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The following equation w2
x þ w2

y þ n2ðx, yÞ ¼ 0 and related partial differential equations
and systems, which arise in a generalization of geometrical optics, are investigated from a
theoretical point of view. Here x and y denote rectangular coordinates in the Euclidean
plane, n is real-valued, strictly positive and smooth enough. Qualitative properties of smooth
solutions were derived in Magnanini and Talenti (1999, On complex-valued solutions to a
2D Eikonal equation. Part One: qualitative properties. Contemporary Mathematics, 283,
203–229). Partial differential equations governing ReðwÞ were treated in Magnanini and
Talenti (2002, On Complex-Valued Solutions to a 2D Eikonal Equation. Part Two: Existence
Theorems. SIAM Journal on Mathematical Analysis, 34, 805–835). Here we put to use viscosity
and variational methods, and a Bäcklund transformation relating ReðwÞ and ImðwÞ:

Keywords: Partial differential equations; Bäcklund transformations; Critical points; Boundary
value problems; Convex functionals; Minimizers; Free boundaries; Viscosity solutions

1991 Mathematics Subject Classifications: Primary 35J70, 35Q60; Secondary 49N60

1. Introduction

1.1. Subject

In the present article we let notations be as in appendix A; let n denote some real-valued,
strictly positive, sufficiently smooth function of x and y; and take the following partial
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differential equation

@w

@x

� �2

þ
@w

@y

� �2

þ n2 ¼ 0 ð1:1Þ

in hand.

1.2. Motivations

Equation (1.1) arises in acoustics, nuclear physics and optics. Suppose an isotropic,
non-conducting, non-dissipative medium and a monochromatic electromagnetic field
interact in absence of electric currents. Suppose the space dimension equals 2: Let n
and � denote the refractive index and the wave number, respectively. n is a real-valued
field, whose reciprocal is proportional to the relevant velocity of propagation through
the medium, and � is a large constant parameter, whose reciprocal is proportional to the
length of waves involved. The following Helmholtz equation

�Wþ �2n2W ¼ 0 ð1:2Þ

is an archetype of those partial differential equations that ensue from Maxwell’s system
and model the affairs mathematically. A distinctive feature of (1.2) is stiffness – the
order of magnitude of � is significantly greater than that of the other coefficients
involved.

Expansions, which represent solutions asymptotically as � ’ 1, are a clue to (1.2).
One of these expansions is provided by classical geometrical optics – see [1–3], for
example. Though successful in describing both the propagation of light and the
development of caustics via the mechanism of rays, geometrical optics is inherently
unable to account for any optical process that takes place beyond a caustic. More
comprehensive expansions are supplied by a theory, proposed by Felsen and coworkers
and nicknamed Evanescent Wave Tracking (EWT ) – see [4–12]. EWT does include
geometrical optics; in addition, the former is credited to model certain effects that
are excluded from the latter – for instance, the fast decaying waves that develop on
the side of the caustic where the geometric optical rays fail to penetrate.

Basically, EWT calls for real-valued fields u, v, �,� – all independent on � – such that
(1.2) consists with the following expansion

W ¼ expð�þ u�Þ cosð�þ �vÞ þOð1=�Þ½ � ð1:3Þ

as � approaches 1: EWT may be built upon the ansatz consisting of the three items
as below:

(i) W is given by either W ¼ expð�U Þ cosð�V Þ or W ¼ expð�U Þ sinð�V Þ:
(ii) U and V obey the following partial differential system

ð�þ �2n2Þ expð�U Þ
cosð�V Þ
sinð�V Þ

� �
¼ 0:
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(iii) The following expansion

U
V

� �
¼

u
v

� �
þ

�
�

� �
��1 þOð��2Þ

holds in a robust topology as � approaches 1:
Items (i) and (ii) obviously imply (1.2); items (i) and (iii) imply (1.3). Equations

governing u, v, �,� are (1.4) and (1.5) below, and can be easily inferred from (ii) and
(iii) as follows.

The differential system appearing in (ii) can be recast thus

ð1=�Þ�Uþ jrUj2 � jrVj2 þ n2 ¼ 0, ð1=�Þ�Vþ 2ðrU,rVÞ ¼ 0;

therefore (ii), (iii) and standard arguments cause u, v, �,� to obey both

jruj2 � jrvj2 þ n2 ¼ 0, ðru,rvÞ ¼ 0, ð1:4Þ

and

2
ux �vx
vx ux

� �
@

@x
þ

uy �vy
vy uy

� �
@

@y

� �
�
�

� �
þ�

u
v

� �
¼ 0: ð1:5Þ

Observe that (1.3), (1.4) and (1.5) become respectively

W ¼ expð�Þ½cosð�þ �vÞ þOð1=�Þ�,

jrvj2 ¼ n2,

and

2ðrv,r�Þ þ�v ¼ 0, ðrv,r�Þ ¼ 0,

if u is zero. In other words, if u vanishes, the three formulas in question become the
geometric optical expansion, the Eikonal equation and the transport equation of
geometrical optics. Observe also that, if i denotes

ffiffiffiffiffiffiffi
�1
p

, then (1.4) and (1.5) can be
arranged in the following form

ðux þ ivxÞ
2
þ ðuy þ ivyÞ

2
þ n2 ¼ 0, ð1:6Þ

2 ðux þ ivxÞ
@

@x
þ ðuy þ ivyÞ

@

@y

� �
ð�þ i�Þ þ�ðuþ ivÞ ¼ 0, ð1:7Þ

respectively.
Equations (1.4) to (1.7) are the basis of EWT. Equation (1.6) is nothing but a copy

of (1.1) – the theme of this article. It should be stressed here that the same
equation also appears in a more exhaustive asymptotic analysis of (1.2), which leads
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to uniform expansions near caustics, and in modeling deeper diffraction processes – a
propos information can be found in [13–16].

2. Framework

Our treatment of (1.1) relies upon an apparatus that is described next.

2.1. Some transformations of Bäcklund type

Let

f ¼ a Young function,

and let g be the conjugate of f. Recall from convex analysis that f maps ½0,1½ into
½0,1½, vanishes at 0, increases and is convex; g is a Young function too, and

gð�Þ ¼ supf��0 � fð�0Þ : 0 � �0 <1g

for every nonnegative �: As a working hypothesis, assume that f is strictly increasing,
strictly convex and smooth.

Bäcklund transformations attached to the following equations

rv ¼
n

jruj
f 0
jruj

n

� �
0 �1
1 0

� �
ru, ð2:1Þ

ru ¼
n

jrvj
g0
jrvj

n

� �
0 1
�1 0

� �
rv ð2:2Þ

play a basic role here. Information on Bäcklund transformations can be found
in [17–20]. The Bäcklund transformations in hand operate on real-valued, tractable
functions of two real variables, and return much the same items. They amount to
suitably stretching or shrinking a gradient, hence rotating the same by 90� and (2.1)
reads indeed

vx ¼ �nf
0ð�Þ sin!, vy ¼ nf 0ð�Þ cos!,

if the polar coordinates defined in appendix B dress up the hodograph of u. Critical
points of trial functions carry weight in the event that either f 0 or g0 fails to vanish at
0, and can be circumvented by viscosity methods.

