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Abstract Using “complexity = action” proposal we com-
pute complexity for Jackiw–Teitelboim gravity assuming that
a UV cutoff enforces us to have a cutoff behind the hori-
zon. We find that the resultant complexity exhibits the late
time linear growth. It is also consistent with the case where
the corresponding Jackiw–Teitelboim gravity is obtained by
dimensional reduction from higher dimensional gravities. To
this work certain counter term on the cutoff surface behind
the horizon is needed.

1 Introduction

In this paper we would like to study holographic complexity
for Jackiw–Teitelboim (JT) gravity [1,2] using the “complex-
ity = action” proposal (CA) [3,4]. According to this proposal
the holographic complexity of a holographic state is given
by the on-shell action evaluated on a bulk region known as
the “Wheeler-De Witt” (WDW) patch

C(�) = IWDW

π h̄
. (1.1)

Here the WDW patch is defined as the domain of dependence
of any Cauchy surface in the bulk whose intersection with
the asymptotic boundary is the time slice �.

We note that the holographic complexity for JT grav-
ity has been recently studied in [5] where the authors have
observed that a naive computation of the complexity leads to
a counterintuitive result. Namely the complexity approaches
a constant at the late time, though one would expect to get
a linear growth at the late time. To overcome the problem
the authors of [5] have considered the case where the corre-
sponding JT gravity was obtained from a four dimensional
Maxwell–Einstein gravity admitting charged black hole solu-
tions. Therefore the desired result was obtained with the cost
of adding charge to the model.
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Actually the problem arises due to the fact that in the near
extremal limit of charged black holes one usually has to deal
with geometries containing an AdS2 factor. In this case a
naive computation of complexity gives raise to a constant at
the late time. A remedy to resolve the problem has been also
proposed in [6] where it was shown that setting a UV cutoff at
the boundary would automatically induce a cutoff behind the
horizon that removes some part of the space time inside the
horizon. This indeed naturally leads to complexity that has
desired linear growth at the late time for a model admitting
AdS2 solution with constant Dilaton.

It is important to mention that the result of [6] leading to
the behind the horizon cutoff relies on two facts. The first one
is that according to explicit computations using CA proposal
the late time behavior is not sensitive to the UV cutoff. The
second one is that according to Lloyd’s bound [7] the late
time behavior is given by twice of energy of the system. In
fact we should emphases that in order to reach our conclusion
the actual value of bound is not crucial. The important fact
is that the late time behavior is governed by the physical
charges defined at the boundary; such as mass or energy that
are affected by UV cutoff.

The aim of the present paper is to compute holographic
complexity for JT gravity using the procedure of [6]. The
model has a solution with an AdS2 geometry supported by a
linear Dilation. Unlike the cases studied in [6] in the present
case where the Dilaton is not constant the complexity has
non-trivial time dependence that leads to violation of Lloyld’s
bound [7] (see e.g. [8]). It is worth noting that the JT gravity
we will be considering does not necessarily have a higher
dimensional counter part.

It has been proposed (see for example [9–11]) that this
model could provide a holographic dual for the nearly con-
formal dynamics of the Sachdev–Ye-Kitaev model [12,13].
Therefore it might be interesting to study holographic com-
plexity for JT gravity which in turns could enrich our knowl-
edge on gravity dual of Sachdev–Ye-Kitaev model.
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The organization of the paper is as follows. In the next
section we shall study complexity for JT gravity. In section
three we will compute complexity for a general two dimen-
sional Dilaton-gravity for the case where the solution consists
of small fluctuations above an AdS2 geometry with constant
Dilaton. We will see that in order to get the desired results
it is crucial to consider the contribution of certain counter
terms evaluated on the behind the horizon cutoff. The last
section is devoted to conclusions.

2 CA complexity for Jackiw–Teitelboim gravity

In this section we study holographic complexity for JT grav-
ity whose action may by written as follows1

I = 1

8G

∫
d2x

√−g φ

(
R + 2

�2

)

+ 1

4G

∫
dt

√−h φ

(
K − 1

�

)
, (2.1)

where K is extrinsic curvature of the time like boundary
whose trace of induced metric is −h. The first term in the
boundary part of the action is required to maintain the vari-
ational principle well imposed, while the second there is
needed to get quantities, such as free energy, finite. Although
this term does not alter the equations of motion, as we will
see has a crucial role in the holographic complexity.

