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ON COMPLETELY MONOTONE FUNCTIONS
ON C, (X)

J. HOFFMANN-JORGENSEN and P. RESSEL

1. Introduction.

Let X be a completely regular Hausdorff space, let C(X) denote the vector
space of all bounded realvalued continuous functions on X and M(X) the
vector space of all real Radon measures on X. The positive cones in C(X) and
M (X) are denoted by C,(X) and M, (X).

Under pointwise addition the cone C,(X) becomes a 2-divisible abelian
semigroup in the sense of [1]. As in [1] we define the character semigroup S of
S:=C.,(X) by ¢ €S if and only if ¢: § — [0,1] and

(1.1 0(0) =1
(12) e(f+g) = e(f)e(g) VSgeS.

In the topology of pointwise convergence and with pointwise multiplication §
becomes a compact topological abelian semigroup.
Let L denote all functionals A: C, (X) — [0, oo] satisfying

1.3) A0 =0
and
(1.4) Af+g = AN)+i(g VSgeC, (X).

Each 1 satisfying (1.3) and (1.4) is increasing and hence positive homogeneous,
ie.

(1.5) AMaf) = aA(f) Vaz0, VfeC.(X),

with the usual conventions 0-0c0o=0 and a- 0o =00, ¥a>0. Equipped with the
topology of pointwise convergence L becomes compact and

A() P e™?0

is a homeomorphism of L onto S.
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We shall consider the following subsets of L:
Ly:={AeL| A(f)<oo, V fe C.(X)}
and, if YeX

Ly:= {AGLO

Jue M (Y) such that A(f) = J fduvVfe C,,(X)}.
Y

Let w* be the weak topology on M(X), that is, w* =a(M (X), C(X)), then the
map

(1.6) /,H——»J -du
b's

is a homeomorphism of M, (X) onto Ly.
Let X denote the Stone-Cech compactification of X and let 7 denote the
unique continuous extension of f to BX, for all fe C(X). Then the map

(1.7) j | cdi
BX

is a homeomorphism of (M, (fX),w*) onto L,.
A function ¢@: C, (X) — R is completely monotone if and only if ¢ is bounded
and

M:

ceip(fitf) 20

n
=1

t=JJ

forallneN, ¢y,...,c,€ R and fi,.. ., f, € C.(X), (cf. [2] and Theorem 4.2
in [1]). From [2] we know that every completely monotone function ¢:
C,(X) — R has a unique representing measure £ € M, (L) in the sense that

(1.8) o(f) = j e *Ddi(A), Vfe C.(X).
L

Our aim in the following will be to establish a connection between continuity
properties of ¢ and the concentration of the measure £ to some “nice” subsets
of L. A very special result of this type has already been proved in Theorem 6.1
of [1]. There X is the finite set {1,.. ., p} with discrete topology, C, (X) can be
identified with R% and L with [0,00]" and it is shown that a completely
monotone functions on R% is continuous if and only if the representing
measure is concentrated on R .

If we consider the dual pair (C(X), M (X)), two natural topologies on C(X)
arise, the weak topology, denoted by w, and the Mackey topology, which we



ON COMPLETELY MONOTONE FUNCTIONS ON C, (X) 81

shall denote by m. We shall need two further topologies. First we define the L,-
topology © on C(X) by the family of seminorms

J Sfdu
X

where K runs through all w*-compact, uniformly tight subsets of M (X) and ¢
runs through M, (M(X),w*). There is a simpler description of this topology,
but first we need a lemma:

(1.9) rk.o(f) 1= J do (u)

K

LemMA 1.1. Let 0 € M, (M(X),w*) and suppose that the function p — |u|(X)
is o-integrable, then

A(4) = f (A do(w), Ae B(X)
M(X)

is a positive finite T-smooth measure on (X, %(X)), and for every bounded Borel
functions g on X we have

Jgdl=j (J gdlul)do(u)-
b'e M) \Jx

(M (X)) = sup{a(K) | K uniformly tight and closed}

If o satisfies

then A is a Radon measure on X.

