
ON COMPLEX STRUCTURES

IN 8-DIMENSIONAL VECTOR BUNDLES

Martin Čadek, Jiř́i Vanžura

Abstract. Necessary and sufficient conditions for the existence of a complex struc-
ture in 8-dimensional spin vector bundle over a closed connected spin manifold of
dimension 8 are given in terms of characteristic classes. The result completes the
papers by Heaps [H] and Thomas [T] on the same topic.

The problem of the existence of an almost complex structure on 8-dimensional
closed smooth manifold was solved by T. Heaps in [H]. This result was generalized
to arbitrary 8-dimensional vector bundles over 8-manifolds by E. Thomas in [T].
However, his necessary and sufficient conditions for the existence of a complex
structure in 8-dimensional vector bundle contain a secondary cohomology operation
which was computed only under special conditions. The aim of this note is to use
the methods developed in [CV1] to improve the results from [T] for vector bundles
with vanishing second Stiefel–Whitney class. The main result together with our
description of the characteristic classes of such bundles in [CV3] enable us to decide
which of them have a complex structure. We will show it on examples of S8 and
G4,2(C).

We will use the term ”spin vector bundle” exclusively for oriented vector bundles
which admit a spin structure, i. e. with the trivial first and second Stiefel–Whitney
classes and we will not have in mind any fixed spin structure.

Let ξ be an oriented 8-dimensional spin vector bundle. We prove that the struc-
ture group SO(8) of ξ can be reduced to U(4) if and only if the vector bundle
associated to ξ via a certain outer automorphism of the group Spin(8) contains a
2-dimensional subbundle. This comparison enables to give necessary and sufficient
conditions for the existence of a complex structure in ξ over a closed connected spin
manifold of dimension 8 in terms of characteristic classes and the cohomology ring
of the manifold without using any higher order cohomology operation. So our main
theorem completes the results of Heaps [H] and Thomas [T].

In what follows we use the notation from [CV1]. We recall that we consider the
Cayley numbers O as a right quaternionic vector space. In the Lie algebra so(8)
we consider the subalgebra so(2) ⊕ so(6). Obviously, c ∈ so(8) lies in so(2)⊕ so(6)
if and only if the following conditions are satisfied

c([1, i]) ⊂ [1, i], c([j, k, e, f, g, h]) ⊂ [j, k, e, f, g, h].
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Moreover c|[1, i] ∈ so(2), and consequently there exists l(c) ∈ R such that

c(1) = l(c)i, c(i) = −l(c)1.

Using the outer automorphisms λ and κ of so(8) (see [CV1] for definition) we can
formulate the following lemma.

Lemma 1. Homomorphism κλ restricted to the Lie algebra so(2) ⊕ so(6) is an
isomorphism between so(2) ⊕ so(6) and u(4).

Proof. The triality principle says that for every x, y ∈ O and every a ∈ so(8) we
have

a(xy) = b(x)y + xc(y)

where
a = (κλ)(c) , b = λ2(c).

So we get
a(x) = a(x1) = b(x)1 + xc(1) = b(x) + xl(c)i.

Taking into account this equality we obtain

a(xi) = b(x)i + xc(i) = a(x)i + xl(c) − xl(c) = a(x)i,

which shows that a = (κλ)(c) ∈ u(4). Since κλ is a monomorphism and dim u(4) =
dim(so(2) ⊕ so(6)) = 16, we get that κλ is an isomorphism between so(2) ⊕ so(6)
and u(4).

We will denote the corresponding homomorphisms of corresponding Lie groups
and Lie algebras by the same letters.

Let υ2 : Spin(2) → Spin(8) and υ6 : Spin(6) → Spin(8) be the canonical
inclusions. It is easy to see that im υ2 ∩ im υ6 = {1,−1}. Because every element
from im υ2 commutes with every element from im υ6, we get a homomorphism
υ2 × υ6 : Spin(2) × Spin(6) → Spin(8) with kernel K = {(1, 1), (−1,−1)}. We
denote Spin(2) · Spin(6) = (Spin(2) × Spin(6))/K. Then we obtain an induced
monomorphism υ : Spin(2) · Spin(6) → Spin(8). Let π : Spin(8) → SO(8) be the
standard epimorphism. Obviously, we have im (πυ) = SO(2) × SO(6). We denote

by Ũ(4) = π−1U(4) the inverse image of the subgroup U(4) ⊂ SO(8). Because

the Lie group U(4) is connected we can see that the Lie group Ũ(4) has either one
or two components. Taking an orthonormal basis e1 = 1, e2 = i, e3 = j, e4 = k,
e5 = e, e6 = f , e7 = g, e8 = h in O, we can consider a curve ϕ(t) = cos t+sin t·e1e2,

t ∈< 0, π > in Spin(8). It is easy to verify that this curve lies in Ũ(4) and joins

the elements 1 and −1. This shows that the group Ũ(4) is connected. By virtue of
Lemma 1 we get a commutative diagram

