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Abstract

We shall construct complex contact similarity manifolds. Among them there exists a complex contact infranil-

manifold L/Γ which is a holomorphic torus fiber space over a quaternionic euclidean orbifold. Specifically taking

a connected sum of L/Γ with the complex projective space CP
2n+1, we prove that the connected sum admits a

complex contact structure. Our examples of complex contact manifolds are different from those known previously

as complex Boothby-Wang fibration (Foreman, 2000) or the twistor fibration (Salamon, 1989).
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1. Introduction

There is a construction of three different types of complex contact structure. Given a 4n-dimensional quaternionic

Kähler manifold N of nonzero scalar curvature, the twistor construction produces a complex contact manifold M
which is the total space of a fibration: S 2 → M → N (cf. Salamon, 1989; Wolf, 1965). Similarly, a quaternionic

Kähler manifold N4n of positive (resp. negative) scalar curvature induces a Sasakian 3-structure (resp. pseudo-

Sasakian 3-structure) on the total space M4n+3 of the principal fibration: S 3 → M → N. By taking a circle S 1

from S 3, the total space M/S 1 of the quotient bundle S 2 → M/S 1 → N admits a complex contact structure.

(See Ishihara & Konishi, 1979; Moroianu & Semmelmann, 1996; Tanno, 1996). However, these constructions

cannot produce complex contact manifolds for quaternionic Kähler manifolds of vanishing scalar curvature. On

the other hand, if N4n is a complex symplectic manifold with a complex symplectic form Ω = Ω1 + iΩ2 such

that [Ωi] ∈ H2(N;Z) is an integral class (i = 1, 2), then the complex Boothby-Wang fibration induces a compact

complex contact manifold M which has a connection bundle: T 2 → M → N (cf. Foreman, 2000; Blair, 2002). If

N4n happens to be a quaternionic Kähler manifold with vanishing scalar curvature, then we have a new example of

compact complex manifold. In fact, Foreman (2000) shows that a complex nilmanifold M which is the total space

of a principal torus bundle over a complex torus T 2n
C

admits a complex contact structure. The universal covering M̃
is endowed with a complex nilpotent Lie group structure which is called generalized complex Heisenberg group in

Foreman, 2000.

In this paper, we study complex contact transformation groups by taking into account this specific nilpotent Lie

group. We verify this group from the viewpoint of geometric structure in Section 4. In fact the sphere S 4n+3

admits a canonical quaternionic CR-structure. The sphere S 4n+3 with one point ∞ removed is isomorphic to the

4n + 3-dimensional quaternionic Heisenberg Lie groupM as a quaternionic CR-structure. M has a central group

extension: 1 → R
3 → M p−→ H

n → 1 where R
3 = ImH is the imaginary part of the quaternion field H.

Taking a quotient of M by R (= Ri), we obtain a complex nilpotent Lie group L (= L2n+1) which supports a

holomorphic principal bundle C → L p−→ C
2n. The canonical quaternionic CR-structure on S 4n+3 restricts a

Carnot-Carathéodory structure B to M. Using this bundle B, a left invariant complex contact structure on L is

obtained (cf. Alekseevsky & Kamishima, 2008; Kamishima, 1999).

We are mainly interested in constructing examples of compact complex contact manifolds which are not known
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previously. Let Sim(L) be the group of complex contact similarity transformations. It is defined to be the semidirect

product L� (Sp(n) ·C∗), (C∗ = S 1 ×R+). The pair (Sim(L),L) is said to be complex contact similarity geometry.

A manifold M locally modelled on this geometry is called a complex contact similarity manifold. Denote by

Autcc(M) the group of complex contact transformations of M. We prove the following characterization of compact

complex contact similarity manifolds in Section 2 (Compare Fried, 1980; Miner, 1991 for the related results in this

direction).

Theorem A Let M be a compact complex contact similarity manifold of complex dimension 2n + 1. If S 1 ≤
Autcc(M) acts on M without fixed points, then M is holomorphically diffeomorphic to a complex contact infranil-
manifold L/Γ or a complex contact Hopf manifold L − {0}/Z+ diffeomorphic to S 1 × S 4n+1. Here Γ is a discrete
cocompact subgroup in L� (Sp(n) · S 1) or Z+ is an infinite cyclic subgroup of Sp(n) · S 1 × R+.

In Section 3, we can perform a connected sum of our complex contact infranil-manifolds L/Γ (Γ ≤ E(L)).

Theorem B The connected sum CP
2n+1#L/Γ admits a complex contact structure.

By iteration of this procedure there exists a complex contact structure on the connected sum of a finite number of

complex contact similarity manifolds and CP
2n+1’s. These examples are different from those admitting S 2 (resp.

T 2)-fibrations.