Remark. £(X) of course denotes the Borel o-algebra of X. The notion of -
smoothness may be found in [7, p. XII], and from P 16 p. XIII in [7] it follows
that if X can be homeomorphically embedded as a universally measurable
subset of a compact space Y, then every t-smooth finite measure on X is a
Radon measure (e.g. if X is analytic, or if X is g-compact, or if X is locally
compact or if X is complete in the sense of Cech). From Proposition 1 in [5]
we know that the function u — |u|(A) is Borel on M (X) for every Borel set
Ac X, it is lower semicontinuous if A4 is open.

Proor oF LEMMA 1.1. In the first part we only need to show t-smoothness of
A. Let a collection of open sets G, X filter up to G. Then the lower
semicontinuous functions u + |u|(G,) filter up to u > |u|(G) and applying
P 15 of [7] we get A(G)=sup A(G,).

The second part is proved in a straightforward manner, taking into account
that A is inner regular w.r.t. the closed subsets of X, cf. P 16 in [7].

Math. Scand. 40 - 6
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CoROLLARY 1.2. The L,-topology t on C(X) is generated by the seminorms

q,(f) :=j |fldu
X

where p runs through M , (X).

Proor. Let K be a w*-compact and uniformly tight subset of M(X) and o a
positive finite Radon measure on M(X), then

u(4) := J.K M(4)do(v) A e R(X)

is a finite positive Radon measure on X by Lemma 1.1, and

rk,o(f) = JK <,[x |fIdV)dG(V) = L Ifdu .

If u e M, (X), then there exists a measurable function «: X — [0,1] such
that {a=¢} is compact for all ¢>0, and

1
jvx'&dﬂ<00.

Let y(x):=a(x)d,, where d, is the one point measure in x, then y is a Borel
map from X into M, (X), ¥(X) is uniformly tight and K:=y(X) is therefore
w*-compact and uniformly tight. Let di:= (1/¢)du and 6:=A-y !, thengis a
finite positive Radon measure on M(X), and

»

Ifldu = '[ a(x)Lf (x)| dA(x)
X X

4,(f)

d(Aoy~1)(v)

j f(y)d(ql/(x))(y)ldl(x) =J U fdv
X K|JX

~(fdv

This shows that {g,} and {rg ,} generate the same topology.

r
JX

do(v) .

r
JK

We shall need a fourth topology on C(X). This is the socalled strict topology
on C(X), which we denote by f. The strict topology is generated by the
seminorms

p(f) = lofllx = sup loe(x).f (x)I
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where a runs through all bounded measurable functions on X which vanish at
infinity, i.e. {|a| =€} is relatively compact for all £>0. This topology was first
introduced by C. R. Buck for locally compact spaces and later generalized by
many authors to general completely regular Hausdorff spaces (see e.g. [4]).

From Theorem 2 in [4] we know that w= f<m, and from Corollary 1.2 it
follows easily that wc 1< B, therefore we have

(1.10) wgcrtepfcm

and we shall leave to the reader to prove that t+w and t+ g if X is infinite.
From Theorem 3 in [6] one easily deduces the following form of Riesz’
representation theorem:

TueoreM 1.3. (D. Pollard and F. Topsee [6]). Let A: C,.(X) — [0,00[ be
additive and suppose that A satisfies

(1.3.1) Ve>036>03 C compact =X such that A(f)<e whenever 0 f<1
and f<6 on C.

Then there exists a unique measure u € M . (X) representing A, that is,

M) = Lfdu, Vie C.(X).

RemARK. Note that (1.3.1) holds if there exists {f,} =C,(X) with the
following two properties:

(1.3.2) {f,£1} is compact for all n21,
(1.3.3) lim A(f,) = 0.

2. Concentration of L, or Ly.

Let X be a completely regular Hausdorff space and ¢ a completely
monotone function on C . (X), with representing measure £. We shall give
necessary and sufficient conditions for ¢ to be concentrated on L, or Ly. First
we need a measurability lemma:

LemMa 2.1. If Y is a Borel subset of the Stone—Cech compactification X, then
Ly is a Borel subset of L. The subset L, is open in L.

Proor. From L= {4 € L | A(1)<oo} follows that L, is open. Identifying Lo
with M, (BX), see (1.7), we get

Ly = {ie M,(BX)| A(BX\Y)=0}
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and from the fact that fi — f(BX\Y) is Borel on M, (8X) by Proposition 1 in
[5] we deduce that Ly is Borel in Ly, hence in L.