Spin(2) · Spin(6) wυ Spin(8)

Ũ(4) wγuπuκλ

Spin(8)uπuκλ

U(4) wβ
SO(8)
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where β and γ denote the inclusions, and κλ are isomorphisms. From this diagram
we obtain easily the following lemma.

Lemma 2. The homogeneous space Spin(8)/Ũ(4) determined by the inclusion γ

is diffeomorpfic to the Grassmann manifold G̃8,2 of oriented 2-planes.

Let X be a CW-complex. Applying first the classifying space functor B and
then the functor [X,−] to the above diagram, we get the following commutative
diagram

[X, B(Spin(2) · Spin(6))] wυ∗ [X, BSpin(8)]

[X, BŨ(4)] wγ∗uπ∗

u
(κλ)∗

[X, BSpin(8)]uπ∗

u
(κλ)∗

[X, BU(4)] wβ∗ [X, BSO(8)]

where (κλ)∗ are bijections.
Now let us consider an oriented 8-dimensional vector bundle (V, p

V
, X) over X .

Choosing a riemannian metric on it we can consider the corresponding principal
SO(8)-bundle ξ = (Q, p

Q
, X). We can consider this bundle as an element ξ ∈

[X, BSO(8)]. We have V = Q ×SO(8) R8. Let us assume that ξ is a spin bundle.

This means that there exists a principal Spin(8)-bundle ξ̄ = (P, p
P
, X) and an

π-equivariant principal bundle epimorphism χ : P → Q. Equivalently, we can say
that there exists an element ξ̄ ∈ [X, BSpin(8)] such that π∗ξ̄ = ξ. If ξ = (Q, p

Q
, X)

has a reduction Q̃ ⊂ Q to the subgroup U(4), then ξ̄ = (P, p
P
, X) has a reduction

P̃ = χ−1(Q̃) to the subgroup Ũ(4). Conversely, if ξ̄ = (P, p
P
, X) has a reduction

P̃ ⊂ P to the subgroup Ũ(4), then ξ = (Q, p
Q
, X) has a reduction Q̃ = χ(P̃ ) to the

subgroup U(4).

Let us consider a reduction P̃ ⊂ P of the principal Spin(8)-bundle ξ̄ to the

subgroup Ũ(4). We can consider the Lie group Spin(2)·Spin(6) as a left Ũ(4) -space

when we define for h ∈ Ũ(4) and g ∈ Spin(2) · Spin(6) the action h · g = (κλ(h))g.

Then the associated bundle P̃ ×κλ Spin(2) ·Spin(6) is a principal Spin(2) ·Spin(6)-
bundle. It is easy to see that this is the bundle (κλ)∗(ξ̄).

The same argument as above shows that a principal SO(8)-bundle ξ = (Q, p
Q
, X)

admitting a spin structure χ : P → Q has a reduction to the subgroup SO(2) ⊕
SO(6) if and only if the principal Spin(8)-bundle ξ̄ = (P, p

P
, X) has a reduction to

the subgroup Spin(2) · Spin(6).
In the sequel we shall not distinguish between an oriented 8-dimensional vector

bundle, the corresponding principal SO(8)-bundle, and the corresponding element
from [X, BSO(8)]. We have proved the following lemma.

Lemma 3. Let X be a CW-complex and let ξ ∈ [X, BSO(8)] be a spin vector
bundle. Then ξ has a complex structure (i. e. an U(4)-structure) if and only if
there exists an element ξ̄ ∈ [X, BSpin(8)] such that

(1) π∗ξ̄ = ξ;
(2) The vector bundle ζ = π∗(κλ)∗(ξ̄) has an oriented 2-dimensional subbundle.
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We will use wm(ξ) for the m-th Stiefel–Whitney class of the vector bundle ξ,
pm(ξ) for the m-th Pontrjagin class, and e(ξ) for the Euler class. The letters wm,
pm and e will stand for the characteristic classes of the universal bundles over
the classifying spaces BSO(8) and BSpin(8). The mapping ρm : H∗(X, Z) →
H∗(X, Zm) is induced from the reduction mod m.

