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ON COMPLETE MANIFOLDS 
WITH NONNEGATIVE RICCI CURVATURE 

UWE ABRESCH AND DETLEF GROMOLL 

Complete open Riemannian manifolds (Mn , g) with nonnegative sectional 
curvature are well understood. The basic results are Toponogov's Splitting The-
orem and the Soul Theorem [CGI]. The Splitting Theorem has been extended 
to manifolds of nonnegative Ricci curvature [CG2]. On the other hand, the 
Soul Theorem does not extend even topologically, according to recent examples 
in [GM2]. A different method to construct manifolds which carry a metric with 
Ric> 0, but no metric with nonnegative sectional curvature, has been given by 
L. Berard Bergery [BB]. This leads to the question (cf. also [YI]): Is there any 
finiteness result for complete Riemannian manifolds with Ric ~ O? The answer 
is certainly affirmative in the low-dimensional special cases n = 2, where all 
notions of curvature coincide, and n = 3, where nonnegative Ricci curvature 
has been studied by means of stable minimal surfaces [MSY, SY]. On the other 
hand, J. P. Sha and D. G. Yang [ShY] have constructed complete manifolds 
with strictly positive Ricci curvature in higher dimensions. For example they 
can choose the underlying space to be R4 x S3 with infinitely many copies of 
S3 x Cp2 attached to it by surgery; cf. also [ShYI]. It is therefore clear that any 
finiteness result for arbitrary dimensions requires additional assumptions. 

The purpose of this paper is to establish the following main result. 

Theorem A. Let M n be a complete open Riemannian manifold with Ric ~ O. 
Suppose that M n has diameter growth of order o(rl/n). Then M n is homotopy 
equivalent to the interior of a compact manifold with boundary, provided the 
sectional curvature is bounded away from -00. 

The notion of diameter growth requires a precise definition. Roughly speak-
ing, we would like to measure the diameters of the "essential components" of the 
distance spheres S(po' r) W.r.t. the intrinsic metric in Mn\B(po' , . r) , where 
! < , < I is a fixed number. Given any open set Q c M n , not necessarily 
connected, we shall write diam(L, Q) for the diameter of any connected subset 
L c Q measured W.r.t. the intrinsic distance function of the open submanifold 
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356 UWE ABRESCH AND DETLEF GROMOLL 

Q. Let C(PO' r) denote the union of the unbounded connected components of 
Mn\B(po' r). We set 

(0.1) diam(po; r) := supdiam(Lk , C(po' (r)), 

where the supremum is taken over all components Lk of aC(po' r) . 

Definition. Let f: R+ -+ R+ be a monotonic function. A Riemannian manifold 
M n with base point Po is said to have diameter growth of order o(f) (resp. 
&(f)), if and only if f(r)-l . diam(po; r) converges to zero as r -+ 00 (resp. 
remains bounded). 

This definition will be discussed further in § 1. Here we would just like to 
point out that the details have been arranged in such a way that the diameter 
growth condition in Theorem A is as little a restriction as possible. The reason 
for taking the supremum in formula (0.1) rather than a sum or any other norm 
becomes even more clear when we present our result in a slightly more general 
context. Quite in contrast to the Splitting Theorem in [CG2], Theorem A ex-
tends to manifolds with asymptotically nonnegative Ricci curvature, thus going 
beyond a rigidity result. 

Theorem B. Let M n be a complete open Riemannian manifold with base point 
PO' and let ro(q) = d(po' q) for all q E M n . Suppose that 

(0) there is a nonincreasing function A: [0, 00) -+ [0, 00) such that CO(A) = 
fooo r· A(r) dr converges and Ricq 2: -(n - 1) . A 0 ro(q) at all points 
qEMn , 

(i) the sectional curvatures are uniformly boundedfrom below by some (neg-
ative) constant, and 

(ii) M n has diameter growth of order o(rl/n) with respect to po. 
Then all critical points of the distance function ro lie inside some large ball 

B(po' R), which therefore is a deformation retract of M n , and M n is homotopy 
equivalent to the interior of a compact manifold with boundary. 

Let us illustrate our results in one example. Let M(d1 , d2) be the connected 
sum of infinitely many copies of Sd, xSd2, where 1 :::; d1 ::; d2 (see Figure 1). If 
d 1 = 1, the fundamental group grows exponentially and there cannot be a com-
plete metric with Ric 2: 0 (cf. Proposition 1.3). Nothing can be said-using 
such a classical argument-for metrics with asymptotically nonnegative Ricci 
curvature. If d 1 2: 2 it has not been known so far whether or not M(d1 , d2 ) 

can carry any metric with Ric 2: 0 at all. It is easy to put complete Rieman-
nian metrics on the manifolds M(d1 , d2) such that their diameter growth is of 
order &( I) ("bounded diameter"). By Theorem B these metrics cannot even 
have asymptotically nonnegative Ricci curvature, unless possibly their sectional 
curvature K is not bounded away from -00. 

Let us now discuss the additional hypothesis in Theorems A and B. Bounding 
the diameter growth seems to be a very natural condition. In fact, it is this 
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FIGURE 1 

condition which is violated in the Sha-Yang examples. On these manifolds of 
infinite type the metric can be chosen to have diameter growth of order at most 
&(r2/3). The condition also does not hold for the Berard Bergery examples 
(finite homotopy type, diameter growth:::: &(r2/3)). However, it does hold in 
the large class of the Gromoll-Meyer examples. They all have even bounded 
diameter. 

All these examples have sectional curvature bounded away from -00. Indeed 
this hypothesis appears to be a fairly weak assumption; it enters our arguments 
only in an integrated form (cf. Proposition 4.2). 

In both theorems we have only claimed finite homotopy type for every single 
M n , but not a uniform bound for a whole class of manifolds. Such a bound 
does not even exist for the numbers of homotopy types of compact manifolds 
with positive sectional curvature, as the examples of Wallach show [AW]. 

