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Abstract

Human explanations of high-level decisions are often expressed in terms of key
concepts the decisions are based on. In this paper, we study such concept-based
explainability for Deep Neural Networks (DNNs). First, we define the notion of
completeness, which quantifies how sufficient a particular set of concepts is in
explaining a model’s prediction behavior based on the assumption that complete
concept scores are sufficient statistics of the model prediction. Next, we propose
a concept discovery method that aims to infer a complete set of concepts that
are additionally encouraged to be interpretable, which addresses the limitations
of existing methods on concept explanations. To define an importance score for
each discovered concept, we adapt game-theoretic notions to aggregate over sets
and propose ConceptSHAP. Via proposed metrics and user studies, on a synthetic
dataset with apriori-known concept explanations, as well as on real-world image
and language datasets, we validate the effectiveness of our method in finding
concepts that are both complete in explaining the decisions and interpretable.1

1 Introduction

The lack of explainability of deep neural networks (DNNs) arguably hampers their full potential for
real-world impact. Explanations can help domain experts better understand rationales behind the
model decisions, identify systematic failure cases, and potentially provide feedback to model builders
for improvements. Most commonly-used methods for DNNs explain each prediction by quantifying
the importance of each input feature [Ribeiro et al., 2016, Lundberg and Lee, 2017]. One caveat with
such explanations is that they typically focus on the local behavior for each data point, rather than
globally explaining how the model reasons. Besides, the weighted input features are not necessarily
the most intuitive explanations for human understanding, particularly when using low-level features
such as raw pixel values. In contrast, human reasoning often comprise “concept-based thinking,”
extracting similarities from numerous examples and grouping them systematically based on their
resemblance [Armstrong et al., 1983, Tenenbaum, 1999]. It is thus of interest to develop such
“concept-based explanations” to characterize the global behavior of a DNN in a way understandable
to humans, explaining how DNNs use concepts in arriving at particular decisions.

A few recent studies have focused on bringing such concept-based explainability to DNNs, largely
based on the common implicit assumption that the concepts lie in low-dimensional subspaces of
some intermediate DNN activations. Via supervised training based on labeled concepts, TCAV
[Kim et al., 2018] trains linear concept classifiers to derive concept vectors, and uses how sensitive
predictions are to these vectors (via directional derivatives) to measure the importance of a concept
with respect to a specific class. Zhou et al. [2018] considers the decomposition of model predictions
in terms of projections onto concept vectors. Instead of human-labeled concept data, Ghorbani et al.

1The code is released at https://github.com/chihkuanyeh/concept_exp.
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[2019] employs k-means clustering of super-pixel segmentations of images to discover concepts.
Bouchacourt and Denoyer [2019] proposes a Bayesian generative model involving concept vectors.
One drawback of these approaches is that they do not take into account how much each concept plays
a role in the prediction. In particular, selecting a set of concepts salient to a particular class does not
guarantee that these concepts are sufficient in explaining the prediction. The notion of sufficiency is
also referred to as “completeness” of explanations, as in [Gilpin et al., 2018, Yang et al., 2019]. This
motivates the following key questions: Is there an unsupervised approach to extract concepts that are
sufficiently predictive of a DNN’s decisions? If so, how can we measure this sufficiency?

In this paper, we propose such a completeness score for concept-based explanations. Our metric can
be applied to a set of concept vectors that lie in a subspace of some intermediate DNN activations,
which is a general assumption in previous work in this context [Kim et al., 2018, Zhou et al., 2018].
Intuitively speaking, a set of “complete” concepts can fully explain the prediction of the underlying
model. By further assuming that for a complete set of concepts, the projections of activations onto the
concepts are a sufficient statistic for the prediction of the model, we may measure the “completion”
of the concepts by the accuracy of the model just given these concept based sufficient statistics.
For concept discovery, we propose a novel algorithm, which could also be viewed as optimizing a
surrogate likelihood of the concept-based data generation process, motivated by topic modeling [Blei
et al., 2003]. To ensure that the discovered complete concepts are also coherent (distinct from other
concepts) and semantically meaningful, we further introduce an interpretability regularizer.

Beyond concept discovery, we also propose a score, ConceptSHAP, for quantification of concept
attributions as contextualized importance. ConceptSHAP uniquely satisfies a key set of axioms
involving the contribution of each concept to the completeness score [Shapley, 1988, Lundberg and
Lee, 2017]. We also propose a class-specific version of ConceptSHAP that decomposes it with
respect to each class in multi-class classification. This can be used to find class-specific concepts that
contribute the most to a specific class. To verify the effectiveness of our automated completeness-
aware concept discovery method, we create a synthetic dataset with apriori-known ground truth
concepts. We show that our approach outperforms all compared methods in correct retrieval of the
concepts as well as in terms of its coherency via a user study. Lastly, we demonstrate how our concept
discovery algorithm provides additional insights into the behavior of DNN models on both image and
language real-world datasets.