Now, we shall recall some facts about the cohomology of BSpin(8). These results
can be found in [Q] and [CV1].

Lemma 4. The cohomology rings of BSpin(8) are

H∗(BSpin(8); Z2) ∼= Z2[w4, w6, w7, w8, ε]

and

H∗(BSpin(8); Z) ∼= Z[q1, q2, e, δw6]/〈2δw6〉

where q1, q2 and ε are defined by the relations

p1 = 2q1 , p2 = q2
1 + 2e + 4q2 , ρ2q2 = ε.

Moreover,

ρ2q1 = w4 , ρ2e = w8.

Let ξ be an oriented 8-dimensional vector bundle over a CW-complex X given
by the homotopy class of some mapping ξ : X → BSO(8). ξ has a spinor structure
iff w2(ξ) = 0. If some lifting ξ̄ : X → BSpin(8) is fixed we can define spin
characteristic classes

q1(ξ) = ξ̄∗q1 , q2(ξ) = ξ̄∗q2.

The first spin characteristic class is always independent of the choice of ξ̄. More-
over, if H4(X ; Z) has no element of order 4, then it is uniquely determined by the
relations

2q1(ξ) = p1(ξ) , ρ2q1(ξ) = w4(ξ).

The second spin characteristic class is independent of the spinor structure ξ̄ if X
is simply connected or H8(X ; Z) ∼= Z. In the case of 8-dimensional manifold q2(ξ)
is uniquely determined by the relation

16q2(ξ) = 4p2(ξ) − p2
1(ξ) − 8e(ξ).

We shall also need information about the action of the homeomorphisms κ and
λ on the above mentioned cohomology rings. See [CV1] for the next lemma.

Lemma 5. For κ : BSpin(8) → BSpin(8) and λ : BSpin(8) → BSpin(8) we have

κ∗(q1) = q1

κ∗(q2) = q2 + e

κ∗(e) = −e

λ∗(q1) = q1

λ∗(q2) = −e − q2

λ∗(e) = q2.
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Theorem 6. Let ξ be a real 8-dimensional oriented vector bundle over a closed
connected oriented smooth manifold M of dimension 8. Let w2(ξ) = w2(M) = 0.
Then in ξ there exists the structure of a complex vector bundle if and only if there
are u ∈ H2(M ; Z) and v ∈ H6(M ; Z) such that

(i) ρ2v = w6(ξ) + w4(ξ)ρ2u + ρ2u
3 and 16uv = −4p2(ξ) + p2

1(ξ) + 8e(ξ),
(ii) {p2

1(ξ) − p1(ξ)p1(M) + 8e(ξ)}[M ] ≡ 0 mod 16.

Proof. Let us choose ξ̄ ∈ [M, BSpin(8)] such that π∗ξ̄ = ξ ∈ [M, BSO(8)], and
consider the bundle ζ = π∗(κλ)∗ξ̄ ∈ [M, BSO(8)]. By virtue of Lemma 5 we have
λ∗κ∗(q1) = q1, which implies λ∗κ∗(w4) = λ∗κ∗ρ2(q1) = ρ2(q1) = w4. Further,
λ∗κ∗(w6) = λ∗κ∗Sq2(w4) = Sq2(w4) = w6. Consequently, we get

q1(ζ) = q1(ξ), w4(ζ) = w4(ξ), w6(ζ) = w6(ξ).

Similarly, we have λ∗κ∗(q2) = −e and λ∗κ∗(e) = −q2, which implies

q2(ζ) = −e(ξ), e(ζ) = −q2(ξ).

Now, using Theorem 3.1 and Theorem 3.5 from [CV2], we can see that ζ has
an oriented 2-dimensional subbundle if and only if there are u ∈ H2(M ; Z) and
v ∈ H6(M ; Z) such that

(i) ρ2v = w6(ζ) + w4(ζ)ρ2u + ρ2u
3 and uv = e(ζ),

(ii) ρ2q2(ζ) = ρ2
1
2{q1(ζ)q1(M) − q2

1(ζ)}.

Expressing the characteristic classes of ζ in terms of the characteristic classes of ξ,
we obtain the two conditions of the theorem. We can also see that the proof does
not depend on the choice of the spin structure ξ̄.

