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AND CONSTANT mTH MEAN CURVATURE1

BY
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Abstract. The main result is that if M = M" is a complete Riemann

manifold of nonnegative sectional curvature and X: M-*R"+1 is an

isometric immersion such that X(M) has a positive constant mth mean

curvature, then X(M) is the product of a Euclidean space R"'11 and a

rf-dimensional sphere, m < d < n.

1. Introduction. Let n > 2, M = M" a Riemann manifold, and X: M -»

R"+ ' an isometric immersion into Euclidean space. Let Xx(x) < • • • < X„(x)

be ordered principal curvatures of X (M). In analogy with the case n = 2, we

call X (M) a Weingarten hypersurface (or a Jf-hypersurface) if

W(Xx(x), . . . , \(x)) = const for some nontrivial function W(X) =

W(XX, .. ., AJ.
Let M be complete and have nonnegative sectional curvatures. Without

any assumption that X(M) is a Weingarten hypersurface, a theorem of

Sacksteder [15] implies that M and X have factorizations,

M = R"-d X M$   and   X = Xx X X0 (1.1)

such that M¡¡ is a complete Riemann manifold, the first map Xx in

Xx: R"-d -* R"-d   and   X0: A/0rf-> Rd+X (1.2)

is the identity and the second is an isometric immersion; XQ(M$) does not

contain any (complete) lines and is the boundary of a convex body; cf. [8] for

an analogue when X: M" -» Rn+p. Of course, either factor R"~d or M¡¡ can

be missing (i.e., reduce to a point). If, in addition, it is supposed that X(M) is

a IF-Weingarten hypersurface, then it is of interest to find conditions on W

which assure that, in the Sacksteder decomposition (1.1) of X(M),

(a) X0(Mq) is compact, or even

(b) X0(Mq) is a sphere.

For the most part, this paper deals with the situation where W(X) = om(A)

is the mth elementary symmetric function of (A„ . . . , A„), 1 < m < n,
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364 PHILIP HARTMAN

am(X) = 2 • • • 2 A,(,A(2) • • • W   where ¿(1) <    •     < i(m).   (1.3)

H(x) = ax(X(x))/n is the mean curvature, R(x) = 2\(n - 2)\a2(X(x))/n\ the

scalar curvature, K(x) — a„(X(x)) the Gauss-Kronecker curvature; and more

generally, Hm(x) = m\(n - m)\am(X(x))/n\ the mth mean curvature (1 < m

< ri). Let X(M) be a am-Weingarten hypersurface, with am(X(x)) = C0 > 0.

It is known that (b) holds if m = 1 ([5]; cf. [12] for n = 2 and [7] for a related

result) or if /w = 2 ([6]). The object of this note is to prove:

Theorem (*). Let M = M" be a complete connected Riemann manifold of

class C2 with nonnegative sectional curvature. Let X: M-»7?n+1 be an

isometric immersion of class C2 such that X(M) has a positive constant mth

mean curvature Hm(x) = C0 > 0, x G M, for some m, 1 < m < n. Then, in

the Sacksteder decomposition (1.1)-(1.2), X0(Mq) is a sphere (of dimension d,

m < d < «).

We might remark that since M and X are of class C2, they are real analytic,

for am(X(x)) = C0 > 0 is a nonlinear elliptic analytic partial differential

equation.

See [13] for the situation when Cm = 0.

In §§2 and 3, we adapt the arguments used by Cheng and Yau [6] in the

case m = 2 to show that X0(Mq) is compact for arbitrary m, 1 < m < n. Our

proof depends on a generalization of the elliptic operator used in [21] and [6].

It then follows from results of Alexandrov [2] that X0(M¡j,) is a sphere; cf.

Proposition 1.1 and remarks below. A different proof of the result in the

compact case has been given by Nakagawa and Yokote [13, p. 479]. It should

be noted that it has also been shown by Suss [17], Hsiung [11], U. Simon [16]

and Yano [19] that when Mq is compact with nonnegative sectional curvature

and X0(Mq) is a om-Weingarten hypersurface with am(X(x)) = C0 > 0 on M,

and certain additional convexity properties are satisfied, then X^Mtf) is a

sphere. By virtue of Sacksteder [15], Proposition 3.5 and its proof below, the

additional convexity properties in Hsiung [11] and in U. Simon [16] are

redundant and, in fact, Nakagawa and Yokote deduce their result from

Hsiung's.

Actually, the fact that X0(Mq) is a sphere can be deduced from the

following consequence (applied to W = am(X) and c > 0) of results of A. D.