2. Complex Contact Structure on the Nilpotent Group

2.1 Definition of Complex Contact Structure

Recall that a complex contact structure on a complex manifold M in complex dimension 2n + 1 is a collection of

local forms {Uα, ωα}α∈Λ which satisfies that (1) ∪
α∈Λ

Uα = M. (2) Each ωα is a holomorphic 1-form defined on

Uα. Then ωα ∧ (dωα)n � 0 on Uα. (3) If Uα ∩ Uβ � ∅, then there exists a nonzero holomorphic function fαβ on

Uα ∩ Uβ such that fαβ · ωα = ωβ. Unlike contact structures on orientable smooth manifolds, it does not always

exist a holomorphic 1-form globally defined on M. Note that if the first Chern class c1(M) vanishes, then there is

a global existence of a complex contact form ω on M. (See Kobayashi, 1959; Lebrun, 1995).

Let h: M → M be a biholomorphism. Suppose that h(Uα)∩Uβ � ∅ for some α, β ∈ Λ. If there exists a holomorphic

function fαβ on an open subset in Uα such that h∗ωβ = fαβωα, then we call h a complex contact transformation
of M. Denote Autcc(M) the group of complex contact transformations. It is not necessarily a finite dimensional

complex Lie group.

2.2 The Iwasawa Nilpotent Lie Group L2n+1

Let L2n+1 be the product C2n+1 = C × C2n with group law (n ≥ 1):

(x, z) · (y,w) = (x + y +
n∑

i=1

z2i−1w2i − z2iw2i−1, z + w) (2.1)

where z = (z1, . . . , z2n),w = (w1, . . . ,w2n).

Put L = L2n+1. It is easy to see that [(x, z), (y,w)] = (2

n∑
i=1

z2i−1w2i − z2iw2i−1, 0) so [L,L] = (C, (0, . . . , 0)) = C is

the center of L. Thus there is a central group extension: 1→ C→ L2n+1 −→ C
2n → 1. It is easy to check that L3

is isomorphic to the Iwasawa group consisting of 3 × 3-upper triangular unipotent complex matrices.

Definition 2.1 A complex 2n + 1-dimensional complex nilpotent Lie group L2n+1 is said to be the Iwasawa Lie

group.

See (Foreman, 2000, pp.193-195) for more general construction of this kind of Lie group.

2.3 Construction of Complex Contact Structure on L2n+1

Choose a coordinate (z0, z1, . . . , z2n) ∈ L2n+1, we define a complex 1-form η:

η = dz0 − (

n∑
i=1

z2i−1 · dz2i − z2i · dz2i−1) = dz0 − (z1, . . . , z2n) Jn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
dz1

...
dz2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.2)

2



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 4; 2013

where Jn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
J

. . .

J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with J =
(

0 1

−1 0

)
.

Since η∧ (dη)n is a non-vanishing form 2n(−2)ndz0∧ · · ·∧dz2n on L2n+1, η is a complex contact structure on L2n+1

by Definition 2.1.

2.4 Complex Contact Transformations

Let hol(L2n+1) be the group of biholomorphic transformations of L = L2n+1. The group of complex contact

transformations on L with respect to η is denoted by

hol(L, η) = { f ∈ hol(L) | f ∗η = τ · η} (2.3)

where τ is a holomorphic function on L.

Let Sp(n,C) = {A ∈ M(2n,C) | tAJnA = Jn} be the complex symplectic group. As Sp(n,C) ∩ C
∗ = {±1}, denote

Sp(n,C) · C∗ = Sp(n,C) × C∗/{±1}. Put

A(L) = L� (Sp(n,C) · C∗) (2.4)

which forms a group as follows; write elements λ · A, μ · B ∈ Sp(n,C) · C∗ for A, B ∈ Sp(n,C), λ, μ ∈ C
∗. Let

(a,w), (b, z) ∈ L. Define(
(a,w), λ · A) · ((b, z), μ · B) = ((a + λ2b + tw Jn(λAz),w + λAz), λμ · AB

)
.

Here tw Jn(λAz) =

n∑
i=1

w2i−1 · (λAz)2i − w2i · (λAz)2i−1 as before.

Let
(
(a,w), λ · A) ∈ A(L), (z0, z) ∈ L. A(L) acts on L as(

(a,w), λ · A) · (z0, z) = (a,w) · (λ2z0, λAz) = (a + λ2z0 +
tw Jn(λAz), w + λAz). (2.5)

If h = ((b,w), μ · B) ∈ A(L) is an element, then it is easy to see that

h∗η = μ2 · η. (2.6)

Thus A(L) preserves the complex contact structure on L defined by η.