Remark 7. In [T] explicit necessary and sufficient conditions for the existence of
a complex structure are given only for 8-dimensional vector bundles ξ satisfying the
conditions

δw2(ξ) = 0 , w4(ξ) = w4(M).

Example 8. We shall consider the complex Grassmann manifold G4,2(C). (See
also [CV2], Example 3.6.) Let us recall that H∗(G4,2(C); Z) ∼= Z[x1, x2]/(x3

1 −
2x1x2, x

2
2 −x2

1x2). The isomorphism is given by x1 7→ c1, x2 7→ c2, where c1 and c2

are the Chern classes of the canonical complex vector bundle γ2 over G4,2(C). A
standard computation shows that

c1(G) = 4c1, c2(G) = 7c2
1, c3(G) = 12c1c2, c4(G) = 6c2

1c2,

p1(G) = 2c2
1, p2(G) = 14c2

1c2, e(G) = 6c2
1c2,

where G = G4,2(C). We can immediately see that G4,2(C) is a spin manifold.
Let ξ be a spin vector bundle over G4,2(C) (i. e. w2(ξ) = 0). As in [CV2] we can

write
p1(ξ) = 2ac2

1 + 2bc2, p2(ξ) = Cc2
1c2, e(ξ) = Dc2

1c2.

Further, let us write

u = kc1 ∈ H2(G4,2(C); Z), v = lc1c2 ∈ H6(G4,2(C); Z).

In [CV2] we have shown that the condition (i) of Theorem 6 has the form

(i) l ≡ (k + 1)b mod 2, 4kl = −C + 2a2 + 2ab + b2 + 2D.
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Easy computation shows that the condition (ii) of the same theorem reads as

(ii) 2a2 + 2ab + b2 − 2a − b + 2D ≡ 0 mod 4.

It remains to investigate the existence of integers k and l satisfying the above
equations (i). For this purpose we shall investigate two cases, namely b ≡ 0 mod 2
and b ≡ 1 mod 2. We start with the case b ≡ 0 mod 2. If b is even then l is also
even and the integer −C + 2a2 + 2ab + b2 + 2D is divisible by 8. We can now easily
see that if b ≡ 0 mod 2 then the integers k and l satisfying (i) exist if and only if

8|(−C + 2a2 + 2ab + b2 + 2D).

We can start with the case b ≡ 1 mod 2. Here l = k + 1+ 2r, where r is an integer.
Substituting into the second equation of (i), we obtain easily

(2k + (2r + 1))2 − (2r + 1)2 = X,

where we have denoted X = −C +2a2 +2ab+ b2 +2D. Now, it is obvious that the
existence of integers k and l satisfying (i) is equivalent to the existence of integers
k and r satisfying the above equation. Denoting α = 2k + (2r + 1) and β = 2r + 1,
we can easily see that the existence of integers k and r is equivalent to the existence
of odd integers α and β such that

α2 − β2 = X.

Simple considerations show that odd integers α and β with the above property
exist if and only if 8|X . This means that in both cases we get the same result.
Summarizing we can say that on a vector bundle ξ over G4,2(C) there exists a
complex vector bundle structure if and only if

(i) 8|(−C + 2a2 + 2ab + b2 + 2D),
(ii) 2a2 + 2ab + b2 − 2a − b + 2D ≡ 0 mod 4.

This example also enables to test our theorem. Taking ξ = T (G4,2(C)), the
tangent bundle of G4,2(C), we can easily find out that the conditions of Theorem
6 are satisfied. This corresponds with the fact that G4,2(C) is a complex manifold.

Example 9. Let us consider the unit sphere S8. Using Theorem 2 from [CV3] we
can see that isomorphism classes of 8-dimensional real vector bundles over S8 are in
bijective correspondence with elements of Z×Z. A vector bundle ξk,l corresponding
to (k, l) ∈ Z × Z satisfies

p2(ξk,l)[S
8] = 6k and e(ξk,l)[S

8] = 3k + 2l.

Using the above Theorem 6 we can easily find that there is a complex vector bundle
structure on ξk,l if and only if

k ≡ 0 mod 2, l = 0.

This result can be reformulated in the following form. An 8-dimensional real vector
bundle ξ over S8 admits a complex vector bundle structure if and only if

12|p2(ξ)[S
4] and p2(ξ) = 2e(ξ).
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