2 Related Work

Most post-hoc interpretability methods fall under the categories: (a) feature-based explanation
methods, that attribute the decision to important input features [Ribeiro et al., 2016, Lundberg and
Lee, 2017, Smilkov et al., 2017, Chen et al., 2018], (b) sample-based explanation methods, that
attribute the decision to previously observed samples [Koh and Liang, 2017, Yeh et al., 2018, Khanna
et al., 2019, Arik and Pfister, 2019], and (c) counterfactual-based explanation methods, which answers
the question: “what to alter in the current input to change the outcome of the model” [Wachter et al.,
2017, Dhurandhar et al., 2018, Hendricks et al., 2018, van der Waa et al., 2018, Goyal et al., 2019a,
Joshi et al., 2019, Poyiadzi et al., 2020].Recent work has also focused on evaluations of explanations,
ranging from human-centric evaluations [Lundberg and Lee, 2017, Kim et al., 2018, Lage et al.,
2019] to functionally-grounded evaluations [Samek et al., 2016, Kim et al., 2016, Ancona et al., 2017,
Yeh et al., 2019, Yang et al., 2019, Guidotti et al., 2018, Hooker et al., 2018, Yang and Kim, 2019].
Our work provides an evaluation of concept explanations based on the completeness criteria, which
is related to the ‘fidelity’ [Guidotti et al., 2018].

Our work is related to methods that learn semantically-meaningful latent variables. Some use dimen-
sionality reduction methods [Chan et al., 2015, Kingma and Welling, 2013], while others uncover
higher level human-relatable concepts by dimensionality reduction (e.g. for speech [Chorowski et al.,
2019] and language [Radford et al., 2017, Grover et al., 2019]). More recently Locatello et al. [2018]
shows that meaningful latent dimensions cannot be acquired in a completely unsupervised setting,
implying the necessity of inductive biases for discovering meaningful latent dimensions. Our work
uses indirect supervision from the classifier of interest to discover semantically meaningful latent
dimensions. Chen et al. [2019] uses the representative training patches to explain a prediction in a
self-interpretable framework for image classification. Koh et al. [2020] learn models that first predict
human labeled concepts, then use concept scores to predict model. Goyal et al. [2019b] measures the
causal effect of concepts by using a conditional VAE model. These methods either require a training
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model from scratch or training a generative model, whereas our method can be applied on given
models and different data types.

3 Defining Completeness of Concepts

Problem setting: Consider a set of n training examples x
1,x2, ...,xn, corresponding labels

y1, y2, ..., yn and a given pre-trained DNN model that predicts the corresponding y from the in-
put x. We assume that the pre-trained DNN model can be decomposed into two functions: the
first part Φp¨q maps input xi into an intermediate layer Φpxiq, and the second part hp¨q maps the
intermediate layer Φpxiq to the output hpΦpxiqq, which is a probability vector for each class, and
hypΦpxqq is the probability of data x being predicted as label y by the model f . For DNNs that build
up by processing parts of input at a time, such as those composed of convolutional layers, we can
additionally assume that Φpxiq is the concatenation of rφpxi

1
q, ..., φpxi

T qs, such that Φp¨q P R
pT ¨dq,

and φp¨q P R
d. Here, xi

1
,xi

2
, ...,xi

T denote different, potentially overlapping parts of the input for
x
i, such as a segment of an image or a sub-sentence of a text. These parts for example, can be

chosen to correspond to the receptive field of the neurons at the intermediate layer Φp¨q. We will use
these x

i
t to relate discovered concepts. As an illustration of such parts, consider the fifth convolution

layer of a VGG-16 network with input shape 224 ˆ 224 have the size 7 ˆ 7 ˆ 512. If we treat this
layer as Φpxiq, φpxi

1
q corresponds to the first 512 dimensions of the intermediate layer (with size

7 ˆ 7 ˆ 512), and Φpxiq “ rφpxi
1
q, ..., φpxi

49
qs. Here, each x

i
j corresponds to a 164 ˆ 164 square

in the input image (with effective stride 16), which is the receptive field of convolution layer 5 of
VGG-16 [Araujo et al., 2019]. We note that when the receptive field of φp¨q is equal to the entire
input size, such as for multi-layer perceptrons, we may simply choose T “ 1 so that xi

1:T “ x
i

and Φpxiq “ φpxi
1
q. Thus, our method can also be generally applied to any DNN with an arbitrary

structure besides convolutional layers. To choose the intermediate layer to apply concepts, we follow
previous works on concept explanations Kim et al. [2018], Ghorbani et al. [2019] by starting from
the layer closest to the prediction until we reached a layer that user is happy with, as higher layers
encodes more abstract concepts with larger receptive field, and lower layers encodes more specific
concepts with smaller receptive field.