Let Aff(C2n+1) = C
2n+1

� GL(2n + 1,C) be the complex affine group which is a subgroup of hol(L) since L2n+1 =

C
n+1 (biholomorphically). We assign to each

(
(a,w), λ · A) ∈ A(L) an element

([ a
w

]
,

(
λ2 λtw JnA
0 λA

))
∈ Aff(C2n+1). (2.7)

Then the action (2.5) of
(
(a,w), λ · A) on L coincides with the above affine transformation of C2n+1. Moreover, it

is easy to check that this correspondence is an injective homomorphism:

A(L) ≤ Aff(C2n+1). (2.8)

As a consequence it follows

A(L) ≤ hol(L, η). (2.9)

Let M be a smooth manifold. Suppose that there exists a maximal collection of charts {(Uα, ϕα)}α∈Λ whose coor-

dinate changes belong to A(L). More precisely, M = ∪
α∈Λ

Uα, ϕα: Uα → L is a diffeomorphism onto its image. If

Uα ∩ Uβ � ∅, then there exists a unique element gαβ ∈ A(L) such that gαβ = ϕβ · ϕ−1
α on ϕα(Uα ∩ Uβ). We say that

M is locally modelled on (A(L),L) (Compare Kulkarni, 1978).

Here is a sufficient condition for the existence on complex contact structure.

Proposition 2.2 If a (4n+2)-dimensional smooth manifold M is locally modelled on (A(L),L), then M is a complex
contact manifold. Moreover, M is also a complex affinely flat manifold.
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Proof. First of all, we define a complex structure on M. Let J0 be the standard complex structure on L = C
2n+1.

Define a complex structure Jα on Uα by setting ϕα∗Jα = J0ϕα∗ on Uα for each α ∈ Λ. When gαβ ∈ A(L), note that

gαβ∗J0 = J0gαβ∗ from (2.8). On Uα∩Uβ, a calculation shows that ϕβ∗Jα = gαβ∗ϕα∗Jα = J0ϕβ∗. Since ϕβ∗Jβ = J0ϕβ∗
by the definition, it follows Jα = Jβ on Uα ∩ Uβ. This defines a complex structure J on M. In particular, each ϕα:
(Uα, J)→ (L, J0) (= C

2n+1) is a holomorphic embedding. Let η be the holomorphic 1-form on L as before. Define

a family of local holomorphic 1-forms {ωα,Uα}α∈Λ by

ωα = ϕ
∗
αη on Uα. (2.10)

If Uα ∩ Uβ � ∅, then there exists a unique element gαβ ∈ A(L) such that gαβ = ϕβ · ϕ−1
α . From (2.6), g∗αβη = μ

2
αβ · η

for some μαβ ∈ C∗. It follows ωβ = μ
2
αβ ·ωα. Thus the family {ωα,Uα}α∈Λ is a complex contact structure on (M, J).

Apart from the complex contact structure, since A(L) ≤ Aff(C2n+1) from (2.8), M is also modelled on (Aff(C2n+1),

C
2n+1) where L = C

2n+1. M is a complex affinely flat manifold. �
Remark 2.3 (1) When a subgroup Γ ≤ A(L) acts properly discontinuously and freely on a domain Ω of L with

compact quotient, we obtain a compact complex contact manifold Ω/Γ by this proposition. In fact let p: Ω→ Ω/Γ
be a covering holomorphic projection. Take a set of evenly covered neighborhoods {Uα}α∈Λ of Ω/Γ. Choose a

family of open subsets Ũα such that pα = p|Ũα : Ũα → Uα is a biholomorphism. Put ωα = (p−1
α )∗η. Then the family

{Uα, ωα}α∈Λ is a complex contact structure on Ω/Γ.

(2) When Ω = L, L/Γ is said to be a compact complete affinely flat manifold. Concerning the Auslandr-Milnor

conjecture, we do not know whether the fundamental group Γ is virtually polycyclic.

(3) By the monodromy argument, there exists a developing immersion: dev: M̃ → L from the universal covering

M̃ of M. Then note that dev∗J = J0dev∗, i.e. dev is a holomorphic map. Here J is the lift of complex structure on

M̃ (We wrote the same J on M̃).

When M is a complex manifold, we assume that the complex structure on M coincides with the one constructed in

Proposition 2.2.

2.5 Complex Contact Similarity Geometry

It is in general difficult to find such a properly discontinuous group Γ as in Remark 2.3. Sp(n,C) contains a maximal

compact symplectic subgroup Sp(n) = {A ∈ U(2n) | tAJnA = Jn} where Sp(n,C) � Sp(n) × Rn(2n+1).

Definition 2.4 Put Sim(L) = L� (Sp(n) · C∗) ≤ A(L). The pair (Sim(L),L) is called complex contact similarity

geometry. If a manifold M is locally modelled on this geometry, M is said to be a complex contact similarity

manifold. The euclidean subgroup of Sim(L) is defined to be E(L) = L� (Sp(n) · S 1).

