
On Complexity of Optimal Recombination for
Binary Representations of Solutions

Anton V. Eremeev ∗ eremeev@ofim.oscsbras.ru
Laboratory of Discrete Optimization, Omsk Branch of Sobolev Institute of Mathematics
13 Pevtsov str., Omsk, 644099, Russia

Abstract
We consider an optimization problem of finding the best possible offspring as a result
of a recombination operator in an evolutionary algorithm, given two parent solutions.
The optimal recombination is studied in the case, where a vector of binary variables
is used as a solution encoding. By means of efficient reductions of the optimal re-
combination problems (ORPs) we show the polynomial solvability of the ORPs for the
maximum weight set packing problem, the minimum weight set partition problem and
the linear Boolean programming problems with at most two variables per inequality
and some other problems. Also we identify several NP-hard cases of optimal recombi-
nation: the Boolean linear programming problems with three variables per inequality,
the knapsack, the set covering, the p-median and some other problems.

Keywords
Complexity, Evolutionary Algorithm, Optimal Recombination, Optimized Crossover

1 Introduction

An important task in design of an evolutionary algorithm for solving an optimization
problem is to develop a recombination operator that efficiently combines the given
parent solutions, producing ”good” offspring solutions (see e.g. Jansen and Wegener
(2002)). In this paper, we study the optimization problem of finding the best possible
offspring as a result of a recombination operator, given two feasible parent solutions to
an NP optimization problem.

We consider the optimal recombination with respect to the main principles of the
random crossover operators which are widely used in the evolutionary algorithms. The
results of Aggarwal et al. (1997); Balas and Niehaus (1998); Borisovsky et al. (2006b);
Glover et al. (2000); Hohn and Reeves (1996); Meyers and Orlin (2006); Yagiura and
Ibaraki (1996) and other authors provide an experimental support to this approach.

The first examples of polynomially solvable optimal recombination problems for
the NP-hard optimization problems may be found in the works of Aggarwal et al.
(1997) and Balas and Niehaus (1998). There, efficient optimized crossover operators were
developed and implemented in genetic algorithms for the maximum independent set
and the maximum clique problems. Throughout the paper we use the term efficient al-
gorithm as a synonym to polynomial-time algorithm i.e. algorithm with running time
bounded by a polynomial in length of the problem input. A problem which is solved
by such an algorithm is polynomially solvable. The time complexity is measured in terms
of RAM machine (Aho et al., 1974).

∗∗ Partially supported by Russian Foundation for Basic Research grant 07-01-00410.

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

A. V. Eremeev

In this paper, we formulate the optimal recombination problem (ORP) for an NP-
optimization problem and show the polynomial solvability or NP-hardness of ORPs
for several well-known combinatorial optimization problems. For the proof of polyno-
mial solvability of the ORPs we take the operators of Aggarwal et al. (1997) and Balas
and Niehaus (1998) as a starting point and move to other problems by means of efficient
reductions form one ORP to another.

One of the central objects of analysis in the present paper is the Boolean linear
programming problem:

max f(x) =
n∑

j=1

cjxj , (1)

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m, (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

Here x ∈ {0, 1}n is the vector of Boolean variables, and the input data cj , aij and bi

belong to the set of rational numbers Q. The similar problems where instead of ”≤”
in (2) we have ”≥” or ”=” for some indices i (or for all i) can be easily transformed
to formulation (1)–(3). The number of constraints would increase at most twice. The
minimization problems can be considered, using the goal function with coefficients cj

of opposite sign. Where appropriate, we will use a more compact notation for problem
(1)–(3):

max {cx : Ax ≤ b, x ∈ {0, 1}n} .

The paper is structured as follows. The formal definition of the ORP for NP opti-
mization problem is introduced in Section 2. Then, using efficient reductions between
the ORPs we show in Section 3 that the optimal recombination is computable in poly-
nomial time for the maximum weight set packing problem, the minimum weight set
partition problem and for one of the versions of the simple plant location problem.
Here we also propose an efficient optimal recombination operator for the Boolean lin-
ear programming problems with at most two variables per inequality, extending the
results from (Aggarwal et al., 1997) and (Balas and Niehaus, 1998).