THeEOREM 2.2. Let ¢: C,(X) — R be completely monotone with representing
measure £ (see (1.8.)). Then the following 3 statements are equivalent:

(221) S(L\Ly) = 0,
(222 ling otf) = (0, VfeC.(X),
(2.23) ling o = ¢0),

where t also denotes the constant function equal to t.

Proor. (2.2.1) = (2.2.2): Let fe C, (X) and define F,(A):=e "), Then
0<SFM <1 and lmF,®) =1
t—=0

for all A € L,. Hence the assumption implies that

o(tf) = J F (A di(d) — E(Lo) = ¢(0),

L,
as t tends to zero.
(2.2.2) = (2.2.3): Obvious.

(2.2.3) = (2.2.1): Let F,(4) be defined as above but with f replaced by the
constant 1. If 4 € L\L, then A(1)=o00, therefore we get

limF,(4) = 1, (1) forall AeL.
t—0

Hence by assumption
¢(L) = (0) = }1_{!3 LF,(l)df(l) = &(Lo)
and so £(L\L,)=0.

THEOREM 2.3. Let ¢: C.(X) — R be a completely monotone function with
representing measure £, and let ¢ be a topology on C(X) satisfyingt< o< B. Then
the following 6 statements are equivalent:

(23.1) 3Y o-compact <X such that £(L\Ly)=0,

(23.2) &(L)=sup{&(K) | K< M, (X) compact and uniformly tight},
(2.3.3) ¢ is uniformly g-continuous,

(2.3.4) ¢ is g-continuous at 0,
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(2.3.5) @|B is g-continuous at 0, where B={f¢e C(X) | 01y,
(2.3.6) Ve>0 36>0 3 C compact =X such that ¢(0)—@(f)<¢& whenever
feBand f£6 on C.

Note that we identify M, (X) with Ly in (2.3.2) (see (1.6)).

Proor. (2.3.1) = (2.3.2): First we note that LycLy<L, and therefore
E(L\Ly)=0. Let {C,} be compact sets in X with C;= and C,1Y; then we
may define

F,(v) := v(pX\C,) forveL, = M (X).

Then F,: L, — [0,00[ is Borel and lim,_, F,(v)=0 for all ve Ly. From
Lemma 2.1 we know that Ly e #(L), and since £(L\Ly)=0 by assumption,
we have that F, —» 0 ae. [¢]. Hence by Egoroff’s theorem we can find for
any given £>0 a sequence a,; 24,2 ... 20 of positive numbers such that

lima, = 0,

&{v| F.0)Sa, ¥nz1}) 2 S(L)—e.
Now since F, is lower semi-continuous on L, (see Proposition 1 in [5]) and
F,(v)=v(fX), we have that
K :={vel, I F,0W<a,, Vnz1}

is a compact uniformly tight subset of M, (X) with {(K)=¢(L)—e. Hence
(2.3.2) holds.

(2.3.2) = (2.3.3): Given £¢>0 choose K= M ,(X) compact and uniformly
tight so that £(K)=¢(L)—e/4. We claim that |p(f)—o(g)l<e whenever
rk, (If —gl) <&/2 (see (1.9) for the definition of r¢ ). In fact, if rg (| f —gl) <&/2
for two functions f,g € C,(X), then

lo(f) =@l = o(f)—o(f v g)+oel@—e(f Ve

._.J (e""‘m—e—)'(fv"))dé().)+J\ (e_”(”’——e_’wv“)df(l)
L L

IIA

f [1—e'*‘fv9‘f’]d£(l)+f [l—e”“fv"‘”’]dé(l)
L L

A

f+f MV g—f)dé(l)+L Af v g—g)de(d)
K

_ §+f AU v g~ f—) )
K
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- j A(f - g dE@)
K
e

2

This shows that ¢ is uniformly 7-continuous. (2.3.3) follows because t is weaker
than ¢ by assumption.

(2.3.3) = (2.3.4) = (2.3.5): Obvious.