For example, choose c ∈ C∗ with |c| � 1 and A ∈ Sp(n). Put r =
(
(0, 0), c ·A) ∈ Sim(L). Let Z+ be an infinite cyclic

group generated by r. Then it is easy to see that Z+ acts freely and properly discontinuously on the complement

L− {0}. Here 0 = (0, 0) ∈ L2n+1 = L. The quotient L− {0}/Z+ is diffeomorphic to S 1 × S 4n+1. By Proposition 2.2

((1) of Remark 2.3), S 1 × S 4n+1 is a complex contact similarity manifold.

Let Hn be the 4n-dimensional quaternionic vector space. The quaternionic similarity group Sim(Hn) = H
n
�

((Sp(n) · Sp(1)) × R
+) (resp. quaternionic euclidean group E(Hn) = H

n
� (Sp(n) · Sp(1))) has a special subgroup

Ŝim(Hn) = H
n
� ((Sp(n) · S 1) × R

+) (resp. Ê(Hn) = H
n
� (Sp(n) · S 1)). When we identify H

n with the complex

vector space C
2n by the correspondence (a + bj) �→ (ā, b), Ŝim(Hn) is canonically isomorphic to the complex

similarity subgroup C
2n
� (Sp(n) · C∗) where C

∗ = S 1 × R+. Then there are commutative exact sequences:

1 −−−−−−→ C −−−−−−→ Sim(L)
p−−−−−−→ Ŝim(Hn) −−−−−−→ 1

|| ∪ ∪
1 −−−−−−→ C −−−−−−→ E(L)

p−−−−−−→ Ê(Hn) −−−−−−→ 1.

(2.11)

Choosing a torsionfree discrete cocompact subgroup Γ from E(L), we obtain an infranilmanifold L/Γ of complex

dimension 2n + 1. In particular, Γ ∩L is discrete uniform in L by the Auslander-Bieberbach theorem. As C is the

central subgroup of L, Γ ∩ C is discrete uniform in C and so Δ = p(Γ) is a discrete uniform subgroup in Ê(Hn).

We obtain a Seifert singular fibration over a quaternionic euclidean orbifold H
n/Δ: T 1

C
→ L/Γ −→ H

n/Δ. By (1)

of Remark 2.3, L/Γ is a complex contact manifold.
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Remark 2.5 When we take a finite index nilpotent subgroup Γ′ of Γ admitting a central extension: 1 → Z
2 →

Γ′ −→ Z
4n → 1, a nilmanifold L/Γ′ admits a holomorphic principal T 1

C
-bundle over a complex torus T 2n

C
=

H
n/Z4n. This holomorphic example is a special case of Foreman’s T 2- connection bundle over T 2n

C
(Foreman,

2000).

We give rise to a classification of compact complex contact similarity manifolds under the existence of S 1-actions

(Compare Fried, 1980; Miner, 1991 for the related results of similarity manifolds). Recall that Autcc(M) is the

group of complex contact transformations from Definition 2.1.

Theorem 2.6 Let M be a 4n + 2-dimensional compact complex contact similarity manifold. If S 1 ≤ Autcc(M) acts
on M without fixed points, then M is holomorphically diffeomorphic to a complex contact infranilmanifold L/Γ or
a complex contact Hopf manifold S 1 × S 4n+1.

Proof. Let J be a complex structure on M. Given a collection of charts {Uα, ϕα, Jα} on M with Jα = J|Uα such

that ϕα: (Uα, Jα)→ (L, J0) is a holomorphic diffeomorphism onto its image, the monodromy argument shows that

there is a developing pair:

(ρ, dev) : (Autcc(M̃), M̃)→ (Sim(L),L) (2.12)

where M̃ is the universal covering and J̃ is a lift of J to M̃, and π = π1(M) ≤ Autcc(M̃). Then dev is a holomorphic

immersion dev∗J = J0dev∗ and ρ: Autcc(M̃)→ Sim(L) is a holonomony homomorphism. Put Γ = ρ(π). Let S̃ 1 be

a lift of S 1 to M̃ so that ρ(S̃ 1) ≤ Sim(L).

Case 1) If Γ ≤ E(L), then there is a E(L)-invariant Riemannian metric on L. As M is compact, the pullback

metric on M̃ by dev is (geodesically) complete, dev: M̃ → L is an isometry. As dev becomes a complex contact

diffemorphism, M is holomorphically isomorphic to a complex contact infranilmanifold L/Γ.
Case 2) Suppose that some ρ(γ) has a nontrivial summand in R

+ ≤ L� (Sp(n) ·S 1×R+) = Sim(L). In view of the

affine representation ρ(γ) = (p, P) where P =
(
λ2 λtw JnA
0 λA

)
from (2.7), we note |λ| � 1, i.e. P has no eigenvalue

1. Then there exists an element z0 ∈ L such that the conjugate (z0, I)ρ(γ)(−z0, I) = (0, P). We may assume that

ρ(γ) = (0, P) ∈ Aff(L) from the beginning. As ρ(S̃ 1) centralizes Γ, if ρ(t) = (q,Q) ∈ ρ(S̃ 1), then the equation

ρ(t)ρ(γ) = ρ(γ)ρ(t) implies that Pq = q and so q = 0. Thus ρ(t) = (0,Q) =
(
(0, 0), μt·Bt

) ∈ Sp(n)·S 1×R+ ≤ Sim(L).