In Section 4 we consider several NP-hard cases of optimal recombination. In par-
ticular, the ORP for the Boolean linear programming problems with 3 variables per in-
equality is shown to be NP-hard. The ORPs for the one-dimensional knapsack problem,
the set covering problem and p-median problem, as well as the maximum satisfiability
problem in Boolean linear programming formulation are shown to be NP-hard.

Section 5 is devoted to the concluding remarks and issues for further research.

2 Optimized Recombination and Principle of Respect

In some cases below it will be appropriate to use a more general notion of optimiza-
tion problem, rather than the Boolean linear programming problem. For this purpose
we will employ the standard definition of NP optimization problem (see e.g. (Ausiello
et al., 1999)). By {0, 1}∗ we denote the set of all strings with symbols from {0, 1} and
arbitrary string length.

Definition 1 An NP optimization problem Π is a triple Π = (I, Sol, fX), where I ⊆ {0, 1}∗
is the set of instances of Π and:

2 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

1. I is recognizable in polynomial time.

2. Given an instance X ∈ I , Sol(X) ⊆ {0, 1}n(X) is the set of feasible solutions of
X . Given X and x, the decision whether x ∈ Sol(X) may be done in polynomial time, and
n(X) ≤ h(|X|) for some polynomial h.

3. Given an instance X ∈ I , fX : Sol(X) → R is the objective function (computable in
polynomial time) to be maximized if Π is an NP maximization problem or to be minimized if
Π is an NP minimization problem.

In this definition n(X) stands for the dimension of Boolean space of solutions of
problem instance X . In case different solutions have different length of encoding, n(X)
equals the size of the longest solution. If some solutions are shorter than n(X), then the
remaining positions are assumed to have zero values.

Formally, the problem instance X may have no feasible solutions. Nevertheless,
such cases are meaningless with respect to optimal recombination, which requires two
feasible parent solutions at the input of recombination operator. Due to this reason,
we will always assume that for the NP optimization problems under consideration
Sol(X) 6= ∅.

According to Definition 1, any NP optimization problem admits a binary represen-
tation of solutions. In this sense the results related to the ORPs for binary representa-
tions are very general. However, a binary encoding may not be a ”natural one”, e. g.
for the problems involving numerical values of variables or permutations, the binary
encodings are ”unnatural”. In such cases the recombination operators, manipulating
the solutions in binary encoding may be of little use for practice. Besides this, there
may be a number of NP optimization problems, essentially corresponding to the same
problem in practice. Such formulations are usually easy to transform to each other but
the solution representations may be quite different in degree of degeneracy, ragged-
ness of fitness landscape, number of local optima, length of encoding string and other
parameters important for heuristic algorithms. Since the method of solutions represen-
tation is crucial for many properties of recombination operators, in what follows we
will always explicitly indicate what representation is used in the ORP.

Definition 2 For an NP maximization problem Πmax the optimal recombination problem is
formulated as follows.

Given an instance X of Πmax and two parent solutions p1, p2 ∈ Sol(X), find an off-
spring solution x ∈ Sol(X) with properties

(a) xj = p1
j or xj = p2

j for each j = 1, . . . , n(X), and
(b) for any x′ ∈ Sol(X) such that x′j = p1

j or x′j = p2
j for all j = 1, . . . , n(X), holds

fX(x) ≥ fX(x′).

A definition of the ORP in the case of NP minimization problem is formulated
analogously, with a modification of condition (b):

(b’) for any x′ ∈ Sol(X), such that x′j = p1
j or x′j = p2

j for all j = 1, . . . , n(X), holds
fX(x) ≤ fX(x′).

In what follows, we denote the set of coordinates, where the parent solutions have
different values, by D(p1, p2) = {j : p1

j 6= p2
j}.

One of the well-known approaches to analysis of genetic algorithms is based on
the schemata, the subsets of solutions in binary search space, where certain coordi-
nates are fixed to zero or one (Holland, 1975). The problem of optimal recombina-
tion may be formulated in more general way, as a requirement to respect a given set

Evolutionary Computation Volume x, Number x 3

A. V. Eremeev

of schemata, see e.g. (Radcliffe, 1991). In particular, Definition 2 requires to respect
the set of all schemata. The practical experience indicates that this case is the most
applicable one (see e.g. (Balas and Niehaus, 1998; Hohn and Reeves, 1996)) but ORPs
defined w.r.t. some other sets of schemata may be useful as well. For example, in case
of the supply management problem with lower-bounded demands (Borisovsky et al.,
2006a) the experiments showed that it is more appropriate to fix only the variables of
common value 0 in the crossover operator. In order to formulate the optimal recom-
bination problem for this case, condition (a) in Definition 2 should be substituted by
xj ≤ p1

j + p2
j , j = 1, . . . , n(X). The recombination problems of this type would have a

greater dimension than the ORP defined above. In what follows, we will consider only
the ORPs formulated according to Definition 2.