Suppose that there is a set of m concepts denoted by unit vectors2
c1, c2, ..., cm that represent linear

directions in the activation space φp¨q P R
d, given by a concept discovery algorithm. For each

part of data point xt (We omit i for notational simplicity), The inner product between the data and
concept vector is viewed as the closeness of the input xt and the concept c following Kim et al.
[2018], Ghorbani et al. [2019]. If xφpxtq, cjy is large, then we know that xt is close to concept j.
However, when xφpxtq, cjy is less than some threshold, the dot product value is not semantically
meaningful other than the the input is not close to the concept. Based on this motivation, we define
the concept product for part of data xt as vcpxtq :“ THpxφpxtq, cjy, βqmj“1

P R
m, where TH is a

threshold which trims value less than β to 0. We normalize the concept product to unit norm for
numerical stability, and aggregate upon all parts of data to obtain the concept score for input x as

vcpxq “ p vcpxtq
}vcpxtq}2

qTt“1
P R

T ¨m.

We assume that for “sufficient” concepts, the concept scores should be sufficient statistics for the
model output, and thus we may evaluate the completeness of concepts by how well we can recover
the prediction given the concept score. Let g : RT ¨m Ñ R

T ¨d denote any mapping from the concept
score to the activation space of Φp¨q. If concept scores vcp¨q are sufficient statistics for the model
output, then there exists some mapping gf such that hpgf pvcpxqqq « fpxq. We can now formally
define the completeness core for a set of concept vectors c1, ..., cm:

Definition 3.1. Completeness Score: Given a prediction model fpxq “ hpφpxqq, a set of concept
vectors c1, ..., cm, we define the completeness score ηf pc1, ..., cmq as:

ηf pc1, ..., cmq “
supg Px,y„V ry “ argmaxy1 hy1 pgpvcpxqqqs ´ ar

Px,y„V ry “ argmaxy1 fy1 pxqs ´ ar
, (1)

where V is the set of validation data and supg Px,y„V ry “ argmaxy1 hy1 pgpvcpxqqqs is the best
accuracy by predicting the label just given the concept scores vcpxq, and ar is the accuracy of random
prediction to equate the lower bound of completeness score to 0. When the target y is multi-label,
we may generalize the definition of completeness score by replacing the accuracy with the binary
accuracy, which is the accuracy where each label is treated as a binary classification.

2We apply additional normalization to φp¨q so it has unit norm and keep the notation for simplicity.
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To calculate the completeness score, we can set g to be a DNN or a simple linear projection, and
optimize using stochastic gradient descent. In our experiments, we simply set g to be a two-layer
perceptron with 500 hidden units. We note that we approximate fpxtq by hpgf pvcpxtqqq, but not an
arbitrary neural network hgpvcpxtqq for two benefits: (a) the measure of completeness considers the
architecture and parameter of the given model to be explained (b) the computation is much more
efficient since we only need to optimize the parameters of g, instead of the whole backbone hg.
The completeness score measures how “sufficient” are the concept scores as a sufficient statistic of
the model, based on the assumption that the concept scores of “complete” concepts are sufficient
statistics of the model prediction fp¨q. By measuring the accuracy achieved by the concept score, we
are effectively measuring how “complete” the concepts are. We note that the completeness score can
also be used to measure how sufficient concepts can explain a dataset independent of the model, by
replacing φp¨q, hp¨q with identical functions, and fpxq with y. Below is an illustrative example on
why we need the completeness score:

Example 3.1. Consider a simplified scenario where we have the input x P R
m, and the intermediate

layer Φ is the identity function. In this case, the m concepts c1, c2, ..., cm are the one-hot encoding of
each feature in x. Assume that the concepts c1, c2, ..., cm follow independent Bernoulli distribution
with p “ 0.5, and the model we attempt to explain is fpxq “ c1 XOR c2... XOR cm. The ground
truth concepts that are sufficient to the model prediction should then be c1, c2, ..., cm. However, if we
have the information on c1, c2, ..., cm´1 but do not have information on cm, we may have at most 0.5
probability to predict the output of the model, which is the same as the accuracy of random guess. In
this case, ηf pc1, c2, ..., cm´1q “ 0. On the other hand, given c1, c2, ..., cm, ηf pc1, c2, ..., cmq “ 1.