It follows ρ(S̃ 1) ≤ Sp(n) · S 1 ×R+. In particular, ρ(S̃ 1) has a non-empty fixed point set S in L. If dev(x) ∈ S, then

dev(S̃ 1x) = ρ(S̃ 1) dev(x) = x. Since dev is an immersion, S̃ 1x = x. As S 1 has no fixed points on M, it is noted

that dev(M̃) ⊂ L − S. Let Sim(L − S) be the subgroup of Sim(L) whose elements leave S invariant. Note that

Γ ≤ Sim(L − S).

We determine S and Sim(L−S). Since ρ(S̃ 1) belongs to the maximal abelian group T 2n · S 1 ×R+ up to conjugate

in Sp(n) · S 1 × R+, we can put 〈λt〉 ≤ S 1 × R+, 〈st〉 = S 1 and

ρ(S̃ 1) = {((0, 0), μt · Bt)
)
=
([ 0

0

]
,

(
μ2

t 0

0 μtBt

))
}

Bt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

st
. . .

st

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ T 2n ≤ Sp(n)

(2.13)

where Sp(n) ≤ U(2n) is canonically embedded so that 2k-numbers of st’s and 2�-numbers of 1’s. Recall that ρ(S̃ 1)

acts on L by ρ(t)(z0, z) = (μ2
t z0, μtBtz).

Case I. μt � 1. Suppose that μtλt = 1. Then S = Fix(ρ(S̃ 1),L) = {(0, (z, 0)) ∈ L | z ∈ C
2k} (0 ≤ k ≤ n). As the

element
(
(a,w), λ · A) ∈ Sim(L) acts by

(
(a,w), λ · A)(0, (z, 0)) = (a + λtw JnAz, w + λAz) ∈ S (cf. (2.5)), we can

check that a = 0, w ∈ C2k and so λAz ∈ C2k. In particular, A ∈ Sp(k). From w JnAz = 0, it follows w = 0.

Sim(L − S) = {((0, 0), λ · A) | A ∈ Sp(k)} = Sp(k) · S 1 × R+. (2.14)
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Case II. μt = 1. Then S = {(z0, (0, z)) ∈ L | z ∈ C2�} = L2�+1 (0 ≤ � ≤ n − 1). It follows as above

Sim(L − S) = {((a,w), λ · A) |w ∈ C2�, A ∈ Sp(�)}
= L2�+1 � (Sp(�) · S 1 × R+) = Sim(L2�+1).

(2.15)

We need the following lemma.

Lemma 2.7 Sim(L − S) acts properly on L − S.

Proof. Case I. There is an equivariant inclusion

(Sp(k) · S 1 × R+,L − S) ⊂ (Sp(n) · S 1 × R+,L − {0}).
As there is an Sp(n) · S 1 ×R+-invariant Riemannian metric on L− {0} and Sp(k) · S 1 ×R+ is a closed subgroup, it

acts properly on L − S.

Case II. Let G = C
2�
� (Sp(�) ·S 1×R+) be the semidirect group which preserves the complement C2n−C2�. Then

there is an equivariant principal bundle:

(C,C)→ (Sim(L2�+1),L − L2�+1) −→ (G,C2n − C2�). (2.16)

We note that G acts properly on C
2n − C2�. For this, we observe that

C
2n − C2� = S 4n − S 4� = H

4�+1
R
× S 4n−4�−1 (2.17)

in which

G ≤ R
4�
� (O(4�) × R+) = Sim(R4�) ≤ PO(4� + 1, 1). (2.18)

As PO(4�+1, 1)×O(4n−4�) = Isom(H4�+1
R
×S 4n−4�−1) and G is a closed subgroup of PO(4�+1, 1), G acts properly

on C
2n − C2�.

Since C acts properly on L − L2�+1, the above principal bundle (2.16) implies that Sim(L2�+1) acts properly on

L − L2�+1. �
We continue the proof of Theorem 2.6. For Case I, there is an Sp(k) · S 1 × R

+-invariant Riemannian metric on

L−S. Put H = Sp(k) ·S 1 ×R+. As L−S = C
2n+1 −C2k = H

4k+1
R
×S 4n−4k+1 where H ≤ Sim(R4k) ≤ PO(4k+1, 1),

note that the quotient L − S/H is a Hausdorff space. On the other hand,

L − S/H = H
4k+1
R
/H × S 4n−4k+1

= R
4k
�R

+/H × S 4n−4k+1

= R
4k/(Sp(k) · S 1) × S 4n−4k+1.