Under the hypotheses made ab initio, we have

gð f 0ð�ÞÞ ¼ �f 0ð�Þ � fð�Þ and g0ðf 0ð�ÞÞ ¼ �

for every nonnegative � – in particular f 0 and the restriction of g0 to the range of f 0

are inverse of one another (see e.g. [21], sections 12 and 26). Therefore (2.1) implies
(2.2): that is to say, any Bäcklund transformation associated with (2.1) is one-to-one,
and one Bäcklund transformation associated with (2.2) continues the inverse of the
former.
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The right-hand side of (2.1) is locally a gradient if and only if u obeys

div
n

jruj
f 0
jruj

n

� �
ru

� �
¼ 0 ð2:3Þ

– a second-order differential equation in divergence form, features of which are sketched
in appendix C. The right-hand side of (2.2) is locally a gradient if and only if v obeys

div
n

jrvj
g0
jrvj

n

� �
rv

� �
¼ 0: ð2:4Þ

Therefore a Bäcklund transformation attached to (2.2) acts on solutions of (2.4);
a Bäcklund transformation attached to (2.1) maps solutions of (2.3) into solutions
of (2.4).

Remarks (i) If

fð�Þ ¼
�2

2

for every nonnegative �, then g ¼ f: Moreover, both (2.1) and (2.2) coincide with
Cauchy–Riemann equations no matter how n is, and both (2.3) and (2.4) coincide
with Laplace equation. (ii) Let p be any exponent larger then 1,

fð�Þ ¼
� p

p

for every nonnegative �, and n � 1: Then (2.1) reads

vx ¼ �jruj
p�2uy, vy ¼ jruj

p�2ux

– a pair widely investigated in [22–24]. Equation (2.3) reads

div jrujp�2ru
� 	

¼ 0

– the so-called p-Laplace equation.

2.2. A partial differential system

The following system

jrvj ¼ nf 0
jruj

n

� �
, ðru,rvÞ ¼ 0, ð2:5Þ

is central to our investigations. Observe the architecture of (2.5): the former equation
relates the absolute values of the relevant gradients, the latter informs us that the
same gradients are orthogonal. Observe also that (2.5) implies

jruj ¼ ng0
jrvj

n

� �
, ðru,rvÞ ¼ 0: ð2:6Þ
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As propositions (i) and (ii) below show, a solution pair to (2.5) results from letting
u obey (2.3), then casting v via (2.1); any solution pair to (2.5), whose Jacobian
determinant is strictly positive, can be recovered via this process. In other words,
a Bäcklund transformation underlying (2.1) serves the purpose of ruling out those
pairs that satisfy system (2.5) and whose Jacobian determinant changes its sign.

Proposition (iii) informs us that decoupling system (2.5) results both in equation (2.3)
and in equation (2.4). Proposition (iv) informs us that system (2.5) is elliptic.

(i) Equation (2.1) implies both (2.5) and the condition @ðu, vÞ=@ðx, yÞ � 0:

Proof Equation (2.1) implies (2.5) trivially. Since

@ðu, vÞ

@ðx, yÞ
¼ ru,

0 1
�1 0

� �
rv

� �
,

(2.1) also gives

@ðu, vÞ

@ðx, yÞ
¼ n jruj f 0

jruj

n

� �
and

@ðu, vÞ

@ðx, yÞ
¼ jrujjrvj: g

(ii) System (2.5) and condition @ðu, vÞ=@ðx, yÞ > 0 imply (2.1).

Proof The following equations

jruj2rv ¼ ðru,rvÞruþ
@ðu, vÞ

@ðx, yÞ

0 �1

1 0

" #
ru,

jruj2jrvj2 ¼ ðru,rvÞ2 þ
@ðu, vÞ

@ðx, yÞ

� �2
,

which result from either algebraic manipulations or a geometric argument, allow us
to recast (2.5) this way

jruj2rv ¼
@ðu, vÞ

@ðx, yÞ

0 �1
1 0

� �
ru,

@ðu, vÞ

@ðx, yÞ










 ¼ njruj f 0

jruj

n

� �
: g

(iii) System (2.5) implies both (2.3) and (2.4).

Proof Here we rely upon notations and formulas from appendix B. The latter
equation in (2.5) results in the following pair:

Xv ¼ 0, rv ¼ ðYvÞ
0 �1
1 0

� �
ru

jruj
:

We have

div jrvj
ru

jruj

� �
¼ Xjrvj � h jrvj,
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because both sides of such an equation equal

rjrvj,
ru

jruj

� �
þ jrvj div

ru

jruj
:

We deduce successively XðYvÞ ¼ hðYvÞ, Xjrvj ¼ hjrvj and

div jrvj
ru

jruj

� �
¼ 0:

Combining the last equation and the former in (2.5), gives (2.3).
Equation (2.4) follows from (2.6) via parallel arguments. g

(iv) System (2.5) is either elliptic or degenerate elliptic. Degeneracies do occur at
the critical points of u if f 0 fails to vanish at 0; uniform ellipticity prevails if f satisfies
the following condition

0 < Constant �
�f 00ð�Þ

f 0ð�Þ
� Constant ð2:7Þ

for every nonnegative �.

Proof Differentiating the following map

u

v

� �
�

nf 0
jruj

n

� �
� jrvj

ðru,rvÞ

2
4

3
5

results in the following linear partial differential operator

f 00
jruj

n

� �
ux
jruj

�
vx
jrvj

vx ux

2
4

3
5 @

@x
þ

f 00
jruj

n

� �
uy
jruj

�
vy
jrvj

vy uy

2
4

3
5 @

@y
,

whose characteristic determinant equals either side of the following equality

det �
f 00
jruj

n

� �
ux
jruj

�
vx
jrvj

vx ux

2
64

3
75dyþ f 00

jruj

n

� �
uy

jruj
�

vy

jrvj

vy uy

2
64

3
75dx

0
B@

1
CA

¼ f 00
jruj

n

� �
ru

jruj
� ðruÞT þ

rv

jrvj
� ðrvÞT

� � �dy
dx

" #
,
�dy

dx

" # !
:

If u and v obey (2.5), then formula (B.1) from appendix B and straightforward
manipulations yield successively

rv

jrvj
� ðrvÞT ¼ nf 0ð�Þ

� sin!
cos!

� �
� ½� sin! cos!�
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and

f 00
jruj

n

� �
ru

jruj
� ðruÞT þ

rv

jrvj
� ðrvÞT

¼ n
cos! � sin!

sin! cos!

" #
�f 00ð�Þ 0

0 f 0ð�Þ

" #
cos! sin!

� sin! cos!