The completeness score offers a way to assess the ‘sufficiency’ of the discovered concepts to
“explain" reasoning behind a model’s decision. Not only the completeness score is useful in evaluating
a proposed concept discovery method, but it can also shed light on how much of the learned
information by DNN may not be ‘understandable’ to humans. For example, if the completeness score
is very high, but discovered concepts aren’t making cohesive sense to humans, this may mean that
the DNN is basing its decisions on other concepts that are potentially hard to explain.

4 Discovering Completeness-aware Interpretable Concepts

4.1 Limitations of existing methods

Our goal is to discover a set of maximally-complete concepts under the definition 4.2, where each
concept is interpretable and semantically-meaningful to humans. We first discuss the limitations of
recent notable works related to concept discovery and then explain how we address them. TCAV
and ACE are concept discovery methods that use training data for specific concepts and use trained
linear concept classifier to derive concept vectors. They quantify the saliency of a concept to a class
using ‘TCAV score’, based on the similarity of the loss gradients to the concept vectors. This score
implicitly assumes a first-order relationship between the concepts and the model outputs. Regarding
labeling of the concepts, TCAV relies on human-defined labels, while ACE uses automatically-derived
image clusters by k-means clustering of super-pixel segmentations. There are two main caveats to
these approaches. The first is that while they may retrieve an important set of concepts, there is no
guarantee on how ‘complete’ the concepts are in explain the model – e.g., one may have 10 concepts
with high TCAV scores, but they may still be very insufficient in understanding the predictions.
Besides, human-suggested exogenous concept data might even encode confirmation bias. The second
caveat is that their saliency scores may fail to capture concepts that have non-linear relationships with
the output due to first-order assumption. The concepts in Example 3.1 might not be retrieved by the
TCAV score since XOR is not a linear relationship. Overall, our completeness score complements
previous works in concept discovery by adding a criterion to determine whether a set of concepts are
sufficient to explain the model. The discussion of our relation to PCA is in the Appendix.

4.2 Our method

The goal of our method is to obtain concepts that are complete to the model. We consider the case
where each data point xi has parts xi

1:T , as described above. We assume that input data has spatial
dependency, which can help learning coherent concepts. Thus, we encourage proximity between
each concept and its nearest neighbors patches. Note that the assumption works well with images
and language, as we will demonstrate in the result section. We aim that the concepts would obtain
consistent nearest neighbors that only occur in parts of the input, e.g. head of animals or the grass
in the background so that the concepts are pertained to certain spacial regions. By encouraging
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the closeness between each concept and its nearest neighbors, we aim to obtain consistent nearest
neighbors to enhance interpretability. Lastly, we optimize the completeness terms to encourage the
completeness of the discovered concepts.

Learning concepts: To optimize the completeness of the discovered concepts, we optimize the
surrogate loss for the completeness term for both concept vectors c1:m and the mapping function g:

argmax
c1:m,g

logPrhypgpvcpxqqqs (2)

An interpretation for finding the underlying concepts whose concept score maximizes the recovered
prediction score is analogous to treating the prediction of DNNs as a topic model. By assuming the
data generation process of px, yq follows the probabilistic graphical model xt Ñ zt and z1:T Ñ y,
such that the concept assignment zt is generated by the data, and the overall concept assignment z1:T
determines the label y. The log likelihood of the data logP ry|xs can be estimated by logP ry|xs “
log

ş

z
P ry|zsP rz|xs « logP ry|Erz|xss, by replacing the sampling by a deterministic average.

We note that vcpx1:T q resembles Erz|xs and P py|hpgpvcpxqqq resembles P ry|Erz|xss, and as in
supervised topic modeling Mcauliffe and Blei [2008], we jointly optimize the latent “topic” and the
prediction model, but in an end-to-end fashion to maintain efficiency instead of EM update.

To enhance the interpretability of our concepts beyond “topics”, we further design a regularizer to
encourage the spacial dependency (and thus coherency) of concepts. Intuitively, we require that the
top-K nearest neighbor training input patches of each concept to be sufficiently close to the concept,
and different concepts are as different as possible. This formulation encourages the top-K nearest
neighbors of the concepts would be coherent, and thus allows explainability by ostensive definition.
K is a hyperparameter that is usually chosen based on domain knowledge of the desired frequency
of concepts. In our results, we fix K to be half of the average class size in our experiments. When
using batch update, we find that picking K “ pbatch size ¨ average class ratioq{2 works well in our
experiments, where average class ratio “ average instance of each class{total number of instances.
That is, the regularizer term tries to maximize Φpxi

tq ¨ ck while minimizing cj ¨ ck. Φpxi
tq ¨ ck is

the similarity between the tth patch of the ith example and cj ¨ ck is the similarity between the jth

concept vector and the kth concept vector. By averaging over all concepts, and defining Tck
as the

set of top-K nearest neighbors of ck, the final regularization term is

Rpcq “ λ1

řm

k“1

ř

xb
aPTck

Φpxb
aq ¨ ck

mK
´ λ2

ř

j‰k cj ¨ ck

mpm ´ 1q
.