(2.3.5) = (2.3.6): Since g is weaker than f, we have that ¢ | B is f-continuous
at 0. Let » be the topology on C(X) of uniform convergence on compact
subsets of X, then by Proposition 1 in [4], » coincides with § on B. Hence ¢ | B
is »-continuous at 0 and this evidently implies (2.3.6).

(2.3.6) = (2.3.1): First we note that (2.3.6) implies that lim,_,¢@(t)=¢(0),
therefore £(L\Ly)=0 by Theorem 2.1. Now let

M, = {ve L, I v(1)<n}.
Let fe C,(X) and define

+rg(lf-gh) <.

F,(%) := %(I—e"‘(f’) for t>0, e L,.

Then we have

HmF,(A) = A(f) VielL,
t—0

0 = F(A) = A(f) = If1xA(1)
and this implies that

Hn(f) 1= J A(f)dé(A) = limj F,(A)d¢()

M, -0 J M,
for all fe C,(X). Let for A € B(BX)

fn(A4) 1= f A(A)dé(A)

Ml
then by Lemma 1.1 fi, is a positive Radon measure on X with
Ha(f) = I fdg, VfecCX).
BX

Now we use the elementary inequality

xS (1+a)(1—-e) for 0=x=a
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to conclude that

F() = A(f) £ (n+ D)1 —e™*)

for fe B and A € M,. Hence we get

Ha(f) £ (n+1) _[M (1—e M d@) = (n+ (@)~ (/)

for all f € B. The assumption (2.3.6) now implies that u, satisfies (1.3.1) and by
Theorem 1.3 we have.that X is fi,-measurable and f,(BX\X)=0.

Hence we can find a g-compact subset Y < X such that ji,(X\Y)=0 for all
nz1. But then we have

E({AeM,| ABX\Y)>0})) =0 Vn=1
and since M,1L, and &(L\Ly)=0, we finally get
E(L\Ly) = &(Lo\Ly) = ¢({A e Lo | A(BX\Y)>0}) = 0

which proves our theorem.

3. The Lévy continuity theorem on M ,(X).

Let X be a completely regular Hausdorff space. Then M, (M , (X)) denotes
the set of positive finite Radon measures on (M, (X),w*), and M, (M , (X))
denotes the set of all ¢ € M, (M, (X)) satisfying

3.1) oM, (X)) = sup{a(K) | K compact and uniformly tight} .

Note that M (M, (X))=M (M, (X)) if X is semi-Radonian (see Theorem 10
in [5]).
If 6 € M, (M, (X)), then we define its Laplace transform G by

a(f) := J exp(—j‘ fdv)da(v)
M, (X) X

for fe C,(X). Note that ¢ is completely monotone on C, (X). If X is o-
compact, then the set of all Laplace transforms of measures on M. (X) is
characterised by those completely monotone functions ¢ on C,(X) which
satisfy one of the continuity properties (2.3.3)-(2.3.6) stated in Theorem 2.3.

We shall consider M, (M, (X)) and M,(M ., (X)) equipped with their weak
topologies, coming from the space C(M . (X),w*). Let ¢ denote the map
M, (X) —> L given by (1.6), and let

(o) := aoy !
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be the corresponding map from M (M, (X)) to M (L). 1t is easily checked
that

(3.2) ¥ is a homeomorphism of M, (M, (X)) onto
My(L) := {Ee M (L)| &*(L\Ly)=0}
(see e.g. Corollary 9 in [3, p. 244]).

THEOREM 3.1. Let {0,} be a net in M, (M , (X)) satisfying

(3.1.1) sup,0,(M, (X)) <00,
(3.1.2) 6,(f) = o(f) for all fe C,(X), where ¢|B is B-continuous at O,
B:={feC(X)|0=f=1}.

Then there exists a measure o € M,(M , (X)) whose Laplace transform is ¢ and
g, — d weakly.

Proor. Let 4:=sup,q,(M, (X)) and let
My :={¢eM, ()| &L)=A}.

Then &,:=Y¥(0,) € M4 for all a, and M 4 is a compact subset of M  (L). If £ is a
limit point of {&,}, then

&N = j e ag() = limf e "D d¢ (3
L o L

= lim&,(f) = ¢(f).