Nevertheless-as a consequence of Gromov's Betti numbers theorem (cf. [A, 
G])-a uniform bound does exist for the homology types with coefficients in any 
field. This holds even for noncompact spaces with asymptotically nonnegative 
sectional curvature. However, such an estimate cannot hold for the class of 
compact manifolds with strictly positive Ricci curvature, according to examples 
in [ShY]. We do not know whether or not in our context a fixed lower sectional 
curvature bound and a specific diameter growth rate give rise to an a priori 
estimate for all the Betti numbers. 

Many results on manifolds with Ric:::: 0 are proven by volume comparison 
(cf. §1). These arguments are not sufficient to prove Theorems A and B. We 
need much stronger bounds for the distance function. In fact, the main result 
in §2 is a lower bound on the height of thin triangles involving just the lengths of 
their edges and a lower bound for the Ricci curvature (cf. Proposition 2.3 and 
Corollary 2.4). Here Toponogov's triangle comparison theorem is not required. 

Our argument is modelled on the basic step in the proof of the Splitting 
Theorem; we calculate a bound on the Laplacian of certain distance functions 
and apply the maximum principle. In the case of the Splitting Theorem this 
bound is always zero; in our nonrigid situation the bound can-and will-take 
different values. This problem is dealt with in Theorem 2.1, which seems to be 
a new estimate on "subharmonic" Lipschitz functions. 

In §3 we compute (as far as needed) the explicit bounds for the thin triangles. 
In particular, we analyze the asymptotic curvature condition so that in §4 we 
will be prepared to prove a new critical point lemma and deduce Theorems A 
and B. 
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1. DIAMETER GROWTH AND VOLUME GROWTH 

Our first goal is to show that both notions, volume growth and diameter 
growth, can be used equally well to distinguish qualitatively between hyperbolic 
spaces and manifolds with nonnegative Ricci curvature. It is a direct conse-
quence of the definitions that hyperbolic space has exponential volume growth 
as well as exponential diameter growth. Notice that we are considering the 
quantities diam(S(po' r), Mn\B(PO' , . r)), i.e., we have defined the relevant 
distance between two points ql' q2 E S(po' r) as the infimum over the lengths 
of only those curves from ql to q2 which lie inside Mn\B(po, , . r). 

Proposition 1.1 (Linear diameter growth). Any complete Riemannian manifold 
with Ric 2: 0 has diameter growth of order &'(r) with respect to any point 
Po E Mn. 

This proposition is a direct consequence of Lemma 1.4 below. In order to 
make our point clear, let us state the corresponding result for volume growth 
next. 

Proposition 1.2 (Polynomial volume growth). Let M n be a complete noncom-
pact Riemannian manifold with Ric 2: 0, and let Po E M n be arbitrary. Then, 

(i) vol B(po' r) ::; wn . rn for r > 0, and 
(ii) voIB(po' R) 2: !(R/r - 1)· voIB(po' r) for 0 < r < R. 

Here W n stands for the volume of the euclidean unit ball B n (1). This propo-
sition completes our elementary comparison of volume and diameter growth. 
The second inequality is due to E. Calabi and S. T. Yau [CGT, Y2]. Since both 
statements are actually fairly direct consequences of the well-known relative vol-
ume comparison theorem, it is in fact easy to extend them-of course only up 
to some positive factors-to manifolds with asymptotically nonnegative Ricci 
curvature as we have defined them. (Notice that our condition is stronger than 
the condition of almost nonnegative Ricci curvature at infinity, which has been 
introduced in §4 of [CGT].) A result which does not extend is the following 

Proposition 1.3 (Polynomial growth of 1C I ). Let M n be a complete Riemannian 
manifold with Ric 2: o. Then 

#{ a E 1C I (Mn)llIaligeo ::; r} ::; const . rn. 

In particular, the first Betti number bl (Mn ,R) is bounded from above by n. 

Here lIaligeo stands for the geometric norm taken w.r.t. some base point Po 
in the universal covering Xfn, i.e., lIaligeo = d(po' a . po), where a is the 
decktransformation representing a E 1C I (Mn). The proposition is proved by 
looking at the Dirichlet cell iJ around Po and the action of the decktransfor-
mation group. Given Po > 0, one compares the volume of iJ n B(po' po) to 
the volume of large balls B(po' r) (cf. [CG2, M, An] for further results). 
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Remark. Working with manifolds of asymptotically nonnegative Ricci curva-
ture, one can in general at best pass to some finite covering, and this already 
weakens most decay conditions in relation to the degree of the covering. This 
makes it clear where the proof of Proposition 1.3 breaks down, when turning 
to manifolds with asymptotically nonnegative Ricci curvature. Of course, it is 
also easy to give a direct counterexample. 

Before we begin with the proof of Proposition 1.1, let us recall the basic tool: 

Relative Volume Comparison Theorem (R. Bishop [BC] and M. Gromov [GLP, 
MS]). Let M n be a complete Riemannian mani/old with Ric;:::: (n - 1) . K , and 
let q E M n be arbitrary. Then 

(1.1) volB(q, r) > volBK(r) , provided O:s; r:S; R. 
volB(q, R) - volBK(R) 

Here BK(r) denotes a ball of radius r in the simply connected model space 
of constant curvature K. 