By adding the regularization term to (2), the final objective becomes

argmax
c1:m,g

logP phypgpvcpx1:T qqq ` Rpcq, (3)

for which we use stochastic gradient descent to optimize variables c1:m, g jointly. When the opti-
mization converges, g is a (local) optimal value given c1:m. Since only concept vectors c1:m, and
the mapping function g is optimized in the process, the optimization process converges much faster
compared to training the model from scratch. The computational cost for discovering concepts and
calculating conceptSHAP is about 3 hours for AwA dataset and less than 20 minutes for the toy
dataset and IMDB, using a single 1080 Ti GPU, which can be further accelerated with parallelism.
The choice of which layer to apply hy, g and the corresponding architecture are further discussed in
the appendix.

4.3 ConceptSHAP: How important is each concept?

Given a set of concept vectors CS “ tc1, c2, ...cmu with a high completeness score, we would like to
evaluate the importance of each individual concept by quantifying how much each individual concept
contributes to the final completeness score. Let si denote the importance score for concept ci, such
that si quantifies how much of the completeness score ηpCSq is contributed by ci. Motivated by
its successful applications in quantifying attributes for complex systems, we adapt Shapley values
[Shapley, 1988] to fairly assign the importance of each concept (which we call ConceptSHAP):

Definition 4.1. Given a set of concepts CS “ tc1, c2, ...cmu and some completeness score η, we
define the ConceptSHAP si for concept ci as

sipηq “
ÿ

SĎCs\ci

pm ´ |S| ´ 1q!|S|!

m!
rηpS Y tciuq ´ ηpSqs,
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(a) Two random images and corresponding ground
truth concepts (with their legend on the left) – each
object corresponds to a ground truth concept solely
via the shape information.

(b) Top nearest neighbors (each neighbor corresponds
to a part of the full image) of each discovered con-
cepts. The ground truth concepts, determined by their
shape (with random colors), are on the left.

Figure 1: Examples (left) and nearest neighbors of our method (right) on Synthetic data.

The main benefit of Shapley for importance scoring is that it uniquely satisfies the set of desired
axioms: efficiency, symmetry, dummy, and additivity. As these axioms are widely discussed in
previous works [Shapley, 1988, Lundberg and Lee, 2017], we leave the definitions and proof to
Appendix.

Per-class saliency of concepts: Thus far, conceptSHAP measures the global attribution (i.e., con-
tribution to completeness when all classes are considered). However, per-class saliency, how much
concepts contribute to prediction of a particular class, might be informative in many cases. To obtain
the concept importance score for each class, we define the completeness score with respect to the
class by considering data points that belong to it, which is formalized as:

Definition 4.2. Given a prediction model fpxq “ hpφpxqq, a set of concept vectors c1, c2, ..., cm
that lie in the feature subspace in φp¨q, we define the completeness score ηf,jpc1, ..., cmq for class j
as:

ηf,jpc1, ..., cmq “
Px,yPVj

ry “ argmaxy1 hy1 pĝpvcpxqqqs ´ ar,j

Px,yPV ry “ argmaxy1 fy1 px1:T qs ´ ar
, (4)

where Vj is the set of validation data with ground truth label j, and ar,j is the accuracy of random
predictions for data in class j, and ĝ is derived via the optimization of completeness. We then define
the perclass ConceptSHAP for concept i with respect to class j as:

Definition 4.3. Given a prediction model fpxq, a set of concept vectors in the feature subspace in φp¨q.
We can define the perclass ConceptSHAP for concept i with respect to class j as: si,jpηq “ sipηjq.

For each class j, we may select the concepts with the highest conceptSHAP score with respect to

class j. We note that
ř

j

|Vj |
|V | ηj “ η and thus with the additivity axiom,

ř

j

|Vj |
|V | si,jpηjq “ sipηq.

5 Experiments

In this section, we demonstrate our method both on a synthetic dataset, where we have ground truth
concept importance, as well as on real-world image and language datasets.

