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Czechoslovak Mathemat ical Journal , 45 (120) 1995, P r a h a 

ON COMPLETE MV-ALGEBRAS 

JÁN JAKUBÍK, Košice 

(Received August 8, 1993) 

Though the number of published papers on MV-algebras is rather large (the fun-
damental source are Chang's articles [1] and [2]), the terminology and notation in 
this field seem to be far from being unified. We will apply the terminology from 
[5], [6]. 

It is well-known that MV-algebras are term equivalent to Wajsberg algebras 
(called also VV-algebras); cf., e.g., Cignoli [3]. Further, MV-algebras are categor-
ically equivalent to bounded commutative HCIf-algebras (cf. Mundici [8]); such 
HCI^-algebras were studied by Traczyk [10]. 

Cignoli [3] studied the structure of MV-algebras which are complete and atomic. 
His main result is the following theorem: 

(*) ([3], Theorem 2.6.) An MV-algebra is complete and atomic if and only if it 
is a direct product of finite linearly ordered MV-algebras. 

An MV-algebra srf which is a direct product of MV-algebras srfi (i G I) is complete 
if and only if all st/i are complete. Further, a complete linearly ordered MV-algebra 
is atomic if and only if it is finite (cf. 1.3 below). Thus (*) can be expressed as 
follows: 

(**) An MV-algebra is complete and atomic if and only if it is a direct product 
of complete atomic linearly ordered algebras. 

Let srf — (A; 0 , *, -i,0,1) be an MV-algebra. We can introduce lattice operations 
V, A, and hence also the corresponding partial order ^ on A (cf. Section 1 below). 
Let 0 < x £ A and let a > 1 be a cardinal. The element x will be called an a-atom 
of s/ if the interval [0,:r] is a chain having cardinality a. Hence the notion of the 
2-atom coincides with the usual notion of the atom. The MV-algebra £/ is said to 
be a-atomic if for each 0 < y E A there exists an a-atom x of s/ with x ^ y. 
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Let R be the additive group of all reals with the natural linear order . For each 

MV -a lgebra sz/ there exists a lattice ordered group G with a strong unit such tha t 

sz/ can be constructed by means of G (cf. (+2) and ($3) in Section 1 below). If G is 

isomorphic to H, then sz/ will be said to be of type R. 

By applying the results of [6] the following will be proved in the present paper: 

(A) Let sz/ be an MV -a lgebra and let a be a cardinal. 

(i) sz/ is complete and a-atomic if and only if it is isomorphic to a 

direct product of complete a-atomic linearly ordered MV -a lgebras . 

(ii) Let a > 2. An MV -a lgebra is complete, cr-atomic and linearly 

ordered if and only if it is of type R. 

(hi) If sz/ is a complete a-atomic MV -a lgebra with A / {0}, then either 

a = 2 or a = c (the cardinality of the continuum). 

(B) Let sz/ be a complete MV-algebra. Then sz/ is isomorphic to a direct product 

sz/i x sz/2 x sz/s such that 

(i) sz/\ is atomic; 

(ii) sz/2 is c-atomic; 

(iii) for each cardinal a, there are no a-atoms in sz/3. 

Let us remark tha t for each infinite cardinal a there exists a non-complete MV-

algebra sz/ such tha t , whenever x is a nonzero element of A, then x is an a -a tom 

of sz/. 

1. PRELIMINARIES AND AUXILIARY RESULTS 

For the notion of the MV -a lgebra we introduce the following definition (cf. [5] 

and [6]): 

(**) An MV -a lgebra is a system sz/ = (A; 0,*,->,O,1) (where 0 , * are binary 

operations, -> is a unary operation and 0,1 are nulary operations) such tha t 

the following identities are satisfied: 

(mi) x 0 (y 0 z) = (x 0 y) 0 z\ 

(m2) x 0 0 = x; 

(m3) x®y = g0:r; 

(m4) .T0 1 = 1; 

(m5) -.-.£ = x\ 

(m6) - 0 = 1; 

(1117) x 0 —x = 1; 

(m8) -.(-.2; 0 y ) e j / = -*(x 0 ~^y) 0 x\ 

(1119) x * u = - i ( - ix 0-«2/ ) . 
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We recall the following results (*;) (i = 1,2,3) (for (*i) cf. [5]; for (*2) and (+3) 
cf. [7] 2.5 and 3.8; cf. also [6], 1.2, 1.3 and 1.4). 