Lemma 1.4. Let M n be a complete Riemannian manifold with Ric;:::: 0, and 
let Po E M n . Then/or all r > 0, 

(1.2) diam(po, r):S; 4~· (1 + 2g)n. r where~ = !(1- O. 
Proo/. Pick a maximal family of points qj E S(po' r) such that the balls Bj = 
B(qj' ~ . r) are disjoint. As Bj C B(po' (1 +~) . r) C B(qj' (2 +~) . r), it is 
standard to conclude-using the hypothesis Ric ;:::: 0 via the relative volume 
comparison theorem-that for all j, 

(2~¢rVOIB(Po' (1 +~)r) :s;volBj :s;voIB(po' (1 +~)r), 

and hence 

( 1.3) 

The balls B(qj' 2¢r) cover S(po' r) , but they still do not intersect B(po' Cr) . 
In particular, if B(qj' 2~r) n B(qj' , 2~r) =1= 0, then the minimizing geodesic 
joining qj and qj' has length less than 4~r, and hence does not intersect 
B(po' Cr) either. Therefore the lemma follows directly by counting the number 
of balls B(qj' 2¢r) , as in inequality (1.3). 0 

The proofs of Proposition 1.3 and Lemma 1.4 illustrate how one can get some 
length control from volume estimates. This works since the standard volume 
estimates are for metric balls and involve the radius which is already a one-
dimensional quantity. We have actually proved more: if M n is a complete 
Riemannian manifold with Ric ;:::: 0, then for all Po E M n , r > 0, and all 
¢ E (0, !) the following inequality holds: 

(1.4) i¥f2: diam(!:j , Mn\B(po ' (1 - 2~)r)) :s; 4¢ ( 1 + ~) n • r. 
} 
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Here the infimum is taken over all countable coverings L = (L) of the distance 
sphere S(po' r). It is necessary to allow that a single L j may consist of several 
connected components of S(po' r). In this paper we are not going to compare 
diameter growth w.r.t. different base points in detail. One should certainly not 
expect a better statement than for volume growth; this notion is known to be 
independent of the base point only if the volume does not grow superexponen-
tially. Without referring to Theorem B we do not know how to prove, in the 
case of asymptotically nonnegative Ricci curvature, that the diameter growth 
does not depend on the base point. 

2. THIN TRIANGLES 

In this section we present an inequality for thin triangles which requires only 
a lower bound for the Ricci curvature and allows us to generalize the basic 
argument in the proof of the Cheeger-Gromoll Theorem [CG2]. 

We begin with a fundamental estimate on "subharmonic" Lipschitz junctions 
f: M n -+ R. Bounds for the Laplacian of such a function will be formulated in 
terms of upper and lower barriers, just as in the proof of the splitting theorem 
given by J. Eschenburg and E. Heintze [EH]. An upper (resp. lower) barrier for 
f at a point q in the interior of the domain of j is by definition a C2 -function 
fq defined on a given neighborhood Uq of q such that fq ~ f (resp. fq ::; j) 
on Uq and fq(q) = f(q). 

This analytic result already requires the lower bound for the Ricci curvature. 
We use comparison with the standard model spaces M; of constant curvature; 
in polar coordinates these spaces are usually described in terms of the functions: 

and 

1 ~ sin JK t , K > 0, 

SK(t)= t, K=O, 

hSinh~t, K<O, 

{ 
cosJKt, 

cK(t) = I , 
cosh~t, 

K > 0, 
K = 0, 
K < O. 

Our estimates in particular will involve the expression 

11 (s (r))n-l 
(jJn,K(p,/)= SK(t) drdt, 

p$.t$.r5.1 K 

(2.1 ) 

which is defined for 0 < p ::; I, provided KI ::; 7C 2 • Note that the radially 
symmetric function h (q) := (jJ n K (d (15, q) , I) on the punctured ball B (If, I) \ {p} 
in the model space M; satisfi~s: 

(i) D.h = 1 on B(p, /)\{p}, 
(ii) h(q)=O, gradhlq=O forqEaB(p,/). (2.2) 

These two properties determine the function (jJ n. K . 
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Theorem 2.1. Let M n be a complete Riemannian manifold, and let f: B(p, R) 
c M n -+ [0, (0) be a Lipschitz function. Suppose that 

(i) Ric;:::(n-l)'K on B(p,R), 
(ii) dilf:$ C I ' 

(iii) !1f:$ C2 in the sense that for all q E B(p, R) and all e > 0 there 
exists an upper barrier /q, e for f such that !1/q, e (q) :$ C2 + e, 

(iv) f has a zero z at distance / := d(p, z) < R. 
Then 

(2.3) 

Remarks. (i) C I ;::: O. Considering the zero z of f, it is clear that C2 ;::: 0 as 
well. 

(ii) <l>n(K, C1 , 0, /) = <l>n(K, 0, C2, I) = O. 
(iii) Myers' theorem states that K' P :$ 7[2 • This inequality is precisely the 

condition under which <l>n(K, C1 , C2, /) is well defined and depends continu-
ously on its parameters. 

Proof. Suppose the theorem is false. Using the continuity of <l>n we can pick 
iC < K such that 

(2.4) f(p) > <l>n(iC, C I , C2, /) ;::: 0 and iCP < 7[2. 

Similarly these inequalities persist when C I , C2 ' and I are replaced by CI = 
C I + e, C2 = C2 + e , and 1 = 1+ e , provided e E (0, R -I) is sufficiently small. 
We shall give a lower bound h: B(p , R) -+ [0, (0) for f such that h is strictly 
positive on B(p, 1). In particular, this yields fez) ;::: h(z) > 0, contradicting 
hypothesis (iv). 

In order to define h let us consider the piecewise C2 -functions rp P: [0, R) -+ 

[0, (0) defined by 

(2.5) 
__ {~I'(P-d)~C2'({Jn'i«d'I)' 
((Jp(d)- C2'({Jn,i«d,I), 

0, 

O:$d:$p, 

p:$d:$l, 

1:$ d < R. 
Since the map d 1-+ C2 • ({J n i< (d ,1) is strictly convex, there is precisely one 
Po E (0, 1] such that the function rp Po is of class d. Clearly rp Po (0) = 

<l>n(k, C1 , C2 , 1) < f(p). We set 

(2.6) h(q) = rp Po (d(p, q)) for q E B(p, R). 