The equations of motion of JT gravity obtained from the
above action are

R = − 2

�2 , ∇2φ = 2

�2 φ. (2.2)

These equations admit the following linear Dilaton AdS2

solution

ds2 = − f (r) dt2 + dr2

f (r)
, φ(r) = r

�
, (2.3)

where f (r) = 1
�2 (r2 − r2

h ). This might be thought of as
a two dimensional black hole whose entropy and Hawking
temperature are given by

S = π

2G

rh
�

, T = rh
2π�2 . (2.4)

Now the aim is to compute complexity for this model. To
do so, one should evaluate on shell action on the WDW patch
shown in the Fig. 1. The null boundaries of the corresponding
WDW patch are given by

right side t = tR + r∗(rMax) − r∗(r),
t = tR − r∗(rMax) + r∗(r),

1 It is also interesting to study complexity for higher derivative gener-
alization of JT gravity [14–16]. I would like to thank S. D. Odintsov for
bringing my attention to this paper and a comment on this point.

tL tR

r = rm

r = rm

r = r0

r
=

r M
ax

Fig. 1 Penrose diagram of AdS2 geometry. The green area is covered
by global coordinate while the diamond shown by dashed lines is cov-
ered by Rindler coordinates.The WDW patch is shown by blue color.
The inside cutoff r0 is given by in terms of UV cutoff by r0r2

Max = r3
h

at leading order. This figure is taken from the Ref. [6]

left side t = −tL + r∗(rMax) − r∗(r),
t = −tL − r∗(rMax) + r∗(r), (2.5)

where tL , tR the time coordinates associated with the left and
right boundaries. Here rMax is a UV cutoff. We would like to
compute complexity for a state given at the time τ = tL + tR .
In this notation the joint point rm shown in the Fig. 1 is
determined by

τ = 2(r∗(rMax) − r∗(rm)). (2.6)

Actually in general one could have had two joint points
associated with the WDW patch under consideration; one at
rm and the other at rm′ shown by dashed lines in the Fig. 1.
We note, however, that as soon as we set the UV cutoff to
regularize the on shell action, there will be a cutoff behind the
horizon whose value is fixed by the UV cutoff [6]. More pre-

cisely at leading order one has r0 ∼ r3
h

r2
Max

. This cutoff prevents

us to have access to the joint point rm′ and the corresponding
WDW patch is cut at r = r0.

To proceed to compute the on shell action we note that
from the equations of motion the bulk part of the action (2.1)
gives zero contribution to the on shell action. Moreover, using
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the Affine parameter for the null directions, there is no con-
tribution from the null boundaries either. Therefore as far as
the boundary term is concerned we are left with one space
like boundary at r = r0

2

I surf = − 1

4G

∫ tR+r∗(rMax)−r∗(r)

−tL−r∗(rMax)+r∗(r)
dt

√−h φ

(
K − 1

�

) ∣∣∣∣
r0

= r0(r0 + rh)

4G�3

(
τ + 2(r∗(rMax) − r∗(r0))

)
. (2.7)

It is important to note that the overall minus sign is due to
the fact that the boundary we are considering is a space like
surface [18].

There is also certain terms associated with joint points
where a null boundary intersects with other null, space like
or time like boundaries [18,19]. In the present case we have
five joint points two of which at the UV cutoff surface, two
at the cutoff behind the horizon and, one at the joint point rm .
The corresponding contributions are given by

I joint = 1

4G

∑
joint

Sign(joint) φ(r) log η, (2.8)

where η is the inner product of normal vectors of the corre-
sponding intersecting boundaries. Denoting the null vectors
and normal vector to the space like boundary r0, respectively,
by

k1 = α

(
∂t − 1

f (r)
∂r

)
, k2 = β

(
∂t + 1

f (r)
∂r

)
,

k0 = 1√
f (r0)

∂r (2.9)

the contribution of joint points reads

I joint = 1

4G

(
φ(rm) log

∣∣∣∣ αβ

f (rm)

∣∣∣∣ + φ(r0) log

∣∣∣∣ α√
f (r0)

∣∣∣∣
+φ(r0) log

∣∣∣∣ β√
f (r0)

∣∣∣∣
−2φ(rMax) log

∣∣∣∣ αβ

f (rMax)

∣∣∣∣
)

= 1

4G�

(
rm log

∣∣∣∣ αβ

f (rm)

∣∣∣∣ + r0 log

∣∣∣∣ αβ

f (r0)

∣∣∣∣
−2rMax log

∣∣∣∣ αβ

f (rMax)

∣∣∣∣
)

2 It is worth recalling ourselves that when one wants to compute on
shell action, it is always crucial to make it precise what one means by
the action. Usually an action consists of several parts including bulk
term and certain boundary terms that are needed due to certain physical
requirement. In our study we define an action by all terms needed to
have a general covariance with a well imposed variation principle that
results to a finite on shell action when compute over whole space time
[17]. With this definition one should also consider all counter terms.

