer over a stretching sheet with Newtonian

heating. Lesnic et al. [19] analyzed the free convection boundary layer flow along a vertical surface

in a porous medium with Newtonian heating. The boundary layer flow of forced convection at a

forward stagnation point with Newtonian heating is presented by Salleh et al. [20] Chaudhary and

Jain [21] also constructed an exact solution to the unsteady free convection boundary-layer flow

past an impulsively started vertical surface with Newtonian heating. Stability of thermal convec-

tion of an Oldroyd-B fluid in a porous medium with Newtonian heating is studied by Niu et al.

[22] Some recent development in the study of multiphase flow is given by Zhong et al. [23–25].

The objective of present communication is to explore the effect of Newtonian heating in the

boundary layer flow of Eyring-Powell fluid [26] Consideration of this fluid has importance in

the sense that it correctly reduces to viscous case at low and high shear rates. Further it is

deduced from kinetic theory of liquids rather than the empirical relation. The flow in this

attempt is caused by a stretching surface. Analysis has been carried out in the presence of heat

generation/absorption. This concept is of vital importance in applications such as those involv-

ing heat removals from nuclear fuel debris, underground disposal of radioactive waste material,

storage of food stuffs and exothermic chemical reactions and dissociating fluids in packed-bed

reactors. The rest of the paper is organized in the following fashion. Next section consists of

problem formulation. In section three, Series solutions have been obtained by homotopy Anal-

ysis method (HAM) [27–32] whereas the numerical solution is obtained by bvp4c and shooting

method. In section four, comparison of HAM solution and numerical results are tabulated.

Also the effects of various physical parameters are ploted and analyzed.
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Formulation of the Problems

We consider the steady boundary layer flow of an incompressible Eyring-Powell fluid over a

stretching surface at y = 0. We are interested to model the analysis in the presence of heat

source/sink. The stretching sheet possesses the effects of Newtonian heating. The boundary

layer flow in the present situation is governed by the following expressions.
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In above expressions u and v are the velocity components along the x and y − directions

respectively, β1 and C are the material parameters, v is the kinematic viscosity, ρ the fluid den-

sity, T the temperature of fluid, T1 is the temperature of fluid for away from the surface, Q0 is

the dimensional heat generation/absorption coefficients, Cp the specific heat at constant pres-

sure and αm is the thermal diffusivity of ordinary fluid.

We proceed for solutions through stream function satisfying
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Now Eq (1) is clearly satisfied and Eqs (2–6) give

ð1þ εÞf 000 þ ff @ � f 02 � εdf
00
2f 000 ¼ 0; ð7Þ

y@ þ Pr f y0 þ Pr ly ¼ 0; ð8Þ

f 0ðZÞ ¼ 1; f ðZÞ ¼ 0; y0ðZÞ ¼ �gð1þ yðZÞÞ at Z ¼ 0;

f 0ðZÞ ¼ 0; yðZÞ ¼ 0 as Z ! 1;
ð9Þ

where ε and δ are the material fluid parameters, λ is the heat source/sink parameter, Pr the

Prandtl number and γ the conjugate parameter for Newtonian heating. These dimensionless
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parameters are defined as
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The local Nusselt number Nux and skin friction coefficient Cf are defined as

Nux ¼
xqw
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; Cf ¼

tw
rU2

w

; ð11Þ

in which the heat flux qw is defined by the following relation

qw ¼ �kð@T
@y

Þy¼0; ð12Þ

with k being the thermal conductivity. In dimensionless form, the quantities in Eq (11) become
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where Rex
¼ ðax2=nÞ is the local Reynolds number.

Analytical and Numerical Solutions

Here analytical solution is obtained by homotopy analysis method and numerical solution is

presented by MATLAB fnite difference built-in-function bvp4c.

Series solution

In this section, Eqs (7) and (8) subject to the boundary conditions (9) are solved using homo-

topy analysis method. We choose auxiliary parameters ℏf and ℏθ for the functions ƒ and g

respectively. The convergence of the obtained series solutions strictly depends upon these

parameters. In order to obtain the permissible values of auxiliary parameters, we have plotted

ℏ -curves in the Figs 1 and 2 for ε = 0.1 = δ = γ, λ = 0.2 and Pr = 1.0. (Fig 1) depicts that the

Fig 1. ℏf curve for velocity.

doi:10.1371/journal.pone.0129613.g001
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range for acceptable value of ℏf is from −1.6 to –0.25. Fig 2 shows that the appropriate range

for ℏθ is from –2.4 to –0.8.

Table 1 shows that 15th order of approximation is sufficient for the convergence of series

solution of velocity upto six decimal places whereas the solution for temperature converges at

20th order of approximation.

Numerical solution

In this subsection, we have solved Eqs (7) and (8) numerically subject to BCs (9). Here, we

have used two different numerical techniques, the higher order MATLAB finite difference

built-in-function bvp4c and shooting method. The first step for using bvp4c in MATLAB is to

transform Eqs (7) and (8) into a system of first order ODEs.
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Fig 2. ℏθ curve for temperature.

doi:10.1371/journal.pone.0129613.g002

Table 1. Convergence of the HAM solutions for different order of approximation when ε = 0.1 = δ = γ,
Pr = 1.0, λ = 0.2.

Order of Approximation -f”(0) -θ0(0)

5 0.955130 0.129113

10 0.955989 0.134368

15 0.956018 0.138456

20 0.956018 0.139597

30 0.956018 0.139597

40 0.956018 0.139597

doi:10.1371/journal.pone.0129613.t001
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where we have introduced (f1, f2, f3, f4, f5) = (f, f0, f@, θ, θ0). The BCs (9) are also written in a

boundary value residual form as per requirement of bvp4c:

f 0
2
� 1 ¼ 0; f 0

1
¼ 0; f 0

5
þ gð1þ f 0

4
Þ ¼ 0;

f1
2
¼ 0; f1

4
¼ 0:

ð15Þ

In above equation, f0 and f1 represents the left and right boundary points.