Alexandrov [2]:

Proposition 1.1. Let W(X) - W(XX,... ,XJ be of class C1 for 0 < A,

< • • • < A„ such that dW/dXk > 0 for 1 < k < n. Let M = M" be a
compact connected Riemann manifold of class C2 with nonnegative sectional

curvature. Let X: M —* R"+1 be an isometric immersion of class C2 such that

X(M) is a W-Weingarten hypersurface, say, with W(X(x)) = c on M and that
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COMPLETE HYPERSURFACES 365

dW(X)/aXk > 0   for 1 < k < n (1.4)

whenever X = X(x), x G M (for example, let (1.4) hold on the set (A: W(X) =

c}). Then X(M) is a sphere.

Self-intersections are not excluded a priori in this assertion, but it follows

from Sacksteder's results [15] that, in fact, X (M) is the boundary of a convex

body, so that X is an embedding when M and X are sufficiently smooth.

Because A. D. Alexandrov strived for extreme generality in the statements

of his theorems, some do not seem to be clearly worded; cf. the comments in

[13, pp. 479^*80] and in a footnote of the translator of [2, III, p. 391].

Nevertheless, it is not difficult to see that the proof of Proposition 1.1 is

contained in Alexandrov's arguments in the proof of the result of [2, V], with

due reference to [2, III, pp. 390-391], and of course to [2, II, pp. 361-375].

(For an argument similar to [2, II, p. 371], in the special case W = am(X), see

[1, p. 827].)
Proposition 1.1 applies not only to W(X) = om(A) and c > 0 (cf.

Proposition 3.5 below) but, for example, also to W(X) = Sxm — Sm and c > 0,

where Sm = A,m + • • • + A„m and m = 1, 2, . . . (and W reduces to Sx2 - S2

= 2a2 for m — 2). Also, Proposition 1.1 and the proof of Theorem (*) have

the following consequence:

Corollary (*). Let ax, . . ., an be nonnegative constants and

W(X) = 2 apap(X).

Let M = M" be a complete Riemann manifold of class C2 with nonnegative

sectional curvatures. Let X: M —» R"+i be an isometric immersion of class C2

such that X(M) is a W- Weingarten hypersurface with W(X(x)) = c > 0. Then,

in the Sacksteder decomposition (1.1), X0(Mq) is a sphere (of dimension d,

0 < d < n).

Added in proof (6/20/78). Using different methods in a forthcoming

paper, we shall show that Theorem (*) remains valid if "Hm(x) = C0" is

replaced by "W(X(x)) = c" where W satisfies the conditions of Proposition

1.1.

2. Preliminaries for (a). As mentioned above, Cheng and Yau [6] show that

a complete hypersurface in Rn+X with nonnegative sectional curvatures and

positive constant scalar curvature satisfies (b). From their arguments, we shall

extract a general result (Lemma 2.1 below) dealing with the question of the

validity of (a).

Unless otherwise indicated, all sums are over the range 1, . . ., n.

If M is a Riemann manifold of class C3, let w„ ...,«„ be a local C2

orthonormal field of 1-forms on M satisfying the usual structure equations
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366 PHILIP HARTMAN

du = — / w  w .       io-   + w    = 0.
m

í/íO- =   —  /, (0-   <0   • + ß-,
m

% = í¿2¡ RijkmukUm> R-ijkm + ^{/m* = 0-
¿■km

Here and below, products of exterior forms are understood to be exterior

products. If a function/is of class C2(M), its gradient or covariant derivative

is defined by

dS = 2 S,mum>
m

and its second covariant derivative by

2 /,,mWm = dS,i - 2 /,„«»•
m m

Similarly, if 22/jyW, ® w, is a C2 symmetric tensor on M, its first and second

covariant derivatives are defined by

2 hy,mUm  =  A> _ 2 Amy««i ~ 2 ''¿/«"my»
m mm

2 h¡j,mkum = dhj,k ~ 2 nij,mUmk ~ 2 nim,kUm, ~ 2 ^mj,kUmi-
m m m m

Correspondingly, the Laplacian of the function /and of the tensor SSAyW, ®

oij are defined by

A/= 2/,**    and   AÄ, = 2>,,**- (2.1)
k k

For any continuous symmetric tensor 22<í>y<o, ® w,, define the differential

operator L^ of second order by

V-2 24*4- (2-2)

This operator is called elliptic if (</>,-,) is positive definite, and degenerate

elliptic if (<j>¡j) is nonnegative definite.