" #
:

In other words, (2.5) causes

f 00
jruj

n

� �
ru

jruj
� ðruÞT þ

rv

jrvj
� ðrvÞT

to have the following eigenvalues

jruj f 00
jruj

n

� �
and nf 0

jruj

n

� �
: g

2.3. Specifications

The case where

fð�Þ ¼
1

2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
þ logð�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
Þ

h i
ð2:8Þ

for every nonnegative � is consequential from our point of view.
Equation (2.8) gives fð0Þ ¼ 0,

f 0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
,

f 00ð�Þ ¼ �=f 0ð�Þ, 0 � �f 00ð�Þ=f 0ð�Þ ¼ �2=ð1þ �2Þ < 1,

for every nonnegative �; moreover, f 00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð f 0Þ�2

q
and f 000 ¼ ð f 0Þ�3: The same

equation causes the conjugate of f to obey

gð�Þ ¼ 0 if 0 � � � 1, ¼
1

2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
� logð�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
Þ

h i
if 1 < � <1,

g0ð�Þ ¼ 0 if 0 � � � 1, ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
if 1 < � <1; ð2:9Þ

moreover, to enjoy the following properties

g00ð�Þ ¼ �=g0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg0ð�ÞÞ�2

q
, 1 < �g00ð�Þ=g0ð�Þ ¼ �2=ð�2 � 1Þ,

and g000ð�Þ ¼ �ðg0ð�ÞÞ�3 for every � larger than 1:
Peculiarities of f and g, which entail significant effects in the present context, are

summarized thus. First,

fð�Þ ¼
�2

2
þ
1

2
logð2�Þ þ

1

4
þOð��2Þ, fð�Þ þ gð�Þ ¼ �2 þOð��2Þ,
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as �!1 – both f and g grow quadratically at infinity. Second,

fð�Þ ¼ � 1þ
�2

6
�
�4

40
þ � � �

� �

as �! 0 – the surface generated by revolving the graph of f about the ordinate axis has
a conical point at the origin. Third, g fails to increase strictly and to be strictly convex.
Fourth, range of f 0 ¼ support of g0 ¼ ½1,1½,

g0ðf 0ð�ÞÞ ¼ � and f 0ðg0ð�ÞÞ ¼ maxf1, �g

for every nonnegative � – g0 is a strict extension of, and is different from, the
inverse of f 0:

Equations (2.8) and (2.9) embody a number of geometric features. First, f coincides
with an arclength on the following parabola fðx, yÞ 2R

2: x2 ¼ 2yg.
Second, f is related to a pseudosphere. The pseudosphere is a distinguished surface

of revolution in Euclidean space R
3, whose Gauss curvature equals a negative

constant. The Riemannian structure, which the pseudosphere inherits from R
3, is

identical with the Riemannian structure of the Poincaré, or hyperbolic, half-plane:
that is to say, the intrinsic geometry of the pseudosphere is a model of the hyperbolic
geometry of Lobachevski. If A and B are constants and u is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, uðx, yÞ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r2

A2

r
þ log

r

jAj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � r2
p

 !
þ B,

then the graph of u is precisely a pseudosphere. In ([25], section 2.3) it is observed that, if
n equals 1 and f obeys (2.8), then such a u is a rotation invariant solution to
equation (2.3).

Third, the meridian curve of any pseudosphere is a tractrix. Recall that the tractrix,
alias hundekurve, is the path of a dog pulled by an inextensible leash whose end runs
along an axis. The evolute of a tractrix is a catenary. Equation (2.9) shows that the
evolute of the following catenary fðx, yÞ 2R

2: 2x ¼ coshð2yÞ, �1 < y � 0g is precisely
the graph of the positive part of g.

If (2.8) and (2.9) are in force, then (2.1) and (2.3) read

vx
vy

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

n2

u2x þ u2y

s
�uy
ux

� �
, ð2:10Þ

@

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

n2

u2x þ u2y

s
ux

( )
þ
@

@y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

n2

u2x þ u2y

s
uy

( )
¼ 0, ð2:11Þ

respectively; furthermore, (2.4) amounts to claiming that either the inequality
v2x þ v2y � n2 prevails or

v2x þ v2y > n2
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and

@

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

n2

v2x þ v2y

s
vx

( )
þ
@

@y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

n2

v2x þ v2y

s
vy

( )
¼ 0: ð2:12Þ

The following identity

jruj3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

q
div

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

q
ru

jruj

� �

¼ jruj4 þ n2u2y

� �
uxx � 2n2uxuyuxy þ jruj

4 þ n2u2x
 �

uyy þ njruj2ðru,rnÞ,

which ensues from either the content of appendix C or an inspection, causes any
sufficiently smooth solution of (2.11) to satisfy

ðu2x þ u2yÞ
2
þ n2u2y

h i
uxx � 2n2uxuyuxy þ ðu

2
x þ u2yÞ

2
þ n2u2x

h i
uyy

þ nðu2x þ u2yÞðnxux þ nyuyÞ ¼ 0 ð2:13Þ

– a semilinear second-order partial differential equation with polynomial nonlinearities.
On the other hand, Proposition 2.2.1 from [25] informs us that smooth solutions
to (2.13) exist whose gradient vanishes exclusively in a set of measure 0, and that
do not satisfy (2.11) in the sense of distributions – they make the left-hand side of
(2.11) a well-defined distribution, which is supported by the set of the critical points,
but is not zero.

As the content of appendix C shows, equation (2.13) is degenerate elliptic. A real-
valued solution to (2.13) is elliptic if the gradient of u is nowhere equal to zero; a degen-
eracy occurs at any critical point of u. Theorem 3.1.2 from [25] basically says that
smooth solutions to (2.13) cannot have isolated critical points; moreover, the critical
points of smooth solutions to (2.13) spread along the geometric optical rays, whose
definition is recalled in appendix C.

Manipulations show that any sufficiently smooth solution to (2.12) obeys

ðv2x þ v2yÞ
2
� n2v2y

h i
vxx þ 2n2vxvyvxy þ ðv

2
x þ v2yÞ

2
� n2v2x

h i
vyy

� nðv2x þ v2yÞðnxvx þ nyvyÞ ¼ 0 ð2:14Þ

– another semilinear second-order partial differential equation with polynomial
nonlinearities. Solutions v to (2.14) such that v2x þ v2y > n2 are elliptic. The real-valued
twice differentiable solutions to the Eikonal equation v2x þ v2y ¼ n2 are parabolic
solutions to (2.14). Solutions v to (2.14) such that v2x þ v2y < n2 are hyperbolic.
A treatment of solutions to (2.14), which exhibit a mixed elliptic-hyperbolic character,
is in [26].
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Combining (2.5) and (2.8) results in the following 2� 2 partial differential system

u2x þ u2y � v2x � v2y þ n2 ¼ 0, uxvx þ uyvy ¼ 0: ð2:15Þ

Combining (2.6) and (2.9) results in the following system

u2x þ u2y �max v2x þ v2y, n
2

n o
þ n2 ¼ 0, uxvx þ uyvy ¼ 0: ð2:16Þ

The analysis made in section 2.2 informs us that system (2.15) is degenerate elliptic.
A solution pair is elliptic if the former component of such a pair is free from critical
points; any critical point of the former component gives rise to a degeneracy. As is
easy to see, quite the same statement applies to (2.16).