It is clear that C1 , C2 > 0, so h is strictly positive in B(p, 1) and vanishes 
outside this ball. It remains to show that 

(2.7) f(q) ;::: h(q) for all q E B(p, 1). 
Since f(p) > h(p) , it follows directly from hypothesis (ii) that inequality (2.7) 
holds on B(p, Po)' In the annulus A = B(p, 1)\B(p, po) one can apply the 
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maximum principle: If f - h had a local minimum at some q E A, then its 
upper barrier 1q,£/2 - hq would have a local minimum at q as well. Here hq 
denotes the lower barrier for h constructed in Lemma 2.2 below. Therefore, 
!J.(1q,£/2 - hq)(q) ~ C2 + e/2 - (;2 < 0, a contradiction which shows that a local 
minimum of f - h cannot exist in A. 0 

Lemma 2.2. At any q E A the function h defined in formula (2.6) has a lower 
barrier hq such that !J.hq(q) ~ (;2' 
Proof. Given q E A, we pick a minimizing geodesic y from P to q. Let 
d = d(p, q) denote its length. For 0 E (0, d) we set 

(2.8) h~(x) := (;2' qJn K(O + d(x, y(o)), 1) for x E B(y(o) , 1- 0). 

The map p 1-+ C2 • qJ n ii: (p, 1), 0 < p < 1, is decreasing. The triangle inequality 
implies that ' 

h~(q) = h(q), 

h~(x) ~ hex) for x E B(y(o), 1- 0). 
(2.9) 

Since y is minimizing, its restriction to [0, d] remains minimizing, even when 
it is extended a little beyond the endpoint q = y(d). Therefore the dis-
tance function d)'(t5}(x) = d(y(o), x) is differentiable in a neighborhood vX 
of y(o, d] , and so is the function h~. It is a standard fact that 

(2.10) 
Ilgrad d)'(t5} II = 1 , 

!J.d)'(t5) ~ (n - 1 {K 0 d)'(t5} on Vr 
SK 

We compute 

)' - 8 2 - 2 
!J.ht5(q) = C2 • 8p2 qJn,ii:(P' 1)lp=d '1Igraddy(t5}l qll 

- 8 -
(2.11) + C2 • 8 P qJn,ii:(P' 1)lp=d' !J.d)'(t5}(q) 

- - (Cii:(d) CK(d-O)) rl(Sii:(r))n-1 
~ C2 + (n - 1)C2· sii:(d) - sK(d _ 0) . ld sii:(d) dr. 

Since R: < K, we can pick 0 E (0, d) so small that the expression on the right-
hand side is ~ (;2' Because of formula (2.9) the function hq = h~IVX is the 
desired lower barrier at q with !J.hq(q) ~ (;2' 0 

Theorem 2.1 has a direct geometric application. Let y be a minimizing 
geodesic joining two points PO' PI E M n . Given a third point p E M n we set 
(cf. Figure 2) 

ri(p)=d(p,p) (i=0,1), 
(2.12) l(p) = d(p, y), 

e(p) = ro(p) + r l (p) - d(po' PI) (the "excess function"). 
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FIGURE 2 

By the triangle inequality, 

(2.13) 0:::; e(p):::; 2·/(p). 

We are going to improve this inequality in the region where I(p) is small, i.e., 
at points p which are close to y. 

Proposition 2.3. Let p, PO' PI' and y be as above, and let R > I(p). Suppose 
that Ric;::: (n - I)K on B(p, R). Moreover, we assume that the Laplacian of 
the excess function e is bounded by some constant C2 (R) , in the sense that for 
all q E B(p, R) and all e > 0 there is an upper barrier eq,e with il.eq,e(q) :::; 
C2(R) + e. Then 

{ 1:£ (s (r))n-I } (2.14) e(p):::; inf 2p + C2(r). ...!L-( ) drdt < 2/(p). 
O<p<l(p) p~t~T9(p) SK t 

In particular, when K :::; 0, 

n-I (I n)l/n-1 2·--· -CI n>_3, n-2 2 3 ' 

(2.15) e(p):::; 2 (I 1+ /1 + C;P) 
Ci . +In , 

1+/I+C;/2 C31 
n = 2. 

Here we have set 1= I(p) and C3 = ~SK/2(1). C2(R). 

Corollary 2.4. Let p, PO' PI' and y be as above. Assume that M n is a com-
plete Riemannian manifold with Ric;::: O. If I(p) < min{ro(p) , rl(p)} , then 
inequality (2.15) holds with 

c_n-1.( I + 1 ) 
(2.16) 3 - n r 0 (p) - I (p ) r I (p) - I (p) . 

On the right-hand side of (2.15) we see the factor In/n-I. The exponent 
n/n - I occurs in the border line Sobolev embedding L:(Rn) --+ Ln/n-'(Rn) 
for the very same reason: it makes both inequalities scale invariant. 

When n = 2, the exponent n/n - I takes the value 2. However, there is 
a logarithmic factor which makes our estimate (near I = 0) even qualitatively 
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weaker than the bound obtained from Toponogov's Theorem. But when n 2: 3 
and we assume only that Ric 2: 0, Toponogov's Theorem does not apply. 

Proof of Proposition 2.3. Since dil e S 2, and since the excess function e 
vanishes at the foot point z of p on y, i.e., at a point in B(p, R) , inequality 
(2.14) is a direct consequence of Theorem 2.1. The proof of (2.15) is just 
computational. Using t· sKt2(1) = SK(t) and 1 S SKtz(1) S sKr2(1) S sK/2(1) , we 
calculate that 

2p + C2(R). J" { (SK((r)))n-, drdt J p~t~r~/(p) SK t 

(2.17) S 2p + SK/ 2 (I)n-1 . C2(r). i'i' (.zr-' drdt 

1 (2 12 n (I '-n ) S 2p + '2 C3 ' P - + 21 . Jp t dt. 