Hence & is a completely monotone function on C, (X), with representing
measure £ Since a measure on L is uniquely determined by its Laplace
transform (see Corollary 2.5 of [1]), we find that {£,} admits at most one limit
point in M, (L). Hence ¢ =lim, ¢, exists and =¢.

Then by (3.1.2) and Theorem 2.3 we conclude that ¢=¥(¢) for some
o € M, (M, (X)), and = ¢. Therefore by (3.2) we find that ¢, — ¢ weakly.

THEOREM 3.2. Let A" be a subset of M* (M (X)), the probability Radon
measures on M . (X). Let again B:={fe C,(X) | 0=<f<1}. Then we have

(i) If{c|B I o € X'} is P-equicontinuous at 0, then X is a relatively compact
subset of M,(M ,(X)).

(i) If A is uniformly tight and X is a Prohorov space (see e.g. [5] for this
notion), then {¢|B’| ¢ € X'} is B-equicontinuous at 0.

Proor. (i). Follows immediately from Theorem 3.1.
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(ii). Let >0 be-given. There exists by assumption a compact set K< M , (X)
such that

sup{o(M,(X\K) | e e X} < g
X being a Prohorov space we can find a compact subset C of X such that
sup {v(X\C) | veK} < g

From the compactness of K we deduce that A:=sup {v(X) | v € K} is finite.
Now suppose that fe B, f|C<¢/34 and ¢ € #". Then we get

1-6(/) =I

(l—e"*Mde()) < 5+J (1 —e~ ) do ()
M, (X) 3 K

and for 1€ K
I~ g iy s S+ | fars
37 )¢ 3

hence 1—6(f)<¢, showing the required f-equicontinuity at 0.

The next theorem might be- more useful for applications. Note that if
o € M, (M, (X)), then its Laplace transform is defined in a natural way on all
non-negative Borel functions on X, in particular on Borel subsets of X.

THEOREM 3.3. Let o =M (M . (X)) satisfy the following two conditions
(33.1) lim supo({ve M, (X)| v(C)>A4}) = 0, VCSX compact,

A—socogeX

(332) limsup (1-8(X\C)) = 0,
C oeX

where the limit is taken along the net of compact subsets of X. Then X" is a
relatively compact subset of M , (M . (X)).
Proor. Let 0<e<1, 0<d<1; then 1 —e %=16 and

1-6(X\C) = JM ® (1—e *®\dg (1)

\

j (1-e**\Nde(2) 2 éa({l’ A(X\C)g‘—s}>.
(] Ax\0z1) 4 2
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By (3.3.2) there exists a compact set C< X such that

5

2o({4
52'34"({
inf o({2] 2000<2}) 2 1-%
e 2f) 1

and applying (3.3.1) we find 4 € R such that

o €0
i(X\C)éi}) =Y

hence

inf o({1] 2C)sAp 2 1-¢.
oeX

Putting

= {/1 € M+(X)l A(X\C)<g— and A(C)gA}
we have
inf o(L,) = 1-%.

oeX

Now let fe C,(X), 0=f<1 and sup,.c f(x)<&/3A. Then for any ¢ € X" we
get

1-6(f) =f (1—e"*")do(h) < -§-+j M do ()
+(X) Ll

and for A e L,

u!m

AY) = jfdls +j fdi < g

Hence, choosing &=%;, 1—6(f)<e, proving pB-equicontinuity of
{6|/B| o e} at 0. From Theorem 3.2 we get the desired conclusion.

4. Completely alternating functions on C, (X).

A class of functions on C, (X), closely connected to completely monotone
functions, is that of completely alternating (or alternating of infinite order)
functions. A function y: C, (X) — [0, 00] is completely alternating if and only
if
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"i i cicj‘/’(fi"‘fj) =0

forallneN, f,,..., f, € C.(X) and cy,...,c, € R such that 3"_, ¢;=0, (see
[1, Proposition 3.2 and Theorem 4.2]). One of the main results in [1] was the
“Lévy-Khinchin”-representation for completely alternating functions (Theo-
rem 3.7 in [1]). This uniquely determined representation has the form

v(f) = C+h(f)+L } (1—e™*M)d&o(2)