Proposition 2.1   [6].  Let M G C3 and </> G C1.   77ie/z  L^ is formally
self adjoint if and only if

2%j = 0   forl < i < nonM. (2.3)

A form of the maximum principle gives

Proposition 2.2 [5], [6]. Let L^ be formally selfadjoint and elliptic (possibly

degenerate). Let E c M be open with compact closure E, 0 < / G C2(E),
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COMPLETE HYPERSURFACES 367

0 < g G C2(Ë), g ^0, and g = 0on aE. Then

-¡Eg{L^g)dx/¡Eg2dx >inf'[-(V)/4 (2-4)

It will be convenient to list here, for ready reference, some assumptions

which we will use from time to time in this and the following section.

(HI) M = M" is a complete connected Riemann manifold of class C4 of

nonnegative sectional curvature.

(H2) X: M -» 7?"+1 is an isometric immersion of class C4 such that X(M)

contains no complete lines, and so is the boundary of a convex body (for

otherwise, we can replace M, X by Mq, X0 in the Sacksteder decomposition).

(H3) X(M) is not compact.

(H4) W = W(A) is a C2 function $ of Sx, . . . , Sm for some m > 1, where

S, - Af + • • • + V, i.e., W(X) = 0(S„ .... Sm).
Under the assumptions (H1)-(H2), there is a unit normal vector field N:

M —> Sn+X such that the second fundamental form 22 h¡jU¡ ® to, is nonnega-

tive definite. We, of course, have the Codazzi relations

ho,k = hß,k = hikj = fa. (2.5)

When (H3) holds, the normal image N(M) is contained in a hemisphere, so

that there exists a constant vector U G R"+x such that the Euclidean scalar

product

N(x)- U > 0   onM; (2.6)

Sacksteder (cf., e.g., [18]). If {e¡, . . ., e„} is a local orthonormal frame field

on X(M), then the Gauss and Weingarten formulas are

Xv = hyN   and   JV, = - 2 V>>
j

so that

N.o " - 2 huthkjN - 2 Kjek>
k k

and consequently

VT = 2 2<rVVv   or   ^(X-U)=2.2Z^MN-U),       (2.7)
'    j '    j

l*{n • u) - - 2 2 2 WjMn ■ u) - 2 2 2 ^V(e* ■ u)> (2-8)
i      j     k i     j     k

cf. [7, p. 83].

Proposition 2.3. Assume (H1)-(H3) and (2.6). Let L^ be elliptic and satisfy

2 2<t>iA.k =0   forl < k < nonM. (2.9)
'    j
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368 PHILIP HARTMAN

ThenN(x)- U > 0 on M

Proof. Even if L^ is degenerate elliptic, we have that

22«*V* >0   forl <k< n.
'    j

Hence, by (2.6) and (2.9), L^(N ■ U) < 0 on M. The strong minimum prin-

ciple of E. Hopf [10] for elliptic operators implies that if N • U = 0 at some

point of M, then N • U = 0 on M. But this would show that, for every

x° G M, the line X(x°) + tU, — oo < t < oo, is on X(M), which contradicts

(H2).

Proposition 2.4. Assume (H1)-(H3). Let L^ be formally selfadjoint, elliptic,

and let (2.9) hold. Let E = E(r) = {x G M: X(x)- U < r} for r > 0. 77«?«

4/     2 2 ÇA dx/r vol E (r/2) > inf 2 2 2 fyVV      (2-10)
JE(r)   i     j E{r)    ¡     j     k

Proof. If we let g = r - X(x) • U and/ = N(x) • U > 0, then Proposition

2.2 gives

f    (r-X(x)-U)2Z2Z<t>iMN-U)dx/[    (r - X(x) ■ U)2 dx
JE(r) ¡     j JE(r)

> inf 2 2 2<i>i,AA,-
£(') <  j k

Since the left side of this relation is at most the left side of (2.10), the

assertion follows.

Corollary 2.1. //, in addition to the assumptions of Proposition 2.4, we

assume that

Í     2 2<M,, **/*vo1 E(r/2)-+0   asr->oo, (2.11)
JE(r)   ¡     j

e.g., that

2 Z\$ijhji   is bounded on M, (2-12)
'    j

then

in/ 2 2 2 MkK. = 0. (2.13)
M    i     j    k

Thus the arguments above lead to the following general result.

Lemma 2.1. Assume (H1)-(H2), and that (2.11) (say, (2.12)) holds but that

(2.13) does not. Also, assume that L^ is elliptic, formally selfadjoint, and that
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COMPLETE HYPERSURFACES 369

(2.9) holds. Then X(M) is compact, i.e., (H3) cannot hold.

It will be seen, in the next section, that the assumption that "L^ is formally

selfadjoint" is quite restrictive.