We regard the above right-hand side as a function '¥(p). It follows from in-
equality (2.14) that e(p) S inf{'l'(p)I 0 < p < /}. The function '¥ is convex, 
and the infimum is assumed at the unique Po E (0, I) with ,¥' (po) = 0, or 
more explicitly, 

(2.18) n-I IC (In n) 'Cln 
Po = 2 3' - Po S 2 3 . 

When n 2: 3 , we conclude that 

(2.19) 

I (2 n 2 2 n 2-n) e(p) S 'l'(po) = 2po + '2 C3 ' Po - n _ 21 + n _ 21 Po 

n-l 1 2 2 2 
= 2--2 Po + -2--2 C3 ' (Po -I ) n- n-

n - 1 (1 n) '/n-I 
S2 n _ 2 '2 C31 

When n = 2, we find 

2 1 
e(p) S '¥(po) = Po + C3 / ·In-. 

Po 
(2.20) 

In this case (2.15) follows by eliminating Po from the right-hand side using the 
quadratic equation in (2.18). 0 

Proof of Corollary 2.4. Given I(p) < R < min{ro(p) , r,(p)} , we merely need 
to show that in B(p, R) the Laplacian of the excess function e is bounded by 
C2(R) = (n - 1 )!(ro(p) - R) + (n - I )/(r, (p) - R) in the sense of Proposition 2.3. 
In (2.15) we can then pass to the limit R ---+ /(p). So let us pick minimizing 
geodesics Yo' Y, from PO' PI to some point q E B(p, R). We set 

(2.21) e: (x) = 26 + d(Yo(6) , x) + d(Y I (6), x) - d(po' PI) for x E M n , 
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where 0 varies between 0 and min{ro(p) , r l (p)} - R. Each function e: is 
differentiable when restricted to a suitable neighborhood U: of q. Indeed, 
e: I U: is an upper barrier for e at q such that 

" n-l n-l n-l n-l !J.e (x) < + < + -..,.-:--,-----::-q -ro(q)-o rI(q)-o ro(p)-R-o rI(p)-R-o (2.22) 

(cf. formula (2.10)). Thus given e > 0, we can choose o(e) > 0 so small that 
!J.e:(e)(q) ::; C2 (R) , as required. 0 

3. EXPLICIT ESTIMATES FOR MANIFOLDS WITH ASYMPTOTICALLY 
NONNEGATIVE RICCI CURVATURE 

In this section we are going to determine explicit bounds for thin triangles in 
our more general situation. 

Proposition 3.1. Let M n be a complete Riemannian manifold of dimension n 2: 
3, and let p, PO' PI' and y be as in (2.12) (cJ Figure 2). Suppose L := 
d(po' PI) 2: 2· ro(p) and, moreover, that there exists a nonincreasing function 
k [0, 00) --+ [0, 00) such that CO(A) = fooo rA(r) dr converges and Riclq 2: 
-(n -1) .Aoro(q) at all points q E Mn. Then the height of the triangles can be 
bounded from below in terms of ro(p) and the excess e(p) : 

. {I ro(p) lin I-lin} (3.1) d(p, y) 2: mm (;ro(p) , VI + 8CO(A) , C4 • ro(p) . (2e(p)) , 

where 

C-CnA_~n-2 5 ( ) 
lin 

4 - 4( , ) - 17 n - 1 1 + VI + 8CO(A) 

Remarks. (i) For manifolds with nonnegative Ricci curvature we have-as a 
direct consequence of Corollary 2.4-the stronger estimate 

( 3.1' ) 1 . { n-2 lin I-lin} d(p, y) 2: "2 mm ro(p) , n -1 ·ro(p) ·e(p) . 

(ii) Since C4(2, A) = 0, the proposition holds trivially for 2-manifolds so 
that we need not explicitly exclude this case in subsequent applications. It has 
already been explained after Corollary 2.4 that more reasonable estimates in 
the two-dimensional case should be based on Toponogov's Theorem; we are 
not going to state them here. 

The convergence of the integral CO(A) , which is a hypothesis of the propo-
sition, is essentially a decay condition on the lower curvature bound. Roughly 
speaking, this bound must tend to zero a little quicker than const· ro(p)-2 . 
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More precisely: 

Lemma 3.2. Let A: [0, 00) -> [0, 00) be a monotonic function such that Co (A ) = 
Jooo rA(r) dr converges. Then the monotonic functions 

(3.2) AI (r) = /00 A(t) dt and A2(r) = /00 AI (t) dt 

exist, and moreover, 

(3.3) r2 A ::; 2CO(A) and rA I (r) ::; COCA) for all r > O. 

This lemma, which has been proved in Chapter II of [A], will be useful 
in deducing Proposition 3.1 from Proposition 2.3. However, before we can 
actually give this argument, we need to know more about the analysis of the 
decay condition. Let us consider the Riccati equation 

I 2 (3.4) u (r) = u(r) - A(r). 

For any L > 0 there are unique solutions u~: (0, L] -> [0, 00) such that 
u~(L) = 0 and uO;:: (0, L) -> (0,00) such that uL(r) -> +00 for r -> L. 
Lemma 3.3. If COCA) converges, then: 

(i) The solutions u~(r) of (3.4) depend monotonically on r and on the 
parameter L. They are bounded by min{AI (r), JA(r)} , and hence in the limit 
L -> 00, they converge to a non increasing solution uoo : (0, 00) -> [0, 00) . 