3 Efficiently Computable Optimal Recombination

3.1 Maximum Independent Set and the Related Problems

As the first examples of efficiently solvable ORPs we will consider the following three
well-known problems. Given a graph G = (V,E) with vertex weights w(v) ∈ Q, v ∈ V ,

• the maximum weight independent set problem asks for a subset S ⊆ V , such that
each edge e ∈ E has at least one endpoint outside S (i.e. S is an independent set)
and the weigth

∑
v∈S w(v) of S is maximized;

• the maximum weight clique problem asks for a maximum weight subset Q ⊆ V ,
such that any two vertices u, v in Q are adjacent;

• the minimum weight vertex cover problem asks for a minimum weight subset
C ⊆ V , such that any edge e ∈ E is incident at least to one of the vertices in C.

Suppose, all vertices of graph G are ordered. We will consider these three prob-
lems using the standard binary representation of solutions by the indicator vectors,
assuming n = |V | and xj = 1 iff vertex vj belongs to the subset represented by x. The
following proposition summarizes several facts, established in (Aggarwal et al., 1997),
(Balas and Niehaus, 1996) and (Balas and Niehaus, 1998).

Proposition 1 The ORPs for the maximum weight independent set problem, the maxi-
mum weight clique problem and the minimum weight vertex cover problem are solvable in
time O(n + |D(p1, p2)|3), if the standard binary representation of solutions is used.

Proof. Consider the minimum weight vertex cover problem on a given graph G
with two parent vertex covers C1 and C2, represented by binary vectors p1 and p2. The
symmetric difference of C1 and C2 induces a bipartite subgraph G′. Let V ′

1 , V ′
2 be the

subsets of vertices in this bipartition. The minimum weight vertex cover C ′ for G′ can
be found by solving the s-t-minimum cut problem on a supplementary network, based
on G′, as described e.g. in (Hochbaum, 1997): in this network, an additional vertex s is
connected by outgoing arcs with the vertices of set V ′

1 , and the other additional vertex t
is connected by ingoing arcs to the subset V ′

2 . The capacities of the new arcs are equal
to the weights of the adjacent vertices in G′. Each edge of G′ is given the capacity, equal
to the maximum weight of its endpoints. This s-t-minimum cut problem can be solved
in O(|D(p1, p2)|3) time using the maximum-flow algorithm due to A.V. Karzanov – see
e.g. Papadimitriou and Steiglitz (1982). Finally, it is easy to verify that C ′ joined with
C1 ∩ C2 constitutes the required solution to the ORP for the minimum weight vertex
cover problem on the graph G.

4 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

The two other problems are closely related to the minimum weight vertex cover
(see e.g. (Garey and Johnson, 1979)) and the proof for them is similar. Q.E.D.

Note that if all vertex weights are equal, then the time complexity of Karzanov’s
algorithm for the networks of simple structure, as the one constructed in this proof,
reduces to O(|D(p1, p2)|2.5) – see Papadimitriou and Steiglitz (1982).

3.2 Reductions of Optimal Recombination Problems

The usual approach to spreading a class of polynomially solvable (or intractable) prob-
lems consists in building chains of efficient problem reductions. The next proposition
serves this purpose.

Proposition 2 Let Π1 = (I1, Sol1, fX) and Π2 = (I2, Sol2, gY) be both NP maximization
problems and Sol1(X) ⊆ {0, 1}n1(X) and Sol2(Y) ⊆ {0, 1}n2(Y). Suppose the ORP is solv-
able in polynomial time for Π2 and the following three polynomially computable functions exist:

1. α : I1 → I2.

2. β : Sol1(X) → Sol2(α(X)), such that given any two parent solutions from β(Sol1(X)),
the set of optimal solutions to ORP for I2 is within β(Sol1(X)).