3. Compactness. The object of this section is to prove the following:

Lemma 3.1. Let m be fixed, 1 < m < n. Assume conditions (H1)-(H2) of §2

and that X(M) is a am- Weingarten hypersurface with am(X(x)) = C0 > 0 on

M. Then X(M) is compact.

This is a consequence of Lemma 2.1 and Propositions 3.1 and 3.4-3.7

below. In this section, we assume (H1)-{H2) and (H4). We associate with W,

the symmetric tensor <p or 22<#>/,ío, ® to, defined by

m

</>= 2 nidw/dsjh»-1, (3.1)

where hß = (h^y is the pth power of h = (h¡¡), the second fundamental

matrix. Thus «° = / is the identity matrix and the yth element of h¡¡ is

Kj - 2  • • '     2   fy-,uÄ(i)/(2) • • • hupL-w- (3-2)
<'(i) <(n-l)

Hence (3.1) means that

m

** - 2 M(3»73W,   whereA°=5r (3.3)

Correspondingly, the associated operator is

m

V-2 2V* -2 2 2 »{ow/ds^-Xy.        (3.4)
i      y i      j    /i=l

Proposition 3.1. t/nde/- the assumptions (H1)-(H2), (H4) a/«/ W(X(x)) =

const o/j M, the relations (2.9) AoW.

Proof. Let sp(x) = S^x)). Then

sp(x) = tr A*1 = 2Z 2 '    "    2   ",,(iA(i).(2) • • • *<(m-i)<-
» ¿(i) Km-i)

Hence, we have, with i = i( p),

sp,k - 2 2 2  •    '     2   nu(\) ' ' ' hj(K-X)nKxk
*=1   <   ,(1) i(|»-l)

•Ä/W/U+i) • • • rt,(,i-i)i>       (3-5)

so that

s^k = p tr(«*-'A,,) = p2 2 A#"'A/a- (3-6)
«   /
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Note that if w(x) = W(X(x)), then w(x) = c0 on M implies that

m

0 = *,k = 2 (oW/dSjs^- 2 2<í>iAa   for 1< * < «.
(»-i í   /

Proposition 3.2. zii.su/ni? (H1)-(H2), (H4) and (3.1). TAen L,,, ¿s elliptic if

and only if

dW(X)/aXi > 0   for X = A(x), x G A/, 1 < i < n. (3.7)

Proof. In fact, the eigenvalues of <j> are

m

2  p{oW/dSp)\>i-x = bW/oXi   withA = A(x), 1 < i < n.     (3.8)
,1-1

Proposition 3.3.  Under the assumptions (H1)-(H2), (H4) and (3.1), a

sufficient condition for L^ to be formally selfadjoint is that

m      m

2 2 p*{o2w/osKosp)xr-xxrx
K=l    ,1=1

m— 1        m

+ 2     2    p(3IF/35/l)Ar'<-1ArI=0 (3.9)
K= 1     ,t=K +1

for I < i,k < n. This is the case, e.g., if W satisfies

m m

KZ\v{Z2W/oSKoSli)X?-i+    £     p{oW/aSpy\r-<-x=Q   (3.10)
fl= 1 ,l=K + 1

for 1 < / < n, 1 < k < m.

Proof. From (3.3),

(mm m \

2 2 p^/as^KAr1 + 2 »(dw/ds^h^ .
,x=l k=\ p=2 )

Note that (3.2) implies that

*&-*= 212 2«rVArK-1- (3-11)
K=l      *       />

By the Codazzi relations (2.5), we have h^j = ft^, so that, by (3.6),

2^7'= 2 (r«r'^i"V«,*
7 K=l *:

H-l

= 2 K-i2*r""%
K=l 7

for p > 2. If, at a fixed arbitrary point x of M, h = diag(A,(x),. . ., A„(x)),
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then, by (3.6) and the last relation,

Skj = K2a\     "kkj'
k

2*& = 2 -"V*""^! = 2 sr-'v'w
7 K = I K = 1     k

Hence, 2y</>i,i/- becomes

[     m       m

2   2 2 ^w/dsjs^xr1
k   (k=1  ¡l=\

m     ¡t-i |

+ 22 nidw/oSrpy-'-ix*-* Uw,.
M = 2  K=l

Thus, the first part of the assertion follows, and the second is obvious (since

oW/dSm+x = 0).

Proposition 3.4. If W = am(X), then (3.10) holds. Hence i/(Hl)-(H2) holds

and W = am(X) in (3.1), then L^ is selfadjoint.

It is not difficult to see that if W(X) is a symmetric homogeneous

polynomial of degree m in (A„ ..., AJ, then (3.10) holds only if If is a

constant multiple of am.