(ii) The solutions uO;: (r) also converge monotonically in L and uniformly on 
compact subsets of (0, 00) to the solution uoo . When 0 < r < L, the following 
inequalities hold: 

(3.5) uoo(r) < u';(r) ::; uoo(r) + L ~ r ::; min{AI (r), JA(r)} + L ~ r 
Proof. Part (i) of this lemma has also been proved in Chapter II of [A], where 
the condition COCA) < 00 has been analyzed in detail. Anyway, the common 
upper bound for the functions u~ as well as their monotonicity is obtained by 
a simple comparison of first order differential equations. In order to prove part 
(ii), let us substitute u(r) = uoo(r) + v(r)-I into equation (3.4). We see that 
the function v satisfies 

(3.6) v' (r) = -1 - 2uoo (r) . vCr). 
Since any positive initial value vo decays to zero within finite time, we conclude 
that any solution u(r) which exceeds Uoo (r) at some point cannot exist globally 
on (0,00) and is in fact some uo;:. Equation (3.6) also implies that uoo(r) < 
uO;:(r) ::; uoo(r) + 1/(L - r). 0 

For any f5 ? 0 let w';: (f5, 00) -> (0, 00) be the unique nonincreasing solu-
tion of 

(3.7) 
, 2 

W (r) + w(r) - A(r) = 0, 

with initial data given by limr-o w(r) = +00. 
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Lemma 3.4. Suppose that Co().) converges. Then for all r > 0 and all e > 0 
there is some t5(e, r) > 0 such that 

(3.8) w;"(r) $ ;r . (I + VI + 8Co().)) + e for 0 $ t5 $ t5(e, r). 

Proof. Set a = ~(I + JI + 8Co().))' By Lemma 3.2 it is clear that ).(r) $ 
-a(1 - a)r-2 for all r > 0, and so v'(r) + v(r)2 + a(1 - a)r-2 = 0 is a 
comparison equation for (3.7). Its generic solution is 

<Xl a 2a - I t52a- 1 
(3.9) va (r) = r + -r-r2a-1 _ t5 2a - 1 . 

Standard comparison arguments yield w;;(r) $ v;;(r) for r > t5 ~ O. 0 

In subsequent arguments the Riccati equations (3.4) and (3.7), which have 
been analyzed above, will be used as (one-dimensional) comparison equations 
in the following geometric context: let dp denote the distance function to some 
point P E M n , and let c be a unit speed geodesic of finite length which begins 
at c(O) = p and which does not intersect the cut locus Cp of p. Then dp is 
d~fferentiable along c except at p itself, and its Hessian, viewed as a symmetric, 
(I, 1 )-tensor, satisfies 

. 2' , 
(3.10) V'e,Hessdp + (Hessdp) +R(·, c)c = 0, 

and hence the differential inequality 

( 3.10') ( 1 ) (1 )2 I ." del n _ 1 Ildp + n _ 1 Ildp + n _ I (RIC C , C ) $ O. 

Proof of Proposition 3.1. It is sufficient to consider the case where 

/(p) < ro(p) = min { ~ro(p), JI :~~o().) } . 

Let us choose /(p) < R < ro(p). Our goal is to apply Proposition 2.3 to the 
triangle PO' PI ' p. The lower bound K on the Ricci curvature in the ball 
B(p, R) can be controlled by means of Lemma 3.3; it follows that 

5 JI + 8Co().) . h6 J2Co()') 
S 2 ( I) < - sm - ----r.~::;#;;;=;=;~ 

K/(p) - 6 J2Co()') 5 Jl + 8Co().) 
5. 3 17 

< }smhS < 16' 
(3.11 ) 

In order to be able to use Proposition 2.3, it is therefore sufficient to give a weak 
upper bound for the Laplacian of the excess function e on the ball B(p, R) . 
Upper barriers at some point q E B(p, R) can be defined as in the proof of 
Corollary 2.4; we select minimizing unit speed geodesics YO' YI from PO' PI 
to q. For small t5 > 0 and all x E B(p, R) we define 

a (3.12) eq (x) = 2t5 + d(Yo(t5) , x) + d(Y I (t5), x) - L. 
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Again, the point q = yo(ro(q)) = YI (rl (q)) lies neither on the cut locus of Yo(<5) 
nor on the cut locus of Y1 (<5). The distance functions d7o (0) and dyJo ) are 
differentiable along the curves <50 1(<5, ro(q)] and yl l(<5, r l (q)], respectively. In 
particular, the differential inequality (3.10') holds along both these geodesics. 

Since Riclyo(') ;::: -(n - 1)A.(r) , comparison of (3.10') with the Riccati equa-
tion (3.7) yields 

(3.13) 

Since A. is supposed to be nonincreasing, it follows from the triangle inequal-
ity that Ricly)(L_,) ;::: -(n - 1)A.(r). As the parametrization has been reversed, 
the differential inequality for I1dy) (0) / (n - 1) must be compared to the Riccati 
equation (3.4) rather than (3.7). We conclude that 

(3.14) I1dy)(o)(q) S (n - 1)· u'::_o(L - rl(q)). 

Our estimates above verify that each function e: is an upper barrier for the 
excess function e at q when restricted to a suitable neighborhood U: of this 
point. It satisfies 

(3.15) 

In the limit & - 0 the right-hand side of (3.15) converges to 

(n - l)[w:(ro(q)) + u'::(L - rl(q))]. 

Therefore Proposition 2.3 yields 

(3.16) 

where 

n-I (17)n-1 ( 00 00 ) C3 = -n-' 16 . Wo (ro(p) - R) + I~~ uL (L - r l (p) - r) . 