3. β−1 : β(Sol1(X)) → Sol1(X), is the mapping inverse to β on the set β(Sol1(X)).

Besides that,
(i) For any x, x′ ∈ Sol1(X) such that fX(x) < fX(x′), holds gα(X)(β(x)) <

gα(X)(β(x′)).
(ii) For any j = 1, . . . , n1(X) there exists such k(j) that β−1(y)j is a function of yk(j)

on β(Sol1(X)).
(iii) For any k = 1, . . . , n2(Y) there exists such j(k) that β(x)k is a function of xj(k) on

Sol1(X).
Then the ORP is polynomially solvable for Π1 with time complexity, reqired for computing

α(X), β(p1), β(p2) and β−1(y), plus the time of optimal recombination on Π2 instance α(X).

Proof. Suppose, an instance X of problem Π1 and two parent solutions p1, p2 ∈
Sol1(X) are given. Consider two feasible solutions q1 = β(p1), q2 = β(p2) in
Sol2(α(X)). Let us apply the efficient algorithm that solves the ORP for the instance
α(X) ∈ I2 with parent solutions q1, q2. By properties of β and β−1, the obtained
solution y belongs to β(Sol1(X)) and it can be transformed in polynomial time into
z = β−1(y) ∈ Sol1(X).

Note that for all j 6∈ D(p1, p2) holds zj = p1
j = p2

j . Indeed, by condition (ii),
for any j = 1, . . . , n1(X) there exists such k(j) that (I) either β−1(y)j = yk(j) for all
y ∈ β(Sol1(X)), or (II) β−1(y)j = 1 − yk(j) for all y ∈ β(Sol1(X)), or (III) β−1(y)j

is constant on β(Sol1(X)). In the case (I) for all j 6∈ D(p1, p2) we have zj = yk(j).
Now yk(j) = q1

k(j) by the definition of the ORP, since q1
k(j) = p1

j = p2
j = q2

k(j). So,
zj = q1

k(j) = p1
j = p2

j . The case (II) is treated analogously. Finally, the case (III) is trivial
since z, p1, p2 ∈ β−1(β(Sol1(X))). So, z is a feasible solution to the ORP for Π1.

To prove the optimality of z in the ORP for Π1 we will assume by contradiction
that there exists ζ ∈ Sol1(X) such that ζj = p1

j = p2
j for all j 6∈ D(p1, p2) and

fX(ζ) > fX(z). Then gα(X)(β(ζ)) > gα(X)(β(z)) = gα(X)(y). But β(ζ) coincides with q1

and q2 in all coordinates k 6∈ D(q1, q2) according to condition (iii), thus y is not an

Evolutionary Computation Volume x, Number x 5

A. V. Eremeev

optimal solution to the ORP for α(X), which is a contradiction. Q.E.D.

Note 1 If Π1 is an NP minimization problem then the statement of Proposition 2 can be applied
as well, but with a reversed sign in the first inequality of (i), i.e. fX(x) > fX(x′).

Note 2 Analogously, if Π2 is an NP minimization problem then Proposition 2 applies with a
reversed sign of the second inequality in (i), i.e. gα(X)(β(x)) > gα(X)(β(x′)).

The special case of this proposition where n1(X) = n2(Y) and k(j) = j, j(k) = k
appears to be the most applicable, as it is demonstrated in what follows.

3.3 Set Packing, Set Partition and Simple Plant Location Problems

Let us use Proposition 2 to obtain an efficient optimal recombination algorithm for the
set packing problem:

max {fpack(x) = cx : Ax ≤ e, x ∈ {0, 1}n} , (4)

where A is a given (m × n)-matrix of zeros and ones and e is an m-vector of ones.
The transformation α from the set packing to the maximum weight independent set
problem (with the standard binary solutions encoding) consists in building a graph on a
set of vertices v1, . . . , vn with weights c1, . . . , cn. Each pair of vertices vj , vk is connected
by an edge iff j and k both belong at least to one of the subsets Ni = {j : aij 6= 0}. In
this case β is an identical mapping. Application of Proposition 2 leads to

Corollary 1 The ORP for the maximum weight set packing problem (4) is solvable in
time O(n3 + n2m), if the solutions are represented by vectors x ∈ {0, 1}n.