5.1 Synthetic data with ground truth concepts

Setting: We construct a synthetic image dataset with known and complete concepts, to evaluate
how accurately the proposed concept discovery algorithm can extract them. In this dataset, each
image contains at most 15 shapes (shown in Fig. 1a), and only 5 of them are relevant for the ground
truth class, by construction. For each sample x

i, zij is a binary variable which represents whether xi

contains shape j. zi
1:15

is a 15-dimensional binary variable with elements independently sampled from
Bernoulli distribution with p “ 0.5. We construct a 15-dimensional multi-label target for each sample,
where the target of sample i, yi is a function that depends only on z

i
1:5

, which represents whether the
first 5 shape exists in x

i. For example, y1 “„ pz1 ¨z3q`z4, y2 “ z2`z3`z4, y3 “ z2 ¨z3`z4 ¨z5,
where „ denotes logical Not (details are in Appendix). We construct 48k training samples and 12k
evaluation samples and use a convolutional neural network with 5 layers, obtaining 0.999 accuracy.
We take the last convolution layer as the feature layer φpxq.
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Table 1: The average number of correct and agreed concepts by users based on nearest neighbors.

ACE ACE-SP PCA k-means Ours

correct concepts 3.0 ˘ 0 2.75 ˘ 0.46 3.875 ˘ 0.35 3.75 ˘ 0.46 5.0 ˘ 0

agreed concepts 4.625 4.75 4.375 4.75 5.0

automated alignment 0.741 ´ 0.876 0.864 0.98

Evaluations: We conduct a user-study with 20 users to evaluate the nearest neighbor samples
of a few concept discovery methods. At each question, a user sees 10 nearest neighbor images of
each discovered concept vector (as shown on the right of Fig. 1b), and is asked to choose the most
common and coherent shape out of the 15 shapes based on the 10 nearest neighbors. We evaluate
the results for our method, k-means clustering, PCA, ACE, and ACE-SP when m “ 5 concepts
are retrieved. Each user is tested on two randomly chosen methods in random order, and thus each
method is tested on 8 users. We report the average number of correct concepts and the number of
agreed concepts (where the mode of each question is chosen as the correct answer) for each method
answered by users in Table 1. The average number of correct concepts measures how many of the
correct concepts are retrieved by user via nearest neighbors. The average number of agreed concepts
measures how consistent are the shapes retrieved by different users, which is related to the coherency
and conciseness of the nearest neighbors for each method. We also provide an automated alignment
score based on how the discovered concept direction classifies different concepts – see Appendix for
details.

Results: We compare our methods to ACE, k-means clustering, and PCA. For k-means and PCA,
we take the embedding of the patch as input to be consistent to our method. For ACE, we implement
a version which replaces the superpixels with patches and another version that takes superpixels as
input, which we refer as ACE and ACE-SP respectively. We report the correct concepts and agreed
concepts from the user study, and an automated alignment score which does not require humans. We
do not calculate the alignment score of ACE-SP since it does not operate on patches and thus is unfair
to compare with others (which would lead to much lower scores.) Our method outperforms others on
corrected concepts and alignment score, is superior in retrieving the accurate concepts beyond the
limitations of others. The number of agreed concepts is also the highest for our method, showing how
highly-interpretability it is to humans such that the same concepts are consistently retrieved based on
nearest neighbors. As qualitative results, Fig. 1b shows the top-6 nearest neighbors for each concept
ck of our concept discovery method based on the dot product xck,Φpxaqby. All nearest neighbors
contain a specific shape that corresponds to the ground-truth shapes 1 to 5. For example, all nearest
neighbors of concept 1 contain the ground truth shape 1, which are cross as listed in Fig. 1a. A
complete list of the top-10 nearest neighbors of all concept discovery methods is shown in Appendix.

5.2 Image classification

Setting and metrics: We perform experiments on Animals with Attribute (AwA) [Lampert et al.,
2009] that contains 50 animal classes. We use 26905 images for training and 2965 images for
evaluation. We use the Inception-V3 model, pre-trained on Imagenet [Szegedy et al., 2016], which
yields 0.9 test accuracy. We apply our concept discovery algorithm to obtain m “ 70 concepts.
We conduct ad-hoc duplicate concept removal, by removing one concept vector if there are two
vectors where the dot product is over 0.95. This gives us 53 concepts in total. We then calculate
the ConceptSHAP and per class saliency score for each concept and each class. For each class, the
top concepts based on the conceptSHAP are the most important concepts to classify this class, as

Figure 2: Completeness scores on synthetic dataset (left) and completeness scores on AwA (right)
versus different number of discovered concepts m for all concept discovery methods in the synthetic
dataset. Ours-noc refers to our method without the completeness score objective as an ablation study.
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shown in Fig.3. While ConceptSHAP is useful in capturing the sufficiency of concepts for prediction,
sometimes we may want to show examples. We propose to measure the quality of the nearest
neighbors explanations by the average dot product between the nearest-neighbor patches that belongs
to the class and the concept vector. In other words, the quality of the nearest neighbors explanations
is simply the first term in Rpcq, which we denote as R1pcq “

řm

k“1

ř

xb
aĎTck

xΦpxb
aq, cky, where the

top-K set is limited to image patches in the class of interest. When the nearest neighbor set contains
patches of the same original image, we only show the patch with the highest similarity to the concept
to increase the diversity.