= 1

4G�

(
2rMax log | f (rMax)| − rm log | f (rm)|

)

+ 1

4G�
(rm − 2rMax) log αβ . (2.10)

Here α and β are two free parameters appearing due to the
ambiguity of normalization of null vectors. Of course there
is a boundary term that should be added to remove this ambi-
guity [18]. In the present case the corresponding boundary
term is given by

I amb = 1

4G

∫
dλ ∂λφ log |�∂λφ|. (2.11)

where λ is the null coordinate defined on the null direction.
Using the Affine parameter for the null direction and taking
into account the contribution of all null boundaries one finds

I amb = − 1

4G�
(rm − 2rMax) log αβ , (2.12)

that cancels the last term in the above equation leading to the
following expression for the total on shell action

I total = − 1

4G�
rm log | f (rm)| . (2.13)

Note that to find the final result we have also taken the r0 → 0
limit that is equivalent to the limit of rMax → ∞. It is then
easy to compute the time derivative of the on shell action

d I total

dτ
= 1

4G�3

(
r2
m + r2

m − r2
h

2
log | f (rm)|

)
, (2.14)

that may be recast into the following form

d I total

dτ
= 2M

(
r2
m

r2
h

+ r2
m − r2

h

2r2
h

log | f (rm)|
)

, (2.15)

where M = r2
h

8G�3 . It is worth mentioning that the above
complexity rate of growth becomes 2M at two points given

by rm = rh

√
|1 − �2

e2r2
h
| and r = rh and has a maximum

between these two values (here e is the Euler number defined
by log e = 1). Therefore the Lloyd’s bound defined by 2M
will be violated as the growth rate approaches the Lloyd’s
bound from above at the late time.

3 CA complexity for a general 2D gravity

In this section we shall study holographic complexity for
a general two dimensional Dilaton-Einstein gravity whose
action is given by (see for example [20])

I = 1

8G

∫
d2x

√−g

(
�R + V (�)

)

+ 1

4G

∫
dt

√−h�

(
K − 1

�

)
, (3.1)
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where V (�) is a general potential for the Dilaton field. This
is an action which may be obtained from higher dimensional
Maxwell–Einstein gravities by dimensional reduction into
two dimensions.

We are interested in a solution that is nearly AdS2 geom-
etry with constant Dilaton. This may be found by expanding
the Dilaton field around a constant value φ0. In order to guar-
antee an AdS2 geometry one should have

�2 = 2

V ′(φ0)
, (3.2)

where � is a constant that is the radius of the corresponding
AdS geometry. Note also that the constant φ0 is a solution of
V (φ0) = 0. Let us now consider solutions of the model for
small fluctuation above the constant Dilaton solution

� = φ0 + φ . (3.3)

Expanding the action above the constant Dilaton at leading
order in φ one finds3

I = 1

8G

∫
d2x

√−g φ0R

+ 1

4G

∫
boundary

dt
√−h φ0

(
K − 1

�

)

+ 1

8G

∫
d2x

√−g φ

(
R + 2

�2

)

+ 1

4G

∫
boundary

dt
√−h φ

(
K − 1

�

)
. (3.4)

It is then clear that the part controlling the dynamics of the
fluctuations above the constant Dilaton is given by JT gravity
we have considered in the previous section. The first part of
the action is topological that does not contribute to the equa-
tions of motion, though has non-trivial contribution to the
physical quantities such as entropy. In the following we will
also see that this topological term give an important contri-
bution to the complexity when its counter term is evaluated
on the cutoff surface behind the horizon.

The equations of motion of the above action are given by
(2.2) and therefore the linear Dilaton solution (2.3) is also a
solution of the model under consideration. Now the aim is to
compute complexity for this solution. It is, however, evident
that the contribution of the dynamical part is exactly the same
as that we have obtained in the previous section. Therefore

3 It is important to note that the counter term in the first line is not
needed to get finite on shell action. Indeed it must be dropped to get
the right entropy in the near extremal limit. Nevertheless as we will see
it has a crucial contribution when evaluated on the space like surface
behind the horizon. In other words our observation is that there could be
certain counter terms that should be added in the cutoff surface behind
the horizon. Therefore we have kept the counter term in the topological
term in the action explicitly, though it should be understood that it is
defined on the space like cutoff surface behind the horizon.

in what follows we just need to compute the contribution of
topological terms given in the first line of the Eq. (3.4).

To proceed let us again start with the bulk part. In this
case, setting R = − 2

�2 , one gets

I bulk
0 = − φ0

4G�2

(∫ rh

r0

dr
(
τ + 2(r∗(rMax) − r∗(r))

)

+2
∫ rMax

rh
dr 2

(
r∗(rMax) − r∗(r)

)

+
∫ rh

rm
dr

(−τ + 2(r∗(rMax) − r∗(r))
) )

, (3.5)

that can be recast to the following form by making use of an
integration by parts

I bulk
0 = − φ0

4G

(
2 log | f (rMax)| − log | f (rm)| − log | f (r0)|

−r0
(
τ + 2(r∗(rMax) − r∗(r0))

) )
. (3.6)