In many reductions of NP optimization problems the set of feasible solutions of
the original instance corresponds to a subset of ”high-quality” feasible solutions in the
transformed formulation. In terms of Proposition 2, this subset of ”high-quality” feasi-
ble solutions becomes the set β(Sol1(X)). Let us define the set of ”high-quality” feasible
solutions for an NP maximization problem Π2 as follows

SolX2 (α(X)) =
{

y ∈ Sol2(α(X)) : g(y) ≥ min
x∈Sol1(X)

g(β(x))
}

,

analogously, if Π2 is an NP minimization problem, then

SolX2 (α(X)) =
{

y ∈ Sol2(α(X)) : g(y) ≤ max
x∈Sol1(X)

g(β(x))
}

.

Now we can prove the polynomial solvability of the next two problems in Boolean
linear programming formulations:

• The minimum weight set partition problem:

min {fpart(x) = cx : Ax = e, x ∈ {0, 1}n} , (5)

where A is a given (m× n)-matrix of zeros and ones.

• The simple plant location problem:

min fsplp(x,y) =
K∑

k=1

L∑
`=1

ck`xk` +
K∑

k=1

Ckyk, (6)

6 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

subject to
K∑

k=1

xk` = 1, ` = 1, . . . , L, (7)

yk ≥ xk`, k = 1, . . . ,K, ` = 1, . . . , L, (8)

xk` ∈ {0, 1}, yk ∈ {0, 1}, k = 1, . . . ,K, ` = 1, . . . , L. (9)

Here and below, we denote the (K × L)-matrix of Boolean variables xk` by x,
and the K-dimensional vector of Boolean variables yk is denoted by y. The
costs ck` ∈ Q, Ck ∈ Q are nonnegative. The motivation for this problem and some
of its applications can be found in (Krarup and Pruzan, 1983) and the references
provided there.

In the following corollary of Proposition 2 the image β(Sol1(X)) will coincide
with SolX2 (α(X)).

Corollary 2 (i) For the minimum weight set partition problem (5), where the solutions are
represented by vectors x ∈ {0, 1}n, the ORP is solvable in time O(n3 + n2m).

(ii) For the simple plant location problem, where the solutions are represented as cou-
ples (x,y), the ORP is solvable in polynomial time.

Proof. For both cases we will use the well-known transformations of the corre-
sponding NP optimization problems to the set packing problem (see e.g. the transfor-
mations T2 and T5 in (Krarup and Pruzan, 1983)).

(i) Let us denote the minimum weight set partition problem by Π1. The input of
its ORP consists of an instance X ∈ I1 and two parent solutions, thus Sol1(X) 6= ∅ and
X is equivalent to

min
n∑

j=1

cjxj + λ
m∑

i=1

wi,

subject to
n∑

j=1

aijxj + wi = 1, i = 1, . . . ,m,

xj ∈ {0, 1}, j = 1, . . . , n; wi ≥ 0, i = 1, . . . ,m,

where λ > 2
∑n

j=1 |cj | is a penalty factor which assures that all ”artificial” slack vari-
ables wi become zeros in the optimal solution. By substitution of wi into the objective
function, the latter model transforms into

min

λm +
n∑

j=1

(
cj − λ

m∑
i=1

aij

)
xj : Ax ≤ e, x ∈ {0, 1}n

 ,

which is equivalent to the following instance α(X) of the set packing problem Π2:

max

g(x) =
n∑

j=1

(
λ

m∑
i=1

aij − cj

)
xj : Ax ≤ e, x ∈ {0, 1}n

 .

We will assume that β is an identical mapping. Then each feasible solution x of the
set partition problem becomes a ”high quality” feasible solution to problem Π2 with

Evolutionary Computation Volume x, Number x 7

A. V. Eremeev

the objective function value g(x) = λm − fpart(x) > λ(m − 1/2). At the same time, if
a vector x′ is feasible for problem Π2 but infeasible in the set partition problem, it will
have the objective function value g(x′) = λ(m − k) − fpart(x′), where k is the number
of constraints

∑n
j=1 aijxj = 1, violated by x′. So, β is a bijection from Sol1(X) to

SolX2 (α(X)) = {x ∈ Sol2(α(X)) : g(x) > λ(m− 1/2)}.