The MATLAB built-in bvpinit is used for the initial mesh and initial guess in BVP consisting

of Eqs (7) and (8). The general form of bvpinit is written in MATLAB as:

sol ¼ bvpinitðinitial mesh; initial guessÞ ð16Þ

The Eqs (14) and (15) are called in with using function handles and solution is added in the

argument of bvp4c as follows

solution ¼ bvp4cð@bvp; @bc; solÞ ð17Þ

The final form of the solution obtained with bvp4c in Eq (17) is in structure class of

MATLAB. The grid points in η − direction and solution is extracted with sol.x and sol.y, respec-

tively. The sol.y contains the following solution (f, f0, f@, θ, θ0). For detail about bvp4c consult
reference [33].

For shooting method we implemented Newton-Raphson method to find the targets and

adaptive Runge-Kutta method is chosen for the time integration in MATLAB.

Table 2. Comparison of the values of –f@(0) by HAMwith the numerical solution for various values of ε
and δ.

E δ HAM Solution Numerical Solution

bvp4c Shooting Method

0.1 0.1 0.956018 0.956017 0.955955

0.2 0.917972 0.917970 0.917970

0.3 0.883221 0.883224 0.883225

0.1 0.1 0.956018 0.956017 0.955955

0.5 0.964859 0.964862 0.964862

1.0 0.975361 0.975312 0.975310

doi:10.1371/journal.pone.0129613.t002

Table 3. Comparison of the values of –θ0(0) by HAMwith the Numerical solution for various values of γ, Pr and λ.

Γ Pr Λ HAM Solution Numerical Solution

bvp4c Shooting Method

0.1 1.0 0.2 0.139597 0.139480 0.138236

0.2 0.434178 0.434174 0.434268

0.3 1.523070 1.523070 1.521310

0.1 1.0 0.2 0.139597 0.139480 0.138236

2.0 0.117307 0.117301 0.117533

2.5 0.115094 0.115012 0.114490

0.1 1.0 0.1 0.125670 0.125670 0.125543

0.2 0.139597 0.139574 0.138150

0.3 0.203966 0.203966 0.203967

doi:10.1371/journal.pone.0129613.t003
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Comparison and Discussion

Tables 2 and 3 are presented to analyze the comparison of HAM and numerical solutions for

various values of embedding parameters for −f@(0) and −θ0(0) respectively. A comparative

study of these two tables shows an excellent agreement. Our interest further is concerned with

Fig 3. Variation of δ on f0.

doi:10.1371/journal.pone.0129613.g003

Fig 4. Variation of ε on f0.

doi:10.1371/journal.pone.0129613.g004
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the influence of parameters ε, δ, γ, λ and Pr on the velocity and temperature fields. Hence we

draw the Figs 3–12 for such objective. Figs 3 and 4 are plotted to examine the variations of δ

and ε on the velocity field. We see from (Fig 3) that the velocity decreases when δ is increased.

The influence of parameter ε on the velocity is quite opposite to that of δ (See Fig 4). Effects of

heat source (λ> 0) and sink (λ< 0) on the temperature are analyzed in the Figs 5 and 6. As

Fig 5. Variation of (λ>0) on θ.

doi:10.1371/journal.pone.0129613.g005

Fig 6. Variation of (λ<0) on θ.

doi:10.1371/journal.pone.0129613.g006
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expected, (Fig 5) illustrates that there is rise in temperature when λ> 0. However, the tempera-

ture decreases when λ< 0. Effects of Pr on temperature is plotted in (Fig 7). Here the tempera-

ture decreases when we increase the Prandtl number Pr. This is because of the reason that an

increase in Pr decreases the thermal conductivity of the fluid and consequently the temperature

Fig 7. Variation of Pr on θ.

doi:10.1371/journal.pone.0129613.g007

Fig 8. Variation of γ on θ.

doi:10.1371/journal.pone.0129613.g008
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decreases. (Fig 8) displays the effects of conjugate parameter γ on temperature θ(η). It is

observed that temperature is an increasing function of. (Fig 9). Show the variation of δ on skin

friction coefficient when other parameters are kept fixed. It is noticed that skin friction coeffi-

cient increases by increasing parameter δ. Figs 10, 11 and 12 respectively plot the variation of

Pr, (λ> 0) and (λ< 0) on the local Nusselt number. These Figs. Witness that the local Nusselt

number increases by increasing Pr and λ< 0. However, the behavior of λ> 0 is reverse when

compare with Pr and λ< 0.

Fig 9. Effect of δ on skin friction.

doi:10.1371/journal.pone.0129613.g009

Fig 10. Effect of Pr on local Nusselt number.

doi:10.1371/journal.pone.0129613.g010

Analysis of Eyring-Powell Fluid with NH & Heat Generation

PLOS ONE | DOI:10.1371/journal.pone.0129613 September 24, 2015 10 / 13



Author Contributions

Conceived and designed the experiments: TH SAMAF AA. Performed the experiments: TH

SAMAF AA. Analyzed the data: TH SAMAF AA. Contributed reagents/materials/analysis

tools: TH SAMAF AA. Wrote the paper: TH SAMAF AA.

Fig 11. Effect of (λ>0) on local Nusselt number.

doi:10.1371/journal.pone.0129613.g011

Fig 12. Effect of (λ<0) on local Nusselt number.

doi:10.1371/journal.pone.0129613.g012
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