Observe that if w is a complex-valued function of x and y, moreover if

u ¼ ReðwÞ and v ¼ ImðwÞ,

then

Reðw2
x þ w2

yÞ ¼ u2x þ u2y � v2x � v2y and Imðw2
x þ w2

yÞ ¼ 2ðuxvx þ uyvyÞ

– therefore w obeys equation (1.1) if and only if its real and imaginary parts, u and v,
obey system (2.15).

System (2.16) amounts to stating that either

ux ¼ uy ¼ 0 and v2x þ v2y � n2,

or u2x þ u2y is different from 0, v2x þ v2y is larger than n2, and (2.15) holds. In particular,
any pair u and v, which satisfies (2.16) in some domain either in a classical or in some
generalized sense, automatically satisfies (2.15) in any open subdomain that is either
contained or essentially contained in fðx, yÞ : jrvðx, yÞj > ng: Therefore, (2.16) can be
viewed as a free-boundary problem for system (2.15) – the relevant free boundary
being the inner part of @fðx, yÞ : jrvðx, yÞj > ng:

One might summarize the above remarks in the language of EWT by saying that:
(i) the free boundary represents a caustic; (ii) the free-boundary problem models
a non-geometric optical regime, which develops in the side of such a caustic where
geometrical optics breaks down.

2.4. Viscosity

In the present article we treat the above equations and systems via a vanishing viscosity
method, which is apt to circumvent the degeneracies in hand and mimics ideas from
[27–30]. Our method consists of the following steps. (i) Let " be a small positive
parameter. (ii) Let f" and g" be a convenient pair of conjugate Young functions: let f"
approach f effectively as "! 0, and simultaneously remove those features of f that
cause uniform ellipticity to fail. (iii) Let f" and g" replace f and g in formulas (2.1)
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and (2.2), in equations (2.3) and (2.4), in systems (2.5) and (2.6), respectively. (iv) Shake
well, and take limits as " approaches 0:

The following lemmas put items (i) and (ii) in operation.

LEMMA 2.1 Let (2.8) be in force; let " obey

0 < " < 1, ð2:17Þ

and let f" be given by

f"ð�Þ ¼

Z �

0

t
1þ t2

"þ t2

� �1=2ð1�"Þ

dt ð2:18Þ

for every nonnegative �: The following properties hold.

(i) f" vanishes at 0, strictly increases, is strictly convex and smooth – in other words, f" is
a nice Young function.

(ii)

f"ð�Þ ¼ "
�1=2ð1�"Þ �

�2

2
� 1�

�2

4"
þOð�4Þ

� �
,

f 0"ð�Þ ¼ "
�1=2ð1�"Þ � � � 1�

�2

2"
þOð�4Þ

� �
, f

00

"ð�Þ ¼ "
�1=2ð1�"Þ 1�

3�2

2"
þOð�4Þ

� �

as �! 0: In particular, f 0" has a zero of multiplicity one at 0:
(iii)

f"ð�Þ ¼
�2

2
þ
1

2
logð2�Þ þ

1

4
� C" þOð��2Þ,

f 0"ð�Þ ¼ �þ
1

2�
þOð��3Þ, f 00" ð�Þ ¼ 1�

1

2�2
þOð��4Þ

as �!1: Here C" is positive and obeys C" ¼ Oð
ffiffiffi
"
p
Þ as "! 0:

(iv)

ffiffiffi
"
p 2þ

ffiffiffi
"
p

ð1þ
ffiffiffi
"
p
Þ
2
�
�f

00

" ð�Þ

f 0"ð�Þ
¼ 1�

�2

ð1þ �2Þð"þ �2Þ
< 1

for every positive �. In particular, �f 00" ð�Þ=f
0
"ð�Þ is both bounded and bounded away

from 0 as � ranges from 0 to 1.
(v) ð@=@"Þf"ð�Þ < 0 and ð@=@"Þf 0"ð�Þ < 0 for every positive �:
(vi) f" approaches f uniformly as "! 0: In fact,

0 < fð�Þ � f"ð�Þ < C"

for every positive �:

LEMMA 2.2 Let (2.9), (2.17) and (2.18) be in force; let

g"ð�Þ ¼ the Young conjugate of f" ð2:19Þ
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The following properties hold.

(i) g" strictly increases and is strictly convex, g0" equals the inverse of f 0":

(ii)

g"ð�Þ ¼ "
1=2ð1�"Þ �

�2

2
� 1þ ""=ð1�"Þ �

�2

4
þOð�4Þ

� �
,

g0"ð�Þ ¼ "
1=2ð1�"Þ � � � 1þ ""=ð1�"Þ �

�2

2
þOð�4Þ

� �
,

g00" ð�Þ ¼ "
1=2ð1�"Þ 1þ ""=ð1�"Þ �

3�2

2
þOð�4Þ

� �

as �! 0:
(iii)

g"ð�Þ ¼
�2

2
�
1

2
logð2�Þ �

1

4
þ C" þOð��2Þ,

g0"ð�Þ ¼ ��
1

2�
þOð��3Þ, g00" ð�Þ ¼ 1þ

1

2�2
þOð��4Þ

(iv) as �!1: Here C" is the same quantity appearing in (iii), Lemma 2.1.

g0"ð�Þ

�g00" ð�Þ
¼ 1� 1þ "þ ðg0"ð�ÞÞ

2
þ "ðg0"ð�ÞÞ

�2
� ��1

for every positive �: In particular,

0 < 1�
g0"ð�Þ

�g00" ð�Þ
� ð1þ

ffiffiffi
"
p
Þ
�2

for every positive �:
(v) ð@=@"Þg"ð�Þ > 0 and ð@=@"Þg0"ð�Þ > 0 for every positive �:
(vi) g" approaches g uniformly as "! 0:
(vii) g0" approaches g

0 uniformly as "! 0:
(viii) ð@=@"Þ

ffiffiffi
"
p
=g0"ð�Þ

 �
> 0 for every positive �:

(ix)
ffiffiffi
"
p
�=g0"ð�Þ approaches

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�minf1, �2g

p
uniformly with respect to �, as � ranges

between 0 and 1 and "! 0:
(x) ð@=@"Þ g0"ð�Þ=g

00
" ð�Þ

 �
> 0 for every positive �:

(xi) ��2 g0"ð�Þ=�g
00
" ð�Þ

� �
approaches min 1, ��4

� 	
uniformly with respect to �, as � ranges

between 0 and 1 and "! 0:

3. Main results

In the present section we consider system (2.16) and a related boundary value problem.
Relevant ingredients can be specified as follows:

Ground domain. Let � be an exterior domain in R
2, i.e. an open connected subset of

the Euclidean plane whose complement is bounded.
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Function spaces. Let Lpð�Þ, L
p
locð�Þ, C1ð�Þ and C10 ð�Þ have the usual significations.