The ORP for Π2 can be solved in polynomial time by Corollary 1. Thus, application of
Proposition 2 and Note 1 completes the proof of part (i).

(ii) Let Π′
1 be the simple plant location problem. Analogously to the case (i) we

will convert equations (7) into inequalities. To this end, we rewrite (7) as
∑K

k=1 xk` +
w` = 1, ` = 1, . . . , L, with nonnegative slack variables w` and ensure all of them turn
into zero in the optimal solution, by means of a penalty term λ

∑L
`=1 w` added to the

objective function. Here

λ >
K∑

k=1

Ck +
L∑

`=1

max
k=1,...,K

ck`.

Eliminating variables w` we substitute (7) by
∑K

k=1 xk` ≤ 1, ` = 1, . . . , L, and change
the penalty term into λL − λ

∑L
`=1

∑K
k=1 xk`. Multiplying the criterion by -1 and in-

troducing a new set of variables yk = 1 − yk, k = 1, . . . ,K, we obtain the follow-
ing NP maximization problem Π′

2:

max g′(x,y) =
K∑

k=1

L∑
`=1

(λ− ck`)xk` +
K∑

k=1

Ckyk − λL−
K∑

k=1

Ck, (10)

subject to
K∑

k=1

xk` ≤ 1, ` = 1, . . . , L, (11)

yk + xk` ≤ 1, k = 1, . . . ,K, ` = 1, . . . , L, (12)

xk` ∈ {0, 1}, yk ∈ {0, 1}, k = 1, . . . ,K, ` = 1, . . . , L, (13)

where x,y are the matrix (xk`) and the vector (yk) of variables. Obviously, Π′
2 is a

special case of the set packing problem, if one subtracts the constant −λL −
∑K

k=1 Ck

from the objective function. Thus, we have defined the mapping α(X).
We will assume that β maps identically all variables xk` and transforms the vari-

ables yk as yk = 1 − yk, k = 1, . . . ,K. Then each feasible solution (x,y) of the sim-
ple plant location problem becomes a ”high quality” feasible solution to problem Π′

2

with an objective function value g′(x,y) = −fsplpx,y) > −λ. If a pair (x,y) is feasi-
ble for problem Π′

2 but (x,y) is infeasible in the simple plant location problem, then
g′(x,y) ≤ −fsplp(x,y)− λ, because one of the equalities (7) is violated by (x,y).

The ORP for the problem Π′
2 can be solved in polynomial time by Corollary 1, thus

Proposition 2 and Note 1 give the required optimal recombination algorithm for Π′
1.

Q.E.D.

If a vector y ∈ {0, 1}K is fixed, then the best possible solution to the simple plant
location problem with this y can be easily constructed: for each ` one has to assign one

8 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

of the variables xk` = 1, so that ck` ≤ ck′` for all such k′ that yk′ = 1. So, it suffices to
specify just a vector y to represent a tentative solution to this problem in any heuristic
algorithm. It is easy to see that it is impossible to construct some of the non-optimal
feasible solutions to problem (6)–(9) this way, but the optimal solution remains. Strictly
speaking, the representation of solutions, given by the vector y constitutes another NP-
minimization problem with a reduced set of feasible solutions. In the next section we
will see that the ORP for this version of the simple plant location problem is NP-hard.

3.4 Generalization of the Basic Result Using Hypergraphs

The starting point of all reductions considered above was Proposition 1 which may
be viewed as an efficient reduction of the three ORPs, mentioned there, to the maxi-
mum weight independent set problem in a bipartite graph. In order to generalize this
approach now we will move from the ordinary graphs to hypergraphs.

A hypergraph H = (V,E) is given by a finite nonempty set of vertices V and a set
of edges E, where each edge e ∈ E is a subset of V . A subset S ⊆ V is called independent
if none of the edges e ∈ E is a subset of S. The maximum weight independent set
problem on hypergraph H = (V,E) with rational vertex weights w(v), v ∈ V asks for
an independent set S with maximum weight

∑
v∈S w(v).

A generalization of the bipartite graph is the 2-colorable hypergraph: there exists
a partition of the vertex set V into two disjoint independent subsets C1 and C2. The
partition V = C1 ∪ C2, C1 ∩ C2 = ∅ is called a 2-coloring of H and C1, C2 are the color
classes.