(2.19)

L − S/H cannot be compact unless k = 0.

On the other hand, as M is compact and Γ ≤ Sim(L − S), using Lemma 2.7, dev : M̃ → L − S is a covering map.

L − S is simply connected unless k = n. Then M � L − S/Γ is compact (k � n). If we consider the fiber space

L − S/Γ→ L− S/H, L − S/H must be compact, which cannot occur except for k = 0.

If L − S = H
4n+1
R
× S 1 (k = n), then there is a lift of dev, d̃ev: M̃ → H

4n+1
R
× R which is a diffeomorphism. The

group Γ̃ = d̃ev◦π ◦ d̃ev
−1

acts properly discontinuously and freely on H
4n+1
R
×R such that H4n+1

R
×R/Γ̃ is compact.

As there is the canonical projection:

H
4n+1
R
× R/Γ̃→ H

4n+1
R
× S 1/H, (2.20)

H
4n+1
R
× S 1/H is compact. This case is also impossible.

For k = 0, S = {0}, dev: M̃ → L−{0} is a diffeomorphism. As Γ ≤ S 1 ×R+ acting freely on L−{0} = H
1
R
×S 4n+1,

M is biholomorphic to L − {0}/Γ which is diffeomorphic with S 1 × S 4n+1.

For Case II, L − L2�+1 is always simply connected (cf. (2.16)). Then M is diffeomorphic to L − L2�+1/Γ so that

Γ ≤ Sim(L2�+1) = L2�+1 � (Sp(�) · S 1 × R+) is a discrete subgroup. As there is a fiber space

Sim(L2�+1)/Γ→ L−L2�+1/Γ −→ L − L2�+1/Sim(L2�+1), (2.21)
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it follows that Sim(L2�+1)/Γ is compact. Since L2�+1 is a maximal nilpotent subgroup of Sim(L2�+1), L2�+1 ∩ Γ
is discrete uniform in L2�+1. As R+ acts on L as multiplication, Γ cannot have a nontrivial summand in R

+. This

contradicts the hypothesis of Case 2. So Case II does not occur. This proves the theorem. �
3. Connected Sum

In Kobayashi (1959), there is a complex contact structure on the complex projective space CP
2n+1; let ω =

n+1∑
i=1

(z2i−1 · dz2i − z2i · dz2i−1) be a holomorphic 1-form on C
2n+2. Put Ui = {[w0, . . . ,w2n+1] |wi � 0} which forms a

cover {Ui} of CP2n+1. If si is a holomorphic cross-section of the principal bundle C∗ → C
2n+2 − {0} −→ CP

2n+1 re-

stricted to Ui, settingωi = s∗iω, {ωi} defines a complex contact structure on CP
2n+1. For example, let ι: U0 → C

2n+1

be the local coordinate system defined by ι([w0, . . . ,w2n+1]) = (z0, . . . , z2n) such that wi+1/w0 = zi. A holomorphic

map s0: U0 → C
2n+2 − {0} may be defined as

s0 ◦ ι−1(z0, . . . , z2n) = (1, z0,−z1, z2,−z3, z4, . . . ,−z2n−1, z2n).

Then the holomorphic 1-form (s0 ◦ ι−1)∗ω on ι(U0) is described as

(s0 ◦ ι−1)∗ω = dz0 −
n∑

i=1

(z2i−1 · dz2i − z2i · dz2i−1). (3.1)

For this,

(s0 ◦ ι−1)∗ω = (s0 ◦ ι−1)∗
(
(z1dz2 − z2dz1) + (z3dz4 − z4dz3) + · · · + (z2n+1dz2n+2 − z2n+2dz2n+1)

)
= dz0 − (z1dz2 − z2dz1) − · · · − (z2n−1 · dz2n − z2ndz2n−1).

So (s0 ◦ ι−1)∗ω is equivalent with η|ι(U0) of (2.2).

Let p: L → L/Γ be the holomorphic covering map. Put V0 = p(ι(U0)) and p(0) = x. Then the map p ◦ ι: U0 → V0

is a holomorphic map with p ◦ ι([1, 0, . . . , 0]) = x. Choose a neighborhood U′0 ⊂ U0 such that ι(U′0) is a closed ball

B at the origin in C
2n+1. Put p(B) = V ′0 ⊂ V0 so that p ◦ ι: U′0 → V ′0 is a biholomorphism. Then a connected sum

CP
2n+1#L/Γ is obtained by glueing CP

2n+1 − intU′0 and L/Γ − intV ′0 along the boundaries ∂U′0 and ∂V ′0 by p ◦ ι.
Proposition 3.1 The connected sum CP

2n+1#L/Γ admits a complex contact structure.