Define W1, 2ð�Þ as the completion of C1ð�Þ under the norm given by

k u k2W1, 2ð�Þ¼ 16

Z
�

u2ðx2 þ y2 þ 4Þ�2 dxdyþ

Z
�

jruj2 dx dy: ð3:1Þ

Define W1, 2
0 ð�Þ ¼ closure of C10 ð�Þ in W1, 2ð�Þ – the subset of W1, 2ð�Þ consisting of

those functions that vanish on @� in a generalized sense.
Observe that the measure 16ðx2 þ y2 þ 4Þ�2 dxdy, appearing in (3.1), can be

thought of as the area element on the two-dimensional unit sphere S
2, provided S

2

is parametrized via a stereographic projection; recall also that
R
jruj2 dx dy is invariant

under conformal mappings. Hence W1, 2ð�Þ can be identified with a space of standard
Sobolev functions defined in some open subset of S

2: More information on function
spaces, which are involved throughout, can be found in [31].

THEOREM 3.1 Assumptions. (i) � is essentially different from R
2, i.e. area ðR2

n�Þ > 0:
(ii) n is in L2ð�Þ; @n=@x and @n=@y are in L2

locð�Þ: (iii) j is any member of W1, 2ð�Þ:

Assertion A solution pair to (2.16) exists, enjoying the following properties. (iv) u and v
belong to W1, 2ð�Þ: (v) u obeys the following boundary condition

u2 jþW1, 2
0 ð�Þ, ð3:2Þ

i.e. equals j on @� in a generalized sense. (vi) u and v are twice differentiable in a
generalized sense and obey the following inequalities

Z
fðx, yÞ : distððx, yÞ,R2nKÞ�rg

jruj2

n2 þ jruj2
rrTu


 

2 dxdy

� Constant�

Z
K

jrnj2 dxdyþ r�2
Z
K

n2 þ jruj2
 �

dxdy

� �
, ð3:3Þ

Z
fðx, yÞ : distððx, yÞ,R2nKÞ�rg

jruj4

n2 þ jruj2
 �2 rrTv



 

2 dxdy

� Constant�

Z
K

jrnj2 dxdyþ r�2
Z
K

n2 þ jruj2
 �

dxdy

� �
ð3:4Þ

– here K is any nice compact subset of �, r is any positive number, and Constant stands
for some absolute constant. (vii) u obeys equation (2.13) almost everywhere in �. (viii) v is
a viscosity solution to the following equation

n2 � R
jrvj

n

� �
v2y

� �
vxx þ 2R

jrvj

n

� �
vxvyvxy þ n2 � R

jrvj

n

� �
v2x

� �
vyy

� R
jrvj

n

� �
jrvj2 ðr log n,rvÞ ¼ 0, ð3:5Þ

Rð�Þ ¼ 1 if 0 � � � 1, ¼ ��4 if � > 1: ð3:6Þ
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In particular, v is a viscosity solution to equation (2.14) above in any open subset of
fðx, yÞ 2� : jrvðx, yÞj > nðx, yÞg, and is a viscosity solution of the following equation

n2 � v2y

� �
vxx þ 2vxvyvxy þ n2 � v2x

 �
vyy � jrvj

2ðr log n,rvÞ ¼ 0 ð3:7Þ

in any open subset of fðx, yÞ 2� : jrvðx, yÞj � nðx, yÞg:

Remarks

(i) The viscosity solutions, mentioned in Theorem 3.1, can be defined as in [32] or
[33, Chapter 10].

(ii) The following identity

l:h:s: of ð3:7Þ ¼ n2
1

2
vx
@

@x
þ
1

2
vy
@

@y
��v

� �
n�2ðv2x þ v2yÞ � 1
h i

,

which ensues from either the content of appendices B and C or from an inspection,
shows that any sufficiently smooth solution to the following Eikonal equation

v2x þ v2y ¼ n2

obeys (3.7).
(iii) The function, which takes the value

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
� 1 at any nonnegative �, and the

function, which takes the value 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
at any � such that 0 � � � 1 and

is þ1 elsewhere, are Young conjugate. The Euler–Lagrange equation of the
variational integral which takes the following values

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n�2ðu2x þ u2yÞ

q
� 1

h i
n2 dx dy

on suitable trial functions u, and the Euler–Lagrange equation of the variational
integral which takes the following values

Z
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�2ðv2x þ v2yÞ

qh i
n2 dxdy

on suitable trial functions v, are a generalization of the minimal surface equation
and a special case of (3.7), respectively.

(iv) In the case where n � 1, the Legendre transformation given by

p ¼ vxðx, yÞ, q ¼ vyðx, yÞ, vðx, yÞ þ Vðp, qÞ ¼ xpþ yq,

turns equation (3.7) into the following one

ð1� p2Þ
@2V

@p2
� 2pq

@2V

@p@q
þ ð1� q2Þ

@2V

@q2
¼ 0,

which is sometimes called Buseman equation – see [20], [34], [35].
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4. Proofs of Lemmas 2.1 and 2.2

4.1. Proof of Lemma 2.1

Compare with ([37], Lemma A1). g

4.2. Proof of Lemma 2.2

Items (i), (ii) and (iii) from Lemma 2.1 imply (i). They also ensure that the values of
g", g

0
" and g00" at any nonnegative � result from the following set

0 � � <1, f 0"ð�Þ ¼ �, g"ð�Þ ¼ �f
0
"ð�Þ � f"ð�Þ,

g0"ð�Þ ¼ �, f 00" ð�Þg
00
" ð�Þ ¼ 1: ð4:1Þ

Items (ii), (iii), (iv) and (v) result from (4.1) and Lemma 2.1 via straightforward
inspections. Note that (4.1) yields

g0"ð�Þ

�g00" ð�Þ
¼
�f 00" ð�Þ

f 0"ð�Þ
:

Item (vi) is an obvious consequence of Lemma 2.1 and the very definition of Young
conjugate. Note that 0 < g"ð�Þ � gð�Þ < C" for every positive �:

Since ½ f 0"ð�Þ�
2
ð"þ �2Þ � �2ð1þ �2Þ if � � 0, we have

g0"ð�Þ � g0ð�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

2

� �2

þ"�2

svuut
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxf1, �2g � 1

p

if � � 0: Analysis shows that, as � ranges from 0 to 1, the right-hand side of the last
inequality achieves its maximum if � ¼ 1: Therefore

g0"ð�Þ � g0ð�Þ þ "1=4

for every nonnegative �: Since g0" is above g0, item (vii) follows.
As ""=2ð1�"Þf 0"ð�Þf

0
"ð

ffiffiffi
"
p
=�Þ ¼ 1 for every positive �, we haveffiffiffi

"
p

g0"ð�Þ
¼ g0" "