Of course, this estimate can be slightly improved by taking the limit R - I (p) . 
From 3.2 and 3.3 we conclude that 

SUPu'::(L-rl(p)-r)ssuP{urxJL-rl(p)-r)+ (1) } 
Irl:S1 1'19 r l p + r 

{ J2Co(A.) I} < sup + -....,---
-lrl9 L-rl(p)-r rl(p)+r 

{ 3 JI + 8Co(A.) I} < sup -. +---
- 1'19 2 2ro(p) - 3r ro(p) + r 

(3.17) 

S (~+ VI + 8Co(A.)) ro~pr 
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Here we have used the inequalities L - r I (p) ;::: ro(p) - 21(p) ;::: ~ro(p) and 
r l (p) ;::: L - ro(p) ;::: ro(p) , and the assumption l(p) < iro(p) itself. Similarly, 
Lemma 3.4 yields that 

00 3 / I 
(3.18) Wo (ro(p) -l(p» :::; 5(1 + y 1 + 8CO(A» ro(p)' 

Combining (3.16) through (3.18), we obtain 
n-I (17 n - 1 )n 8 2 n - 2 . / ro(p)·(2e(p» :::; 4n-21(P) '5'U-n-(1+ y l+8Co(A)), 

and the proposition is proved. 0 

4. A NEW CRITICAL POINT LEMMA 

Before we can establish our main theorem, we need to recall another concept: 
Fix a point Po E M n and consider the distance function ro(p) = d(po' p) on 
M. A point p E M n is a critical point of ro if and only if for any nonzero 
tangent vector v E TpMn there is a minimizing geodesic Yo to Po such that 
1(Y~(0), v) :::; n12. It is easy to define a continuous gradient-like vector field v 
on the complement of the set of critical points of ro' which gives rise to the 
Isotopy Lemma (c[. [GS, G]). Let 0 < PI < P2' and let C be a connected 
component of B(po' P2)\B(po' PI)· Let U be an open neighborhood of C. 
Suppose that C contains no critical point of r o' Then there exists 

(i) an isotopy from B(po' P2) to B(po' P2)\C which is the identity map 
outside of U , and 

(ii) an isotopy from Mn\B(po, P2) to (B(po' P2) u C) which is the identity 
map outside U. 

The hypothesis on sectional curvature enters the proof of Theorem B through 
the following 
Lemma 4.1 (Critical Point Lemma). Let M n be a complete Riemannian mani-
fold with base point PO' and let p E M n be a critical point of ro' Suppose: 

(0) There is a nonincreasing function A: [0, 00) --+ [0, 00) such that COCA) = 
Jooo rA(r) dr converges and that Riclq ;::: -en - 1) . A 0 ro(q) at all points 
qEMn . 

(i) The sectional curvatures of M n are bounded from below by _A2 , where 
A is some positive constant, and 

(ii) ro(p);::: Ro := max{ 2~' IjA (I + JI + 8CO(A»}. 
Then any minimizinggeodesicfrom Po to a point in B(p, C4A -1+I/nro(p)lln) , 

when extended beyond its endpoint, will meet the cut locus Cpo of PO' before its 
length exceeds 2ro(p). 

Here 
4 n - 2 5 ( ) 

lin 

C4 = C4 (n, A) = 17 n - 1 JI + 8CO(A) , 

as in Proposition 3.1. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



370 UWE ABRESCH AND DETLEF GROMOLL 

Proof. Assume on the contrary that there is a minimizing geodesic y from 
Po to some point PI E S(po' 2ro(p)) such that d(p, y) ~ C4A -1+I/nro(p)l/n . 
Because of hypothesis (ii) we know that 

(4.1 ) min{!r ( ) ro(p) } > C .A-I+I/n.r ( )I/n. 
6 0 P , Jl + 8CO(A) - 4 0 P 

Therefore Proposition 3.1 implies that e(p) ~ 1/2A. 
On the other hand, we can reason as in the proof of the standard critical point 

lemma: Let YI be a minimizing unit speed geodesic from p to PI. Since P is 
a critical point of ro ' there exists a minimizing geodesic Yo from P to Po such 
that 1:(Y~(O), y;(O)) ~ n12. Let us consider the points Po = Yo(p) and PI = 
YI (p), where p = 5/4A. The triangle inequality implies e(p) = 2p-d(po' PI). 
Applying Toponogov's Theorem and the Law of Cosines to the isosceles triangle 
PaPPI' we obtain that cosh Ad (po ' PI) ~ cosh2 Ap. Altogether, 

(4.2) -I 2 1 
e(p) 2: 2p - A arccosh(cosh Ap) > 2A. 

This contradicts the upper bound for the excess obtained from Proposition 3.1, 
and the lemma is proved. 0 

Remarks. (i) Recall that the standard critical point lemma is proved by applying 
Toponogov's Theorem twice (cf. [G, GS)). We have replaced one of these steps 
by our estimate in Proposition 3.1. This way we can make use of a lower bound 
for Ricci curvature, which in our case is quantitatively considerably stronger 
than the lower bound for sectional curvature. The price paid for working with 
the weaker notion of curvature is that we can only control the height d(p, y) 
of the triangle PaPPI from below, rather than its angle at po. 

(ii) Since the function 2p - A -I ·arccosh( cosh2 Ap) is monotonically increas-
ing in p and bounded by A -I In( 2) , it is clear that we are not losing much when 
choosing p to be 5/4A in the proof of the lemma. We emphasize that To-
ponogov's Theorem is only needed to get a uniform estimate for the excess of 
the a priori bounded triangles PaPPI. This suggests that a lower bound for sec-
tional curvature which we have required in Lemma 4.1 might just be a technical 
hypothesis. It is an open question whether there is a critical point lemma which 
involves only a lower bound on the Ricci curvature. 

Roughly speaking, Lemma 4.1 confines the size of the set of critical points. 
This restriction, which is nontrivial on all complete Riemannian manifolds, 
can be made more explicit for spaces satisfying a suitable diameter growth 
condition. 
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Proposition 4.2. Let M n be a complete Riemannian manifold with base point 
Po' Suppose that: 

(0) Thereisa nonincreasingjunction ..1.:[0,00) - [0, 00) such that Co(..1.) = 
fooo r..1.(r) dr converges and Riclq ~ -(n - 1)..1. 0 ro(q) at all points q E 
Mn. 