Proof. As above (s0 ◦ ι−1)∗ω = η on ι(U0). Note that ω0 = s∗0ω = ι
∗η on U0. On the other hand, the complex

contact structure {ηi} on L/Γ satisfies that p∗η0 = η on ι(U0). The holomorphic map p ◦ ι: U0 → V0 satisfies that

(p ◦ ι)∗η0 = ω0. Since J(p ◦ ι)∗ = (p ◦ ι)∗J on U0, the complex structure J is naturally extended to a complex

structure on CP
2n+1#L/Γ along the boundary ∂U′0. �

Since any complex contact similarity manifold M is locally modelled on (Sim(L),L) by the definition, every point

of M has a neighborhood U on which the complex contact structure is equivalent to a restriction of (η,L). Similarly

to the above proof, we have

Theorem 3.2 Any connected sum M1# · · · #Mk#�CP2n+1 admits a complex contact structure for a finite number of
complex contact similarity manifolds M1, . . . ,Mk and �-copies of CP2n+1.

4. Contact Complex Structure from Quaternionic Heisenberg Lie Group

4.1 Quaternionic Heisenberg Geometry

Denote R
3 = ImH which is the imaginary part of the quaternion field H. M is the product R3 × H

n with group

law:

(α, u) · (β, v) = (α + β + Im〈u, v〉, u + v).

Here 〈u, v〉 = tū · v =
n∑

i=1

ūivi is the Hermitian inner product where ū = (ū1, . . . , ūn) is the quaternion conjugate.

M is nilpotent because [M,M] = R
3 which is the center consisting of the form ((a, b, c), 0) (a, b, c ∈ R). M

is called quaternionic Heisenberg Lie group. The similarity subgroup Sim(M) is defined to be the semidirect

productM � (Sp(n) · Sp(1) × R
+). The action of Sim(M) onM is given as follows; for h =

(
(α, u), (A · g, t)) ∈

M� (Sp(n) · Sp(1) × R+), (β, v) ∈ M,

h ◦ (β, v) = (α + t2gβg−1 + Im〈u, tAvg−1〉, u + t · Avg−1).

7
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The pair (Sim(M),M) is called quaternionic Heisenberg geometry.

Let ui = zi + wij ∈ H (zi,wi ∈ C). It is easy to check that the correspondence p:M→ L defined by(
ai + bj + ck, (u1, . . . , un)

) �→ (b + ci, (z̄1,w1, z̄2,w2, . . . , z̄n,wn)
)

(4.1)

is a Lie group homomorphism. Let Ŝim(M) =M�(Sp(n) ·S 1×R+) be the subgroup of Sim(M). Then p:M→ L
induces a homomorphism q: Ŝim(M)→ Sim(L) for which (q, p): (Ŝim(M),M)→ (Sim(L),L) is equivariant.

Take the coordinates (a, b, c) ∈ R3, u = (u1, . . . , un) ∈ Hn. Define a ImH-valued 1-form onM to be

ω = dai + dbj + dck − Im〈u, du〉. (4.2)

We may put

ω = ω1i + ω2j + ω3k (4.3)

for some real 1-forms ω1, ω2, ω3 on M. Noting (4.1), p∗η · j is a Cj (≤ H)-valued 1-form on M. A calculation

shows that

ω − p∗η · j = dai +
n∑

i=1

(z̄idzi − zidz̄i + widw̄i − w̄idwi) (4.4)

which is an Ri-valued 1-form. Then we have from (4.3) that

ω − p∗η · j = ω1 · i. (4.5)

In particular when p∗: TM→ TL is the differential map, this equality shows

p∗(Kerω) = Ker η. (4.6)

4.2 Quaternionic Carnot-Carathéodory Structure onM4n+3

Let ν: M → H
n be the projection defined by ν((a, b, c), u) = u. Then it is easy to check that ν∗: Kerω → THn is

an isomorphism at each point. By the pullback of this isomorphism, the standard quaternionic structure {J1, J2, J3}
on H

n induces an almost quaternionic structure on Kerω. (We write it as {J1, J2, J3} also.) As [Kerω,Kerω] =

R
3, (Kerω, {Jα}α=1,2,3) is said to be quaternionic Carnot-Carathéodory structure on M4n+3 (cf. Alekseevsky &

Kamishima, 2008).

Set ui = zi + wij = xi + yii + (pi + qii)j, so that

g = |du|2 =
n∑

i=1

(dx2
i + dy2

i + dp2
i + dq2

i )

is the standard positive definite symmetric bilinear form on Kerω. Since dω = −dū ∧ du = dω1i + dω2j + dω3k
from (4.2), (4.3), a reciprocity of the quaternionic structure shows that

dω1(J1X,Y) = dω2(J2X, Y) = dω3(J3X,Y) = −g(X,Y). (∀ X,Y ∈ Kerω). (4.7)

Let J0 be the complex structure on L and μ: L → C
2n the canonical projection. Since η is a holomorphic 1-

form, μ∗: (Ker η, J0) → (TC2n, J0) is an equivariant isomorphism. If q: Hn → C
2n is an isomorphism defined by

q(u1, . . . , un) = (z̄1,w1, . . . , z̄n,wn), then there is the commutative diagram:

M ν−−−−−−→ H
n

p
⏐⏐⏐⏐⏐� q

⏐⏐⏐⏐⏐�
L μ−−−−−−→ C

2n,

(4.8)

By the definition of J1, q∗ ◦ J1 = J0 ◦ q∗ on THn.