"=2ð1�"Þ��1
 �

ð4:2Þ

for every positive �: Equation (4.2) yields item (viii) easily. It also informs us thatffiffiffi
"
p
�

g0"ð�Þ
! ""=2ð1�"Þ as �! 0,

ffiffiffi
"
p
�

g0"ð�Þ
!

ffiffiffi
"
p

as �!1;

moreover, ffiffiffi
"
p
�

g0"ð�Þ
! �g0ð1=�Þ as "! 0

and � is positive. Item (ix) is demonstrated.
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Item (x) follows from (iv), (v) and (viii). Items (ii) and (iii) give

��2 1�
g0"ð�Þ

�g00" ð�Þ

� �
! ""=ð1�"Þ as �! 0, ! 0 as �!1;

items (iv), (vii) and (ix) give

��2 1�
g0"ð�Þ

�g00" ð�Þ

� �
! 1þ ð�2 þ 1Þðg0ð�ÞÞ2
� ��1

as "! 0

and � is positive. Item (xi) ensues, owing to (x). (A calculus theorem, inferring
uniform convergence from monotonicity and continuity, underlies the above
arguments.) g

5. Proof of Theorem 3.1

5.1. Vanishing viscosity

Let ", f", g" obey (2.17), (2.18), (2.19). Let u" and v" be in W1, 2ð�Þ and such that

jrv"j ¼ nf 0"
jru"j

n

� �
, ðru",rv"Þ ¼ 0: ð5:1Þ

According to the theory outlined in section 2, (5.1) is uniformly elliptic. We may
propose u" be the solution to the following variational problem

Z
�

f"
jruj

n

� �
n2 dx dy ¼ minimum,

under the condition: u2 jþW1, 2
0 ð�Þ, ð5:2Þ

v" be given by the following Bäcklund transformation

rv" ¼
n

jru"j
f
0

"

jru"j

n

� �
0 �1
1 0

� �
ru" ð5:3Þ

and obey the following condition

Z
�

v"ðx
2 þ y2 þ 4Þ�2 dxdy ¼ 0: ð5:4Þ

Properties of f" and tools from the calculus of variations – see ([37], sections 3 and 4) –
ensure that u" exists, is unique, and is endowed with second-order derivatives in L2

locð�Þ;
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the relevant Euler–Lagrange equation takes the following form

"n2 n2 þ jru"j
2

 �
�u" þ jru"j

4 þ n2
@u"
@y

� �2
" #

@2u"
@x2
� 2n2

@u"
@x

@u"
@y

@2u"
@x@y

þ jru"j
4 þ n2

@u"
@x

� �2
" #

@2u"
@y2
þ njru"j

2ðrn,ru"Þ ¼ 0: ð5:5Þ

The behavior of f" and properties of u" – which include both obeying the
Euler–Lagrange equation and the membership to W1,2(�) – ensure that the following
differential form

n

jru"j
f 0
jru"j

n

� �
�
@u"
@y

dxþ
@u"
@x

dy

� �

is closed and that the coefficients involved are square-integrable in �: On the other
hand, we assumed that the complement of � is bounded and � is connected. We
deduce successively that an appropriate winding number is 0, and the form in question
is integrable. Therefore v" exists in W1, 2ð�Þ, is unique and is endowed with second-order
derivatives in Llocð�Þ:

Equation (5.3) implies successively

ru" ¼
n

jrv"j
g0"
jrv"j

n

� � 0 1

�1 0

" #
rv",

jru"j ¼ ng0"
jrv"j

n

� �
, ðru",rv"Þ ¼ 0,

div
n

jrv"j
g0"
jrv"j

n

� �
rv"

� �
¼ 0:

ð5:6Þ

The latter equation can be recast as follows

n2 � R"
jrv"j

n

� �
@v"
@y

� �2
" #

@2v"
@x2
þ 2R"

jrv"j

n

� �
@v"
@x

@v"
@y

@2v"
@x@y

þ n2 � R"
jrv"j

n

� �
@v"
@x

� �2
" #

@2v"
@y2
� R"

jrv"j

n

� �
jrv"j

2ðr log n,rv"Þ ¼ 0, ð5:7Þ

provided R" is given by

R"ð�Þ ¼ �
�2 1�

�g00" ð�Þ

g0"ð�Þ

� �
if � > 0, R"ð0Þ ¼ "

"=ð1�"Þ: ð5:8Þ
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Remark A suitable argument, which is omitted here for the sake of brevity, shows
that v" is a solution to the following variational problem

Z
�

g"
jrvj

n

� �
n2 þ

@u"
@y

vx �
@u"
@x

vy

� �
dxdy ¼ minimum,

under the sole condition: v2W1, 2ð�Þ:

5.2. Bounds

Inequalities (i) to (vi) below include the following ingredients: K ¼ a compact subset
of �, whose interior is not empty and whose boundary is smooth enough; r ¼ any
positive number; KðrÞ ¼ the set of the interior points (x, y) of K such that the closed
disk, center (x, y) and radius r, is contained in K; p ¼ any exponent larger than
or equal to 1.

(i) Z
�

jru"j
2 dxdy � ðConstant independent of "Þ:

(ii) Z
KðrÞ

jru"j
2

n2 þ jru"j
2
rrTu"


 

2 dxdy �

Z
K

jrnj2 dx dyþ r�2
Z
K

n2 þ jru"j
2

 �
dx dy:

(iii)

jrv"j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jru"j

2

q
:

(iv) Z
�

jrv"j
2 dxdy �

Z
�

n2 þ jru"j
2

 �
dxdy:

(v) Z
KðrÞ

jrv"j
p dxdy

� �2=p
� ðConstant independent of "Þ

�

Z
K

jrnj2 dx dyþ r�2
Z
K

n2 þ jru"j
2

 �
dx dy

� �
:

(vi) Z
KðrÞ

r
jru"j

2

n2þjru"j
2
rT

� �
v"











2

dxdy� 20

Z
K

jrnj2 dxdyþ18 r�2
Z
K

n2þjru"j
2

 �
dxdy:

Proof of (i) and (ii) Item (i) results from (5.2) and asymptotics of vf"; (ii) results from
(5.5). Details are in ([37], section 4.3). g

Proof of (iii) and (iv) The former equation in (5.1), plus Lemma 2.1. g
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Proof of (v) and (vi) For notational convenience, we temporarily drop subscript "’s
and denote u" and v" by u and v tout court.

Arguments from appendix B give

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

q
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p rnþ
�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p rrTu

 � cos!
sin!

� �
,

hence we have

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

q








 � jrnj þ jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ jruj2
p rrTu



 

:
Item (v) follows, via (ii) and (iii), and a Sobolev embedding theorem.

Equation (5.3), and formulas from appendix B give

r
jruj2

n2þjruj2
rT

� �
v �

0 1

�1 0

� �

¼ ½’ð�Þ��’0ð�Þ� rn � ½cos! sin!�þ ðrrTuÞ
cos! �sin!

sin! cos!