Like in the case of the set packing problem, let us denote by Ni the set of indices of
non-zero elements in constraint i of the Boolean linear programming problem (1)-(3).
In the sequel we will assume that at least one of the subsets Ni contains two or more
elements (otherwise the problem is solved trivially). The following proposition gives
an extension of Proposition 1 to the context of hypergraphs.

Proposition 3 The ORP for Boolean linear programming problem (1)-(3) reduces to the max-
imum weight independent set problem on a 2-colorable hypergraph with a 2-coloring given in
the input. The time complexity of this reduction is O(m(2Nmax + n)) and each edge in the
resulting hypergraph contains no more than Nmax vertices, where Nmax = maxi=1,...,m |Ni| is
the maximal number of non-zero elements per linear constraint.

Proof. Given an instance of the Boolean linear programming problem with parent
solutions p1 and p2, let us denote the number of distinct coordinates |D(p1, p2)| by d
and construct a hypergraph H on 2d vertices, assigning each variable xj , j ∈ D(p1, p2)
a couple of vertices vj , vn+j . In order to model each of the linear constraints for i =
1, . . . ,m one can look through all possible combinations xik ∈ {0, 1}|Ni∩D(p1,p2)|, k =
1, . . . , 2|Ni∩D(p1,p2)| of the Boolean variables from D(p1, p2), involved in this constraint.
For each combination k violating a constraint i from (2)∑

j∈Ni∩D(p1,p2)

aijx
ik
j +

∑
j 6∈D(p1,p2)

aijp
1
j ≤ bi

we add an edge

eik = {vj : xik
j = 1, j ∈ Ni ∩D(p1, p2)} ∪ {vj+n : xik

j = 0, j ∈ Ni ∩D(p1, p2)}

into the hypergraph. (Note that the edge eik contains not more than |Ni| elements.) Be-
sides that, we add d edges {vj , vn+j}, j ∈ D(p1, p2), to guarantee that both vj and vn+j

can not enter into an independent set together.

Evolutionary Computation Volume x, Number x 9

A. V. Eremeev

If x is a feasible solution to the ORP for (1)-(3), then the set of vertices

S(x) = {vj : xj = 1, j ∈ D(p1, p2)} ∪ {vj+n : xj = 0, j ∈ D(p1, p2)}

is independent in H . Given a set of vertices S, we can construct the corresponding
vector x(S), setting x(S)j = 1 iff vj ∈ S, j ∈ D(p1, p2) or if p1

j = p2
j = 1. Then for each

independent set S of d vertices, x(S) is feasible in the Boolean linear programming
problem.

The hypergraph vertices are given the following weights:

w(vj) = cj + λ, w(vn+j) = λ, j ∈ D(p1, p2),

where λ > 2
∑

j∈D(p1,p2)
|cj |.

Now each maximum weight independent set S∗ contains either vj or vn+j for any
j ∈ D(p1, p2). Indeed, there must exist a feasible solution to the ORP and it corresponds
to an independent set of weight at least λd. However, if an independent set neither
contains vj nor vn+j then its weight is below λd− λ/2.

So, optimal independent set S∗ corresponds to a feasible vector x(S∗) with the goal
function value

cx(S∗) =
∑

j∈S∗, j≤n

cj +
∑

j 6∈D(p1,p2)

cjp
1
j = w(S∗)− λd +

∑
j 6∈D(p1,p2)

cjp
1
j .

Under the inverse mapping S(x), any feasible vector x yields an independent set of
weight

w(S(x)) = cx + λd−
∑

j 6∈D(p1,p2)

cjp
1
j ,

therefore x(S∗) must be an optimal solution to the ORP as well. Q.E.D.

Note that if an edge e ∈ H consists of a single vertex, e = {v}, then the vertex v
can not enter into the independent sets. All of such vertices may be excluded from H ,
constructed in Proposition 3, if one wants to find a maximum independent set in H . Let
us denote the resulting hypergraph by H ′. If Nmax ≤ 2, then the hypergraph H ′ is just
an ordinary graph with at most 2d vertices. Thus, by Proposition 3 the ORP reduces to
solving the maximum weight independent set problem in a bipartite graph H ′, which
is solvable in O(n3) operations (see e.g. the proof of Proposition 1). Using this fact, we
can extend the result from (Balas and Niehaus, 1998) as follows:

Corollary 3 The ORP for linear Boolean programming problem with at most two variables per
inequality is solvable in time O(n3), if the solutions are represented by vectors x ∈ {0, 1}n.