(*i) Let sz/ be an MV-algebra. For each x,y G A put x V y = (x * -iH) 0 y and 
x Ay = -»(-># V -<H). Then .i?(.c/) = (A; V, A) is a distributive lattice with 
the least element 0 and the greatest element 1. 

(*2) Let G be an abelian lattice ordered group with a strong unit u. Let A be the 
interval [0, u] of G. For each a and b in A we put 

a © b = (a + b) A u, ~^a = u — a, 1 = u, a * b = -i(-<a © -<b). 

Then J ^ = (A; ©,*,-i,0,1) is an MV-algebra. 
If G and «£/ are as in (*2), then we put sz/ = sz/0(G,u). 

(*3) Let sz/ be an MV-algebra. Then there exists an abelian lattice ordered group 
G with a strong unit u such that sz/ = sz/0(G,u). 

In what follows, sz/ and G are as in (*2) and (*3). 

1.1. Lemma, sz/ is complete if and only if G is complete. 

P r o o f . Let sz/ be complete. Hence the interval [0, u] is complete. The fact that 
u is a strong unit of G implies that for proving the completeness of G it suffices to 
verify that for each positive integer n the lattice [0, nu] is complete. 

We proceed by induction on n. The case n = 1 is trivial. Suppose that n > 1 and 
that the interval [0, (n — l)u] is complete. Since [(n — l)it, nu] is isomorphic to [0, u], 

we obtain that [(n — l)u,nu] is complete as well. 
Let A" = {xi}i£i be a nonempty subset of [0,?iw]. For each i G / we put 

x\ = Xi A (n — 1)H, x\ = Xi V (n — l)u. 

In view of the assumption the elements 

x
l
 = \/xl *2 = \ / ^ 

iel i£l 

exist. For each i G I the relation 

^ = -rj + (<T
2 - a) 

is valid, where a — (n — l)u. Put 

x = x1 + (x2 - a). 
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Then x ^ X{ for each i G I. Let y G [0,nu],u ^ â  for each i G F Put y1 = 
y A (n - l)u,y

2
 = y V (n - 1)H.. Then u

1 ^ x1 and y
2 ^ xf for each i G F At the 

same time we have 

y = y* + (y
2
 -a). 

Therefore y ^ x. Thus x = supX is valid in [0,?^H]. Similarly we can verify that 

inf X does exist in [0,rax]. Hence [0,nw] is complete. 
The converse implication is obvious. D 

1.2. Lemma, stf is linearly ordered if and only if G is linearly ordered. 

P r o o f . If G is linearly ordered, then clearly srf is linearly ordered as well. 
Suppose that G fails to be linearly ordered. Then there are gi G G with 0 < g; 
(i = 1, 2), #i A #2 = 0. Since u is a strong unit in G we infer that U{ = gi A u > 0 
(i = 1,2). We have u\ A H2 = 0 and Hi,H2 £ A. Hence sz/ is not linearly ordered. 

D 

Let Z be the additive group of all integers with the usual linear order. It is well-
known that if H ^ {0} is a complete linearly ordered group, then H is isomorphic 
either to Z or to it; hence if 0 < h G H, then the interval [0, h] is atomic if and only 
if [0, ft] is finite. Hence (*i), (+2), 1.1 and 1.2 yield 

1.3.1. Corollary. Let srf be an MV-algebra, A 7̂  {0}. Suppose that sV is 

linearly ordered and complete. Then (i) sz/ is finite if and only if it is atomic, and 

(ii) s/ is infinite if and only if it is c-atoinic. 

1.3.2. Corollary. Let sz/ be as in 1.3.1. Then (i) srf is atomic if and only if G 

is isomorphic to Z; (ii) srf is c-atomic if and only if it is of type R. 