\{o

where ¢ € [0,00[, h: C,(X)— [0,00[ is additive and &, is a non-negative
Radon-measure on L\{0}. Observing that

L\{0} = {AeL| A(1)>0}
we can write this representation in the folowing form

1—e N
@.1) V() = c+jﬂxfdx+ L\{O} ErsEolid?)

where ¥ e M, (BX), £ e M, (L) and

49 () =¥ (f+)—y(f) = Le"‘f’d«f(i),

cf. the proof of Theorem 3.7 in [1].
Note that each completely alternating function ¥ on C,(X) satisfies the
inequalities

(4.2) aw(f) = ¥(f) VfeC.(X) Yael0,1]
43) Y(Bf) = BY(f) VSfeCi(X) VBe[l,o00[.
This follows from (4.1) and from the fact that
1—e™* 2 a(l—e™ VAi20, Ya e[0,1]
l—e™# < Bl—e™® VA20, VBe[l,00[
which is easily established using Cauchy’s mean value theorem. Another
important property is subadditivity

(4.9 v(f+g) S v(NH+v(@ VSigeCi(X),
cf. Proposition 3.5 in [1].

THEOREM 4.1. Let the completely alternating function §: C, (X)— [0,00[
have the representation (4.1). Then £(L\Ly)=0 if and only if lim,_ o ¥ (£) = ¢ (0).
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Proor. We may and do assume ¥ (0) =c=0. Suppose that lim,_ 4y (t)=0. By
4.4)

0L Yyit+D)—y) = Y@ —» 0 ast—0,
hence

49 @) = y@e+1)—y@) — y(1) = 4,y(0)

and we get ¢(L\Ly)=0 from Theorem 2.2. The other direction follows
immediately from (4.1).

THEOREM 4.2. Let : C, (X) — [0,00[ be a completely alternating function
with the representation (4.1); let ¢ be any topology on C(X) satisfying t<o<f
and put

= {fecX)| 0=f=1}.

Then the following 5 statements are equivalent:

(4.2.1) 3Y o-compact <X such that »(X\Y)=0 and £(L\Ly)=0

(4.2.2) Y|B is t-continuous at 0

(4.2.3) | B is uniformly g-continuous

(4.2.4) Y |B is B-continuous at 0

(4.2.5) Ye>036>03C compact <X such that Y (f)—y(0)<e whenever f € B
and f<6 on C.

Proor. Again we assume Y (0)=c=0.

(4.2.1) = (42.2): The function f+> _f,,x fdx is t-continuous because
x € M, (X), cf. Corollary 1.2. By Theorem 2.2 there exist compact uniformly
tight subsets K, < Ly\{0} such that ¢(L\K,)<1/n. We define

—e
Ya(f) :=I =% ——md¢(A), feC.(X), neN.
By Theorem 2.3 {{,} is a sequence of t-continuous completely alternating
functions. Now

1- e—l(f)
sup———_—l—m <1 forall AeL

fepl—e

implying that y, converges uniformly to y/(f)—{ f dx on B. Hence y|B is 1-
continuous.

(4.2.2) = (4.2.3): If f,g belong to C,(X) then applying the subadditivity
(4.4) we have

W(UN=v@ S ¥ ve—vN+¥(f ve) -y
Sy((f-9%)+vlEe-N").
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If now ¢ | B is t-continuous at 0, then | B is uniformly t-continuous, as one
can see immediately from the definition of the t-topology.

(4.2.3) = (4.2.4): Obvious.

(4.2.4) = (4.2.5): This can be seen as in Theorem 2.3.

(4.2.5) = (4.2.1): Let £>0 and choose 6 >0, C< X compact such that y(f)
<e¢ for all fe B, f<6 on C. For those f we get

A9 O0) =4y () = yM)—yv(f+D+¥() S ¥() <

hence there exists by Theorem 2.3 a o-compact subset Y, <X such that
¢(L\Ly,)=0. The function f+ [;x fdx has of course also the continuity
property of (4.2.5), hence by Theorem 1.3, % belongs to M , (X) and therefore is
concentrated on a og-compact subset Y, X. The union Y:=Y,UY, fulfills
condition (4.2.1).
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