Results: We show the top concepts (ranked by conceptSHAP) of 3 classes with R1pcq>0.8 in
Fig. 3 (full results are in Appendix). Note that since our method finds concepts for all classes as
opposed to specific to one class (such as Ghorbani et al. [2019], Chen et al. [2019]), we discover
common concepts across many classes. For example, concept 7, whose nearest neighbors show grass
texture, is important for the classes ‘Squirrel’, ‘Rabbit’, ‘Bob Cat’, since all these animals appear
in prairie. Concept 8 shows a oval head and large black round eyes shared by the classes ‘Rabbit’,
‘Squirrel’, ‘Weasel’, while concept 46 shows head of the ‘Bob cat’, which is shared by the classes
‘Lion’, ‘Leopard’, and ‘Tiger’, ‘Antelope’, and ‘Gorilla’, which all show animal heads that are more
rectangular and significantly different to the animal heads of concept 8. We find that having concepts
shared between classes is useful to interpret the model. Fig. 2 shows that our method achieves the
highest completeness of all methods on both the synthetic dataset and AwA. As a sanity check, we
include the baseline ‘ours-noc’, where the completeness objective is removed from (3). Our method
has much higher completeness than ‘ours-noc’, demonstrating the necessity of the completeness term.
In Appendix, we show some more top concepts for PCA, Kmeans, where the top concepts for PCA
and Kmeans are also chosen as the same setting as ours.

Human Study: We conduct a human study for the top neighbors for concepts discovered by our
method, PCA, and Kmeans on the classes ‘Squirrel’, ‘Rabbit’, ‘Bob Cat’. For each method, we
randomly choose 1 top concept per class for the 3 classes, and thus we choose 3 concepts per method
(9 concepts in total). For each concept, we show users 4 top images of that concept, and ask users to
choose the image (out of 3 different options) that they believe should belong to the same concept
(where one of the option will actually belong to the same concept, and the other two are random
image patches of the same class that does not belong to that concept). We then calculate the average
accuracy to measure the human interpretability of the concept discover method. We conduct a user
study with 10 users, where each of them are asked with the same 9 questions (1 question per concept
chosen). The average correct ratio for our method, PCA, and Kmeans are 0.733, 0.267, and 0.6
respectively, showing our method’s superiority. Kmeans outperforms PCA as it also encourages
closeness of top nearest neighbors (which is better for ostensive definition).

5.3 Text classification

Setting: We apply our method on IMDB, a text dataset with movie reviews classified as either
positive or negative. We use 37500 reviews for training and 12500 for testing. We employ a 4-layer
CNN model with 0.9 test accuracy. We apply our concept discover method to obtain 4 concepts,
where the part of data x

i
j consists of 10 consecutive words of the sentence. The completeness of the

4 concepts is 0.97, thus the 4 concepts are highly representative of the classification model.

Result: For each concept, Table 2 shows (a) the top nearest neighbors based on the dot product
of the concept and part of reviews (b) the most frequent words in the top-500 nearest neighbors

Figure 3: Concept examples with the samples that are the nearest to concept vectors in the activation
space in AwA. The per-class ConceptSHAP score is listed above the images.
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Table 2: The 4 discovered concepts and some nearest neighbors along with the most frequent words
that appear in top-500 nearest neighbors.
Concept Nearest Neighbors Frequent words ConceptSHAP

poorly constructed what comes across as interesting is the worst (168) ever (69) movie (61) seen (55)
1 wasting my time with a comment but this movie film (50) awful (42) time(40) waste (34) 0.280

awful in my opinion there were <UNK> and the poorly (26) movies (24) films (18) long (17)

normally it would earn at least 2 or 3 not (58) movie (39) make (25) too (23)
2 <UNK> <UNK> is just too dumb to be called film (22) even (19) like (18) 2 (16) 0.306

i feel like i was ripped off and hollywood never (14) minutes (13) 1 (12) doesn’t (11)

remember awaiting return of the jedi with almost <UNK> movies (19) like (18) see (16) movie (15)
3 better than most sequels for tv movies i hate love (15) good (12) character (11) life (11) 0.174

male because marie has a crush on her attractive little (10) ever (9) watch (9) first (9)

new <UNK> <UNK> via <UNK> <UNK> with absolutely hilarious excellent (50) film (25) perfectly (19) wonderful (19)
4 homosexual and an italian clown <UNK> is an entertaining perfect (16) hilarious (15) best (13) fun (12) 0.141

stephen <UNK> on the vampire <UNK> as a masterpiece highly (11) movie (11) brilliant (9) old (9)