Note that Kerω1 = Kerω ⊕ 〈 d
db
,

d
dc
〉 with ω1(

d
da

) = 1 and TL = Ker η ⊕ 〈 d
db
,

d
dc
〉. Since p∗〈 d

db
,

d
dc
〉 = 〈 d

db
,

d
dc
〉

(cf. (4.1)) and by (4.6), p∗: Kerω1 → TL is an isomorphism.

8



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 4; 2013

4.3 Complex Contact Bundle on L
As R3 acts as translations onM, R3 leaves ω (resp. ωi (i = 1, 2, 3)) invariant. R3 induces the distribution of vector

fields 〈 d
da
,

d
db
,

d
dc
〉 onM. Define an almost complex structure J̄1 on Kerω1 as

J̄1|Kerω1 = J1, J̄1

d
db
=

d
dc
, J̄1

d
dc
= − d

db
. (4.9)

Lemma 4.1 p∗ ◦ J̄1 = J0 ◦ p∗ on Kerω1.

Proof. Let X ∈ Kerω. By the commutativity of (4.8)

μ∗(p∗(J1X)) = q∗ν∗(J1X) = J0q∗ν∗(X) = μ∗(J0p∗(X)), (4.10)

so p∗(J1X) = J0p∗(X).

Obviously, p∗(J̄1(
d
db
,

d
dc

)) = J0p∗(
d
db
,

d
dc

). �

Lemma 4.2 J̄1 is integrable on Kerω1.

Proof. Let Kerω1 ⊗ C = T 1,0
ω1
⊕ T 0,1

ω1
be the eigenspace decomposition. Then T 1,0

ω1
= T 1,0

ω ⊕ 〈
d
db
− d

dc
i〉. If we note

that dω1(J̄1X, J̄1Y) = dω1(X,Y) (X,Y ∈ Kerω1) from (4.7), then [T 1,0
ω1
,T 1,0
ω1

] ⊂ Kerω1 ⊗ C. Then p∗([T 1,0
ω1
,T 1,0
ω1

]) =

[T 1,0(L),T 1,0(L)]. Since J0 is the complex structure on L, [T 1,0(L),T 1,0(L)] ⊂ T 1,0(L). It follows

[T 1,0
ω1
,T 1,0
ω1

] ⊂ T 1,0
ω1
. (4.11)

�
Remark 4.3 The pair (Kerω1, J̄1) is not a strictly pseudoconvex CR-structure onM unlike Sasakian 3-structures.

For this, [
d

db
,

d
dc

] = 0 in Kerω1 = Kerω ⊕ 〈 d
db
,

d
dc
〉, so dω1(

d
db
,

d
dc

) = 0. However, dω1: Kerω × Kerω → R is

nondegenerate from (4.7).

We put Ker η⊗C = T 1,0
η ⊕T 0,1

η . Let p∗: Kerω1⊗C→ TL⊗C be an isomorphism so that p∗(
d
db
− d

dc
i) =

d
db
− d

dc
i.

By Lemma 4.1, we have p∗(T 1,0
ω ) = T 1,0

η .

Theorem 4.4 The complex 2n-dimensional holomorphic subbundle T 1,0
η is a complex contact subbundle on L.

Proof. Let T 1,0
ω1
⊗C = T 1,0

ω ⊕ 〈
d
db
− d

dc
i〉 and T 1,0(L) = T 1,0

η ⊕ 〈
d
db
− d

dc
i〉 as above. From Remark 4.3, dω1: T 1,0

ω ×
T̄ 1,0
ω → C is nondegenerate. Since J1(J3X) = −i(J3X), J3X ∈ T̄ 1,0

ω . Then dω1(J3X,Y) = −dω2(X,Y) = ω2([X,Y])

from (4.7). Thus ω2([T 1,0
ω ,T

1,0
ω ]) = C. In particular, [T 1,0

ω ,T
1,0
ω ] � {0}. As [T 1,0

ω ,T
1,0
ω ] ⊂ T 1,0

ω1
= T 1,0

ω ⊕ 〈
d
db
− d

dc
i〉

by Lemma 4.2, it follows

[T 1,0
η ,T

1,0
η ] ≡ 〈 d

db
− d

dc
i〉 mod T 1,0

η . (4.12)

Hence T 1,0
η is a complex contact subbundle on L. �
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