� �

�
’0ð�Þ 0

0 ’ð�Þ=�

� �
cos! sin!

�sin! cos!

� �
,

provided ’ is defined by ’ð�Þ ¼ �2f 0"ð�Þ=ð1þ �
2Þ for every nonnegative �: Items from

Lemma 2.1 tell us that

0 � �’0ð�Þ � ’ð�Þ � 2�2ð1þ �2Þ�3=2, ’0ð�Þ � 3�ð1þ �2Þ�1=2

for every nonnegative �: We infer

r
jruj2

n2 þ jruj2
rT

� �
v










 � 4 � 3�3=2jrnj þ 3

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p rrTu


 

:

Item (vi) follows, owing to (ii). g

5.3. Convergence

Let f and g be given by (2.8) and (2.9), respectively. Let u be the solution to the
following variational problem

Z
�

f
jruj

n

� �
n2 dxdy ¼ minimum,

under the condition: u2 jþW1, 2
0 ð�Þ: ð5:9Þ

As shown in ([36], section 2), u exists, is unique and enjoys the following
properties. First, ru is in ðL

p
locð�ÞÞ

2 for any p such that 1 � p <1, and is differentiable
in some generalized sense. Second, the following items hold as "! 0: (i) u" ! u
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uniformly on every compact subset of �: (ii) ru" ! ru strongly in ðL
p
locð�ÞÞ

2, and
weakly in ðL2ð�ÞÞ2: Third, u obeys (3.3), and satisfies equation (2.13) almost everywhere
in �:

Condition (5.4), bounds from the previous subsection, and standard compactness
theorems cause a function v to exist in W1,2(�) and to enjoy the following
properties. First, rv is in ðL

p
locð�ÞÞ

2 for any p such that 1 � p <1; jruj2ðn2þ
jruj2Þ�1rTv is endowed with a gradient in ðL2

locð�ÞÞ
4, and the latter obeys an appro-

priate analog of (3.4). Second, the following items hold as " approaches 0 along
a suitable sequence.

(iii) v" ! v uniformly on every compact subset of �:
(iv) rv" ! rv weakly, both in ðL

p
locð�ÞÞ

2 and in ðL2ð�ÞÞ2:
(v) jru"j

2ðn2 þ jru"j
2Þ
�1
rTv" ! jruj

2ðn2 þ jruj2Þ�1rTv in ðL
p
locð�ÞÞ

2:
We claim that

(vi) jruj2ðn2 þ jruj2Þ�1rv" ! jruj
2ðn2 þ jruj2Þ�1rv in ðL

p
locð�ÞÞ

2 as " approaches 0
along a suitable sequence.

(vii) jrvj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p
:

(viii) v is endowed with generalized second-order derivatives, and obeys (3.4).

Proof of (vi) items (ii), (iv) and (v). g

Proof of (vii) Let K be any compact subset of �: The following inequalities

Z
K

jrvj dxdy

� lim sup
"!0

Z
K

jrv"j dx dy � lim sup
"!0

Z
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jru"j

2

q
dxdy ¼

Z
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

q
dx dy

result from the following arguments, respectively: either item (iii) or (iv), plus a classical
semicontinuity theorem; bound (iii) from subsection 5.2; item (ii). Item (vii) ensues. g

Proof of (viii) The derivatives in question can be defined via the following formula

jruj2

n2 þ jruj2
ðrrTvÞ ¼ r

jruj2

n2 þ jruj2
rT

� �
v� r

jruj2

n2 þ jruj2

� �
� rTv: ð5:10Þ

The former term on the right-hand side of (5.10) is all right. Formulas from
appendix B and (iii) from subsection 5.2 yield

nr
jruj2

n2 þ jruj2
¼

2�

ð1þ �2Þ2
ðrrTuÞ

cos!

sin!

" #
� �rn

( )
,

1

2
r
jruj2

n2 þ jruj2

� �
� rTv










 � 2 � 3�3=2jrnj þ

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p jrrTuj:

Therefore, the latter term on the right-hand side of (5.10) is all right too. Item (viii)
follows. g
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Now we are in position to show that u and v obey (2.16). Let K be any compact
subset in �: The former equation from (5.6) gives

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p jru"j dxdy ¼

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p ng0"
jrv"j

n

� �
dx dy: ð5:11Þ

Item (ii) implies

Z
K

jruj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p dx dy ¼ lim
"!0

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p jru"j dxdy: ð5:12Þ

We have

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p ng0"
jrv"j

n

� �
dxdy �

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p ng0
jrv"j

n

� �
dxdy

þ supfg0"ð�Þ � g0ð�Þ : 0 � � <1g �

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p n dx dy;

moreover,

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p ng0
jrv"j

n

� �
dx dy ¼

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p ng0
jrvj

n

� �
dxdyþ a remainder,

jremainderj2 �

Z
K

jruj2

n2 þ jruj2
jrv" � rvj dxdy�

Z
K

ð2nþ jrv"j þ jrvjÞdx dy:

The last line results from the following inequality

jg0ðaÞ � g0ðbÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja� bj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ aþ b
p

ða, b ¼ any positive numbersÞ,

and Cauchy–Schwarz inequality.
Consequently, Lemma 2.2, item (vi) and bound (v) from subsection 5.2 give

lim inf
"!0

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p ng0"
jrv"j

n

� �
dxdy �

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p ng0
jrvj

n

� �
dxdy: ð5:13Þ

Formulas (5.11), (5.12) and (5.13) inform us that

Z
K

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p jruj � ng0
jrvj

n

� �� �
dxdy � 0:
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On the other hand, (vii) implies

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p jruj � ng0
jrvj

n

� �� �2
�

jrujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ jruj2

p jruj � ng0
jrvj

n

� �� �
:

We infer that

jruj � ng0
jrvj

n

� �
¼ 0:

Items (ii) and (iv), and the latter equation in (5.1) clearly imply ðru,rvÞ ¼ 0:
System (2.16) is established. The last assertion of our theorem is a consequence

of the following ingredients. First, equation (5.7). Second, formulas (3.6) and (5.8),
and Lemma 2.2 – R"ð�Þ approaches R(�) uniformly with respect to �, as � ranges
in ½0,1½ and "! 0: Third, the notion of viscosity solution and arguments from
([32], section 6). The proof is complete. g

6. Additional remarks

Besides (2.17) and (2.18), other expressions of f" may serve the same purpose.
For instance, one may retain (2.8), then let " be any positive number and

f"ð�Þ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 þ �2

p� �
� f ð"Þ

for every nonnegative �.
However, assertion (viii) from Theorem 3.1 is contingent upon the expression of f"

that underlies the proof. For instance, if (2.17) is replaced by " ¼ any positive
number, and (2.18) is replaced by the following pair

f"ð0Þ ¼ 0,

f 0"ð�Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2
p ð3þ 2"2Þ

�

"
�

�

"