(excluding stop words) (c) the conceptSHAP score for each concept. We can see that concepts 1
and 2 contain mostly negative sentiments, evident from the nearest neighbors – concept 1 tends to
criticize the movie/film directly, while concept 2 contains negativity in comments via words such as
“not”, “doesn’t”, “even”. We note that the ratings in concept 2 are also negative since the scores 1 and
2 are considered to be very negative in movie review. On the other hand, concepts 3 and 4 contain
mostly positive sentiments, as evident from the nearest neighbors – concept 3 seems to discuss the
plot of the movie without directing acclaiming or criticizing the movie, while concept 4 often contains
very positive adjectives such as “excellent”, “wonderful” that are extremely positive. More nearest
neighbors are provided in the Appendix.

Appending discovered concepts: We perform an additional experiment where we randomly ap-
pend 5 nearest neighbors (out of 500-nearest neighbors) of each concept to the end of all testing
instances for further validation of the usefulness of the discovered concepts. For example, we may add
“wasting my time with a comment but this movie” along with 4 other nearest neighbors of concept 1
to the end of a testing sentence. The original average prediction score for the testing sentences is
0.516, and the average prediction score after randomly appending 5 nearest neighbors of each concept
becomes 0.103, 0.364, 0.594, 0.678 for concept 1, 2, 3, 4. As a controlled experiment, we appended
5 random sentences to the testing sentences, and the average prediction score is 0.498. This suggests
that the concept score is highly related to the how the model makes prediction and may be used to
manipulate the prediction. We note that while concept 1 contains stronger and more direct negative
words than concept 2, concept 2 has a higher conceptSHAP value than concept 1. We hypothesize
this is due to the fact that concept 2 may better detect weak negative sentences that may be difficult to
be explained by concept 1, and thus may contribute more to the completeness score.

6 Conclusions

We propose to quantify the sufficiency of a particular set of concepts in explaining the model’s
behavior by the completeness of concepts. By optimizing the completeness term coupled with
additional constraints to ensure interpretability, we can discover concepts that are complete and
interpretable. Through experiments on synthetic and real-world image and language data, we
demonstrate that our method can recover ground truth concepts correctly, and provide conceptual
insights of the model by examining the nearest neighbors. Although our work focuses on post-hoc
explainability of pre-trained DNNs, joint training with our proposed objective function is possible to
train inherently-interpretable DNNs. An interesting future direction is exploring the benefits of joint
learning of the concepts along with the model, for better interpretability.
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7 Broader Impact

Bringing explainability can be crucial for AI deployments, for decision makers to build trust, for
users to understand decisions, and for model developers to improve the quality. There are many
use cases, from Finance, Healthcare, Employment/Recruiting, Retail, Environmental Sciences etc.,
that the explainability indeed constitutes the bottleneck to use deep neural networks (DNNs) despite
their high performance. Thus, bringing explainability to DNNs can open many horizons for new AI
deployments.

There are different forms of explainability, and our contributions are specifically for the very important
‘concept-based’ explanations, towards a coherent and complete transparency to DNNs. Our paper
contributes to the quantification of the “completeness” of concept explanations, which can be useful to
evaluate how sufficient existing and future concept-based explanations are, on the task of explaining
a neural network. Validating the how sufficient the explanations are in explaining the model is a
necessary sanity check, but often overlooked for concept explanations. As the field of explainable AI
progresses rapidly, critiques and doubts on whether explanations are actually useful and accountable
for models have also increased. Our objective metric bridges the gap between existing explanations
and model accountability.

Most post-hoc concept-based explanations are applied only on image data. Our method is data
type agnostic. We demonstrate our canonical idea on both image and language data, which we
believe can be applied to other data types as well. We believe our work lays a groundwork on
general concept-based explanations, and hopefully will encourage future works on exploring concept
explanations on all kinds of data types. Our concept discovery method explain a model using a small
number of concepts, which can be explained by providing nearest neighbors in the training data to
help users understand the concepts better. Such explanations provide a broader understanding of the
model compared to the widely-used methods, such as saliency maps, and can be helpful for model
developers and data scientists in understanding how the model works, improving the model based on
insights, and ultimately learning from AI systems to build better AI systems.
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