(i) The sectional curvatures are uniformly bounded from below by _A2, 
where A is some positive constant, and 

(ii) there exists RI > 0 such that diam(po' r) < C4(n, ..1.)A -i+I/nrl/n for 
all r > RI . 

Then all critical points of ro are contained in the union of B(po' R 2) and all 
bounded components K of Mn\B(po' R 2), where 

R2 = max {RI' :A' 1 ~A (1 + VI + 8Co(..1.)) }. 

Notice that the constant C4 (n,..1.) contains a factor (n - 2)/(n - 1), and so 
hypothesis (ii) implies that M n has dimension n ~ 3. 

Proof. Assume on the contrary that there is a critical point p of ro which lies 
in an unbounded component C of Mn\B(po' R2 + J) for some J > O. By the 
Hopf-Rinow Theorem there exists a sequence of points Pj E C, 1 ~ j < 00, 
such that ro(p) - 00 in the limit j - 00. Let Yj be a minimizing geodesic 
from Po to Pj' It is a standard fact that a subsequence of these geodesics Yj 

converges towards a ray Y emanating from Po' 
Clearly y(R2 + J, 00) C C. On the other hand, our critical point lemma 

implies that d(p, y) ~ C4 (n,..1.) . A -1+I/nro(p)l/n. Using hypothesis (ii) we 
conclude that p and yo ro(p) lie in different connected components of the 
distance sphere S(po' ro(p)). 

From the way the ray Y has been constructed, it is clear that there is a 
continuous curve c:[O, 1] - C such that c(O) = yoro(p) and c(1) =p. Let 
L(t) be the connected component of S(po' ro(c(t))) which contains yoro(c(t)). 
Consider the set 

(4.3) A = {t E [0, l1Ic(t) E L(t)}. 

Now 0 E A, 1 ff. A, and A C [0, 1] is a closed subset. Our indirect proof 
will be accomplished by deriving the contradiction that A is an open subset of 
[0, 1] as well. For this purpose let us pick some tEA. By hypothesis (ii), 
there is an e-neighborhood V.L(t) = {x E Mnld(x, L(t)):5 e} of L(t) such 
that 

( 4.4) . -I+I/n I/n dlam V.L(t) < C4 (n, ..1.) . A . (ro 0 c(t) - e) . 

Choosing p > 0 sufficiently small, we may assume that the intersection of 
the annulus A(t, p) = B(po' ro 0 c(t) + p)\B(po' ro 0 c(t) - p) and V.L(t) is 
a connected component of A(t, p). In light of Lemma 4.1, inequality (4.4) 
implies that the component A(t, p) n V.L(t) contains no critical point of ro' 
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---------
FIGURE 3. This figure depicts the basic problem which 
has been taken care of in the proof of Proposition 4.2. 
Our reasoning is essentially that, on the one hand, the 
annulus A(t, p) must contain a critical point of ro ' 
since the curve c(t) leaves the component L(t) of the 
distance sphere S(po' ro 0 c(t)), while, on the other 
hand, it cannot contain such a point by the estimate 
given in Lemma 4.1. 

and therefore the Isotopy Lemma applies to this piece of the annulus. In this 
context let us consider an open neighborhood U(t) of t in [0, 1] such that 
L(t') C A(t, p) n UeL(t) for all t' E U(t). The isotopies of the set A(t, p) n 
UeL(t) in its neighborhood UeL(t) , which we have obtained above, show that 
c(t') E L(t') for all t' E U(t). Hence U(t) C A, i.e., t is an interior point of 
the subset A C [0, 1]. 0 

Proof of Theorem B. In dimension n = 2 , we are just dealing with asymptoti-
cally nonnegative sectional curvature, and Theorem B turns out to be an easy 
corollary of the proof of the Betti number theorem as given in [A]. 

In the general case when M n has dimension n ;::: 3 it is evident that there 
exists some radius RI > ° such that diam(po, r) < C4 (n, A)A -I+I/nrl/n for 
all r> RI ' simply because we are assuming that M n has diameter growth of 
order a(rl/n). Hence it follows from Proposition 4.2 that all critical points of 
ro are contained in some large ball B(po' R). Notice that we do not claim that 
Mn\B(po' R2) has only finitely many bounded connected components K; this 
is only true for the complement of a generic closed ball. Anyway, all but finitely 
many of the connected components K are contained in B(po' 2R2 ) , and this 
is all we have used. 

Since M n is connected, the other assertions in Theorem B follow now by 
standard isotopy arguments. 0 

Theorem A is a special case of Theorem B, and so we have proved it as well. 
Finally let us point out that, in case one only wants to deal with manifolds of 
nonnegative Ricci curvature, the isotopy arguments in the proof of Proposition 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPLETE MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE 373 

4.2 are not needed. Instead we could refer to the following 

Proposition 4.3. Let M n be a complete Riemannian manifold with Ric ? O. 
Then 

(4.5) 

for any bounded domain Q c M n . Moreover, given any ball B(po' r) c M n , the 
boundary of each component of the complement Mn\B(po' r) must be connected. 
Proof. As any complete manifold with two or more ends contains a line, we 
conclude from the Cheeger-Gromoll splitting theorem that the universal cover-
ing ];jn has at most two ends. Now (4.5) follows by counting the preimages 
in ];jn of the point [Mn\Q] in the Quotient space M n /(Mn\Q.) , using the 
following commutative diagram: 

,n 
.L-. M n /(Mn\Q). 

1 
L M n /(Mn\Q.). 

Suppose there is a ball B(po' r) such that the boundary of Mn\B(po, r) has 
two or more connected components. Then 7r) (Mn) contains an infinite cyclic 
group by van Kampen's Theorem. Now a contradiction to inequality (4.5) 
arises, since l is injective on this infinite subgroup of 7r) (Mn) , provided Q 
is chosen sufficiently large. 0 
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