� �3� �
if 0 � � < ", ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
if � � ",

then (3.6) must be replaced by

Rð�Þ ¼ 8 1þ 2 cos
2

3
arcsin �

� �� ��3
if 0 � � < 1, ¼ ��4 if � � 1:
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Appendix A: notations

We let x and y denote rectangular coordinates in Euclidean plane R
2, denote

differentiations with respect to x and y either by @=@x and @=@y or by subscripts, and let

@ðu, vÞ

@ðx, yÞ
¼ uxvy � uyvx

– the Jacobian determinant of u and v. Let the gradient operator be defined thus

r ¼
@=@x
@=@y

� �
,

and let div indicate the divergence operator – div acts on vector fields and stands for rT:
Let � ¼ div r – the Laplace operator – and observe that

rrT ¼
@2=@x2 @2=@x@y
@2=@x@y @2=@y2

� �
;

the Hessian operator.
We denote the scalar product of two vectors by parentheses and denote the absolute

value of either a vector or a matrix by vertical bars – for instance, ðru,rvÞ stands for
uxvx þ uyvy whenever u and v are scalar fields; jruj and jrrTuj stand for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2xx þ 2u2xy þ u2yy
p

, respectively.

Appendix B: subsidiary formulas

The hodograph of u is the range of ru: Polar cordinates � and ! in the hodograph of u
may be defined either by

n�
cos!
sin!

� �
¼ ru, ðB:1Þ

or alternatively by

� ¼ ð1=nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
, cos! : ux ¼ sin! : uy:

Let X and Y be defined by either of the following equations

X
Y

� �
¼

cos! sin!
� sin! cos!

� �
r, r ¼

cos!
sin!

� �
Xþ

� sin!
cos!

� �
Y: ðB:2Þ

Let h and k be defined by

�kXþ hY ¼ ½X,Y �z ðB:3Þ

– the commutator of X and Y.
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Equations (B.1) and (B.3) show that

X ¼
ux
jruj

@

@x
þ

uy

jruj

@

@y
,

a differentiation along the lines of steepest descent of u; and that

Y ¼ �
uy

jruj

@

@x
þ

ux
jruj

@

@y
,

a differentiation along the level lines of u. Equations (B.1), (B.2), (B.3), and (B.5) below
inform us that

ð1=hÞ
ru

jruj

is the principal normal to the level lines of u, and that

ð1=kÞ
0 �1
1 0

� �
ru

jruj

is the principal normal to the lines of steepest descent of u – in other words, h is a
signed curvature of the level lines of u, and k is a signed curvature of the lines of steepest
descent of u.

Equation (B.1) causes � and ! to satisfy

rðn�Þ � ½cos! sin!� þ n�r! � ½� sin! cos!� ¼ rrTu,

therefore to satisfy

r� ¼
1

n
ðrrTuÞ

cos!
sin!

� �
� �r log n, r! ¼

1

n�
ðrrTuÞ

� sin!
cos!

� �
: ðB:4Þ

Equations (B.1) to (B.4) give

h ¼ �Y!, k ¼ X!,

h ¼ �jruj�3 uxxu
2
y � 2uxyuxuy þ uyyu

2
x

n o
,

k ¼ jruj�3 ðuyy � uxxÞuxuy þ uxyðu
2
x � u2yÞ

n o
,

r! ¼ �h
� sin!

cos!

� �
þ k

cos!

sin!

� �
,

X� ¼ �u=nþ �ðh� X log nÞ, Y� ¼ �ðk� Y log nÞ,

r� ¼ ð�u=nþ k�Þ
cos!

sin!

� �
þ h�

� sin!

cos!

� �
� �r log n: ðB:5Þ
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We also have

�k ¼
@ðu, 1=jrujÞ

@ðx, yÞ
,

the Jacobian determinant of u and 1=jruj; furthermore,

h ¼ �div
ru

jruj

� �
, k ¼ div

0 1
�1 0

� �
ru

jruj

� �
:

Appendix C: features of equation (2.3)

Formulas (B.1) to (B.5) cause

div
n

jruj
f 0
jruj

n

� �
ru

� �

to equal any of the following expressions:

ðX� hÞðnf 0ð�ÞÞ,

f 00ð�Þ�uþ n½�f 00ð�Þ � f 0ð�Þ�ðh� X log nÞ,

trace of
cos! � sin!

sin! cos!

� �
f 00ð�Þ 0

0 f 0ð�Þ=�

� �
cos! sin!

� sin! cos!

� �
ðrrTuÞ

� �

� ½�f 00ð�Þ � f 0ð�Þ� rn,
cos!

sin!

� �� �
:

Therefore equation (2.3) can be recast in any of the following three forms

ðX� hÞðnf 0ð�ÞÞ ¼ 0, ðC:1Þ

f 00ð�Þ�uþ n½�f 00ð�Þ � f 0ð�Þ�ðh� X log nÞ ¼ 0, ðC:2Þ

f 00ð�ÞðcosÞ2 þ
f 0ð�Þ

�
ðsinÞ2

� �
uxx þ 2 f 00ð�Þ �

f 0ð�Þ

�

� �
cos sin uxy

þ f 00ð�ÞðsinÞ2 þ
f 0ð�Þ

�
ðcosÞ2

� �
uyy ¼ f 00ð�Þ �

f 0ð�Þ

�

� �
ðr log n,ruÞ: ðC:3Þ

Equations (C.1) and (C.2) bring geometric ingredients in evidence. Equation (C.1)
shows that an ordinary differential equation governs

nf 0
jruj

n

� �
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along the lines of steepest descent of u. Equation (C.2) balances the curvature of
the level lines of u and the curvature of certain geodesics. Recall that the geodesics
in the following Riemannian metric

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þ ðdyÞ2

q

are called rays in geometical optics, and are characterized by the differential equation

ðr log n, principal normalÞ ¼ 1:

Hence the value of

X log n

at any point (x, y) equals the signed curvature at (x, y) of the ray which is tangent
at (x, y) to a level line of u.

Equation (C.3) is a quasi-linear form of (2.3). Equation (C.3) is either elliptic or
degenerate elliptic. Degeneracies do occur at critical points of u if f 0ð0Þ 6¼ 0; uniform
ellipticity prevails if f satisfies (2.7).

Equations (2.3) and (C.3) result in

0 1
�1 0

� �
r! ¼

cos! � sin!
sin! cos!

� �
�f 00ð�Þ=f 0ð�Þ 0

0 1

� �
cos! sin!
� sin! cos!

� �
r log�þr log n

ðC:4Þ

– a Bäcklund transformation relating � and !: The ensuing equation

div
cos! � sin!
sin! cos!

� �
�f 00ð�Þ=f 0ð�Þ 0

0 1

� �
cos! sin!
� sin! cos!

� �
r log �

� �
þ� log n ¼ 0

ðC:5Þ

governs the gradient of any solution to equation (2.3).
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