For each nonempty subset X of a lattice ordered group H we denote 

X
s
 = {y£H: \y\ A \x\ = 0 for each x G X}. 

X
s will be said to be the polar in H generated by the set X. For a thorough theory 

of polars in lattice ordered groups cf. Sik [9], Each polar is a convex ("-subgroup of 
H; if 0 G X and Â  is a linearly ordered convex subset of H, then X

ss is linearly 
ordered as well. 

1.4. Lemma. Let srf be a complete MV-algebra. Let 0 < x G G and suppose 

that the interval [0,x] is linearly ordered. Then either [0,rr] is finite or [0,x] has 

cardinality c. 
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P r o o f . Put X = [0, x]. Then X is, at the same time, an interval of G. Thus X
ss 

is linearly ordered. According to 1.1, G is complete. Hence by the Riesz Theorem 
(cf., e.g., Fuchs [4], Chap. V), X

ss is a direct factor of G. Therefore in view of [6], 
3.2, A"i = X

ss n [0, u] is a direct factor of srf. Moreover, X
ss is linearly ordered and 

hence Xi is linearly ordered as well. Each direct factor of a complete MV-algebra 
must be complete. Now it suffices to apply 1.3.2. • 

1.5. Corollary. Let a be a cardinal and let srf be a complete MV-algebra, 

A rfi {0}. If s/ is a-atomic, then either a = 2 or a = c. 

The notion of an a-atom of a lattice ordered group can be defined in the same 
way as in the case of MV-algebras. A lattice ordered group G is said to be a-atomic 
if for each a G G with 0 < a there exists an a-atom Gi in G such that or ^ g. 

By a similar argument as above we obtain 

1.5'. Lemma. Let a be a cardinal and let G be a complete nonzero lattice 

ordered group. If G is a-atomic, then either a = 2 or a = c. 

1.6. Example. Let a be an infinite cardinal. Next, let I be a linearly ordered 
set which is isomorphic to the first ordinal having the power a. For each i G I let G{ 

be a linearly ordered group isomorphic to Z. Put G' = r i € /G{ , where T denotes the 
operation of lexicographic product (cf., e.g., [4]). For g' G G' and i G I let g'{ be the 
component of g' in G{. Denote I(g') = {i G / : ^ | / 0}. Let G" be the subgroup of 
G consisting of all g' G G' for which the set I(g') is finite; G" is linearly ordered by 
the inherited order. G" is a non-complete linearly ordered group such that whenever 
x,y G G and x < y, then the power of the interval [x,y] in G is a. Choose u G G" 

with 0 < u and let G be the convex ^-subgroup of G" generated by the element u. 

Hence u is a strong unit in G. Let srf be as in (*2). Thus each strictly positive 
element of A is an a-atom in srf. 

2. PROOFS OF (A) AND (B) 

The assertion (ii) and (iii) of (A) were already proved (cf. 1.3.2 and 1.5); the 
remaining part of (A) will be proved as follows. The case A = {0} being trivial we 
can suppose that A ^ {0}. 

a) Suppose that an MV-algebra srf is a direct product of MV-algebras s/{ (i G 
I). Without loss of generality we can suppose that the direct decomposition under 
consideration is internal (in the sense of [5]). Assume that all srfi are linearly ordered, 
complete and a-atomic. For each x G A and i G I we denote by X{ the component 
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of x in s/i. Let x > 0. Then there exists i G I such that xi > 0. There is an a-atom 
if of sz/i with g

l ^ .T,. The element y
l is, at the same time, an a-atom in sV and 

y
x ^ x. Thus £/ is a-atomic. 

b) Suppose that sz/ is a complete and a-atomic MV-algebra. Since A 7-- {0}, the 
set of all a-atoms of srf is nonempty For each a-atom x of ^ let X be as in the proof 
of 1.4. Hence X

ss is a direct factor of G; let {Gi}ieI be the set of all Xss which can 
be constructed in this way. Each Gz is linearly ordered, complete and a-atomic. 

For each y G G and i G I let Hz- be the component of y in Gx. It is well-known that 
if H ^ 0, then yz- is the greatest element of the set G; n [0, y]. 