The boundary contributions associated with null boundaries
are still zero when Affine parametrization is used. Of course
in the present case we have a apace like boundary whose
contribution is

I surf
0 = − φ0

4G

∫
dt

√−h

(
Ks − 1

�

) ∣∣∣∣
r0

= φ0

4G�2 (r0 + rh)
(
τ + 2(r∗(rMax) − r∗(r0))

)
. (3.7)

As for joint points we have

I joint
0 = φ0

4G

(
log

∣∣∣∣ αβ

f (rm)

∣∣∣∣ + log

∣∣∣∣ α√
f (r0)

∣∣∣∣
+ log

∣∣∣∣ β√
f (r0)

∣∣∣∣ − 2 log

∣∣∣∣ αβ

f (rMax)

∣∣∣∣
)

= φ0

4G

(
2 log | f (rMax)| − log | f (rm)|

− log | f (r0)|
)

. (3.8)

Now putting all terms together and taking r0 → 0 limit one
arrives at

I0 = φ0rh
4G�2

(
τ + 2(r∗(rMax) − r∗(r0))

)
, (3.9)

as the contribution of the topological terms. Therefore to find
the total on shell action one should add this term to that we
have obtained in the previous section for the JT gravity

I total = − 1

4G�
rm log | f (rm)|

+ φ0rh
4G�2

(
τ + 2(r∗(rMax) − r∗(r0))

)
. (3.10)
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Thus we get

d I total

dτ
= φ0rh

4G�2 + 1

4G�3

×
(
r2
m + r2

m − r2
h

2
log | f (rm)|

)
, (3.11)

that approaches a constant at the late time

d I total

dτ
= rh

4G�2

(
φ0 + rh

�

)
. (3.12)

The first term is indeed the contribution of near extremity
and the second term comes from the fluctuations above it.

To further explore the result, it is illustrative to consider
an explicit example where the form of potential is known. To
proceed let us consider the following potential [21]

V (�) = 1

L2

(
(2�)−

1
2 − Q2(2�)−

3
2

)
, (3.13)

where Q and L are free dimensionless and dimensionful
parameters, respectively. Indeed if one thinks of the model as
a two dimensional gravity obtained from a four dimensional
Maxwell–Einstein gravity by a dimensional reduction, Q is
related to the charge of a four dimensional charged black hole
and L is related to the four dimensional Newton constant. It
is then easy to see that

φ0 = Q2

2
, � = LQ

3
2 . (3.14)

Therefore from (3.12) one gets the following rate of growth

d I

dτ
= S0T + π�

G
T 2. (3.15)

where S0 = πQ2

4G is the entropy of extremal black hole. Indeed
this is the complexity for a near extremal black hole. We note
that up to a numerical factor the result is in agreement with
that found in [5].

4 Conclusions

In this paper we have studied holographic complexity for JT
gravity, where we have seen that the corresponding complex-
ity exhibits linear growth at the late time. Of course to get the
consistence results we have considered certain crucial points.

The first point we have considered was the observation
that a UV cutoff would set a cutoff behind the horizon. In
other words as soon as we regularized the UV modes with a
cutoff, this will automatically remove certain models behind
the horizon. In particular in the present case the contribution
of the joint point associated with rm′ ( shown by dashed lines
in Fig. 1) will be removed from the on shell action. Instead
we will have to consider the contribution of a surface term
associated with the space like boundary sets by the behind

the horizon cutoff. Indeed this point was crucial to get the
right late times linear growth.

Another observation we have made is the fact that bound-
ary terms (including counter terms) are important in order to
get a consistent result. Actually complexity is a quantity that
is sensitive to boundary terms. In fact the counter term given
in the topological part of the action (3.4), when evaluated on
the space like surface, was needed in order to get the extremal
contribution to the complexity. Without this term we would
not have gotten the term proportional to φ0 in the growth rate
of complexity. It is worth noting that, indeed, this was also
the observation made in [5], where the authors have shown
that the contribution of a certain boundary term is crucial to
get the physically expected result.4

Actually it seems that the boundary term considered in the
reference [5] might be related to what we have considered
in the present paper. To be more concrete, note that the extra
boundary term taken into account in [5] may be written as
follows (see equation (7.61) of the cited paper)

Q2

L2

∫
d2x

√−g (2�)−
3
2 , (4.1)

that, for the extremal limit where � = φ0 using the Eq.
(3.14), can be recast into the following form

2φ0

∫
d2x

√−g
1

�2 . (4.2)

It is then easy to compute this term over the WDW patch
depicted in the Fig. 1. Doing so, one arrives at

− φ0

4G
log | f (rm)|, (4.3)

which at the late time leads to the complexity growth φ0rh
4G�2 ,

in agreement with the first term in (3.12). Note that in order
to compare this term with our result we have used our con-
vention by restoring the factor 4G in the above equation. It
would be interesting to further explore this comparison in
more details.
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