Proof. Standard formulas show that

poam/dSp = (-\y-xom_p   for 1< p < m; (3.12)

cf. [4, §80 or 161], wherepp = (- \)\. Hence

pK02am/aSKdSp = (-1)*1  * am_p_K   for 1 < k, p < m - 1, and p + k < m.

(3.13)

Thus, if W = om, then the left side of (3.10) is
m — K m

2\(-\Y+'em->-¿rl-    2   (-l)"o--,V—'-0.
,1= 1 ,l = IC+ I

Proposition 3.5. 7/0 < A? < • •• < A£ and am(X°) > 0, then 9om(A°)/3\¡:

> 0 for 1 < k < n. Hence, if (H1)-(H2) holds, W = am(A) in (3.1), and

o-m(A(x)) > 0 on M, then L^ is elliptic.

Proof. Note that

öo-m(A)/3A,. = o-£L,(A), (3.14)

where   o®_x   denotes   the   (m — l)st  elementary   symmetric   function   in

A,, • . •, A,+„ A,+„ . . . , A„. We shall first verify the following:
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Claim. Let 0 < A, < • • • < A?. Then am(X°) = 0 if and only if there exist

m - 1 indices (1 <) i(\) < ■ ■ ■ < i(m - 1) (< ri) such that A£ = 0 if k j=

i(p), 1 < p < m — 1.

This is clear if m = 1. Assume that m > 1 and that the claim holds if m is

replaced by m — I. Suppose that Xf =£ 0 for some j. Since mam(X) =

2Aio-£)_,(A), am(X°) = 0 implies that o-£!,(A°) = 0. Thus, by the induction

hypothesis, there exist m — 2 indices (1 <) z'(l) < • • • < i(m — 2) (< ri),

i(p) ¥= j, such that Xk = 0 if k =£j or k ¥= i(p), 1 < p < m — 2. This gives

the claim.

Completion of the proof. Suppose that 0 < A? < • • • < Xf and that

3öm(A°)/3A, = 0 for some i, 1 < / < n. Then of£_x(X°) = 0, and so there exist

m - 2 indices /(I) < • • • < i(m - 2), i(p) =£ i, such that Xf = 0 if/ ^ i or

/ =£ i(p) for 1 < p < m — 2. Thus am(X°) = 0. This proves the first part of

the proposition, and the other part follows from Proposition 3.2.

Remark. It is clear that this proof shows that if c0 > 0 and c, > 0, then

there exists a 8 = 8(c0, cx) > 0 such that

dam(X)/dXk > 8 > 0   if am(X) > c0 > 0, 0 < A, < • • •  < A„ < c,.    (3.15)

Proposition 3.6. Assume (H1MH2), (H4) and that W(X) is a homogeneous

function of degree m in (3.1). 77jt7i

tr (#) =22 Vfc = ntW(X(x)), (3.16)
'    j

so that (2.12) holds if W(X(x)) ̂  const on M.

Proof. By (3.8), the eigenvalues of <ph are

m

2  pioW/dS^^XiOW/oXj,       1 < i < n,

so that (3.16) follows from Euler's theorem.

Proposition 3.7. // (H1HH2) holds, W = am(X) in (3.1), and am(X(x)) >
C0 > 0 on M, then

inf tr (<?h2) = inf 2 2 2 MA. > °- (3A1)
M M      i     j     k

Proof. The eigenvalues of <pA2 are

m

2  p(oW/oSp)Xt+x    for 1 < i < n,

so that

m

tr(#2)= 2  vioW/oS^S^.
e-i
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When W = am, (3.12) implies that

m m+1

tr(#2)= 2 (-l)'"VA+r 2 (-l)^i-Ä
0-1 M=2

Thus, by Newton's formula (cf. [3, p. 244]),

tr (#2) = amax - (m + l)am+x,

where am+x = 0 if m = n. If m < n, then each term A,(1) • • • A,(m+i) of am+x

occurs m + 1 times in amax, for the factor \w can be considered to be in ax

for/ = 1, . . . , m + 1. Thus
m

tr (<bh2) > 2 {2 • • • 2 A,(,) • • • Xi(ll_xy\2(py\ill+X) • • • A,(m)},

where the inner sum is over 1 < i(l) < • • • < i(m) < m. Hence

tr(#2)>An(AnAn_,---A7I_m+1).

Since am < (\ • ■ ■ X„_m+x)nl/(n - m)\m\ < X?n\/(n - m)\m\, we see that

tr (<i>A2) >[m\(n - m)\am/n\]X + X/m>[m\ (n - m)lC0/n\]l + i/m> 0.
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