Let |/ £ A We have Ht ^ g for each i G I; since «c/ is complete, there exists 
y' — V 2/i m -4- We shall verify that y' — y. By way of contradiction, suppose 

iei 
that y" — y — y' > 0. Then y" G A and hence there exists an a-atom x in A such 
that x ^ y". Thus there is i(l) G I such that G t (i} = [0,x]

ss
. Clearly u(/(1) ^ 

^i(i) = x > 0. Since 0 ^ ui(i) G Gl(i) n [0,u;] we obtain yi{1) ^ y^(1). On the 
other hand, the relation y

1
 < y gives y^ ^ yi{i)- Thus Hl(i) = ?l-(n- Therefore 

2/-(i) = 2/i(i) + y'i(i)
 = 2/*(i) + ^ > 2/i(i)» w h i c n i s a contradiction. Thus 

(1) 2/ = V ^ -
- G / 

If i(l) and i(2) are distinct elements of I, then Gl(1) nG l ( 2) = {0}. This implies that 

yi(i)
 A

yi(2) = 0. 
Let (pbea mapping of A into the direct product Yl Ai (where Ai — [0, m] for each 

-G/ 

iei) defined by 

<f(y) = (2/-)-G/-

We consider Az- to be partially ordered by the inherited partial order. Let y and z 

be elements of A. If y ^ z, then clearly ut- ^ ^ for each i G / . Conversely, assume 
that Hz- ^ z2- for each i G / ; then we infer from (1) that y ^ z. Thus if y and z are 
distinct, then <p(y) and (̂ (~) are distinct as well. Further, let (t

l
) G Yl -"-i- There 

-G/ 

exists l G .4 with t = V F. For each i(l) G I we have 
-G/ 

*»(i) = *t(i) A t = ti{1) A ( V f ) = ^ ( i ) A f'
(1) 

t G / 

(since lz(i) A t
l = 0 whenever i 7- i(l))- Thus l2(i) ^ l

z(1). On the other hand, 
l
i(1) G Gi(i) n [0,t] and hence f'(1) ^ ti{1). We obtain r ( 1 ) = ti{1) and therefore 

<p(f) = (t
l
)iej. We have verified that p is an isomorphism of the lattice A onto 

iei 
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For each i G I the element Ui is a strong unit in Gt-, hence the MV-algebra 
sz/i = (Ai\ ©,*,-i,0,Ui) exists. From the construction of the isomorphism <p and 
from [6], 3.5 we infer that </? is, at the same time, an isomorphism of srf onto fj ^ . 

-G1 

Each sVi is complete, linearly ordered and a-atomic This completes the proof of (A). 

P r o o f of (B). Let s/ be a complete MV-algebra and let G be as above. We 
denote by X\ and X2 the system of all atoms of srf or the system of all c-atoms of 
s/, respectively. Put Gi = X-

s
 (i = 1,2). By the Riesz Theorem, G\ and G2 are 

direct factors of G. For each x\ G X\ and x2 G K2 we have x\ A x2 = 0. This yields 
that G\ n G2 = {0}. Therefore 

(2) G = G\xG2 x G 3 , 

where 

(3) G3 = (G 1 UG 2 ) 5 . 

All Gi (i = V2,3) are complete. It follows from the definition of G\ that it is 
atomic; analogously, G2 is c-atomic The relation (3) yields that for each cardinal a 
no a-atom exists in G3. 

For i G {1,2,3} let u\ be the component of u in Gr. We can construct the MV-

algebras s^ = (Ai\ ®, *,-•, 0,HZ) for i = 1,2,3, where A, = [0,H;]. Then all sz/i are 
complete, srf\ is atomic, s/2 is c-atomic, and for each cardinal a, s/3 has no a-atoms. 
Now we can apply [6], Lemma 3.2 (this lemma deals with direct decompositions 
having two factors, but by an obvious induction we can extend the validity of the 
lemma to direct decompositions having a finite number of direct factors); from (2) 
we infer that srf is a direct product of s/\, sz/2 and sz/3. • 
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