The class of linear Boolean programming problem with at most two variables per
inequality includes e.g. the vertex cover problem and the minimum 2-satisfiability prob-
lem – see e.g (Hochbaum, 1997). The latter problem is formulated as follows: given a
set of logical variables ξj ∈ {true, false}, j = 1, . . . , n with non-negative weights and
a collection of clauses in conjunctive normal form, where each clause contains at most
two logical variables or their negations (2-CNF), find a satisfying truth assignment such
that the total weight of true variables is minimal. The previous corollary implies

Corollary 4 The ORP for the minimum 2-satisfiability problem is solvable in time O(n3), if
the truth assignment ξ ∈ {true, false}n is used for representation of solutions.

10 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

Corollaries 3 and 4 could be also obtained through Propositions 1,2, using the
transformation of the minimum 2-satisfiability problem to the vertex cover problem
proposed by Seffi Naor (Hochbaum, 1997), but that would give a more complex reduc-
tion.

An appropriate question is whether it is really important to indicate that together
with the hypergraph we supply a 2-coloring of in Proposition 3. Providing a 2-coloring
together with the hypergraph may be helpful in the cases, where the 2-coloring is used
for finding the maximum weight independent set. For instance, in Proposition 1 the
bi-partitioning of the vertices of subgraph G′ is used for finding the ORP solution,
and this is equivalent to usage of a 2-coloring for finding the maximal independent set
in H . Of course, in the case of ordinary bipartite graphs the bi-partitioning could be
easily obtained even if we only new all values of p1

j = p2
j , j 6∈ D(p1, p2), and none

of the values p1
j , p

2
j , j ∈ D(p1, p2). However, in the general case, a straightforward

search for a 2-coloring may be computationally expensive. For example, it is known
that when each edge of a hypergraph consists of 4 vertices, finding a 2-coloring for
a 2-colorable hypergraph is NP-hard (Guruswami et al., 2002). Thus, whenever a 2-
coloring is available for a hypergraph, we will indicate this.

Finally, note that on the class of Boolean linear programming problems
with O(ln(n)) non-zero elements per inequality, the ORP is polynomially reducible
to the maximum weight independent set problem on a hypergraph with a given 2-
coloring, as it follows from Proposition 3.

4 NP-hard Cases of Optimal Recombination

4.1 Boolean Linear Programming Problems with Bounded Number of Non-zeros
per Inequality

We have seen that the optimal recombination problem on the class of Boolean linear
programming problems is related to the maximum weight independent set problem
on hypergraphs with a given 2-coloring. The next proposition indicates that, unfortu-
nately, in the general case the latter problem is NP-hard.
Proposition 4 Finding a maximum size independent set in a hypergraph with all edges of
size 3 is NP-hard even if a 2-coloring is given.
Proof. Let us construct a reduction from the NP-hard maximum size independent set
problem on ordinary graph to our problem. Given a graph G = (V,E) with the set of
vertices V = {v1, . . . , vn}, consider a hypergraph H = (V ′, E′) on the set of vertices
V ′ = {v1, . . . , v2n}, where for each edge e = {vi, vj} ∈ E there are n edges of the form
{vi, vj , vn+k}, k = 1, . . . , n in E′. A 2-coloring for this hypergraph can be composed of
color classes C1 = V and C2 = {vn+1, . . . , v2n}. Any maximum size independent set in
this hypergraph consists of the set of vertices {vn+1, . . . , v2n} joined with a maximum
size independent set S∗ on G. Therefore, any maximum size independent set for H
immediately induces a maximum size independent set for G, which is NP hard to
obtain. Q.E.D.

The maximum size independent set problem in a hypergraph H = (V,E) may be
formulated as a Boolean linear programming problem

max
{∑n

j=1 xj : Ax ≤ b, x ∈ {0, 1}n
}

(14)

with m = |E|, n = |V |, bi = |ei| − 1, i = 1, . . . ,m and aij = 1 iff vj ∈ ei, otherwise
aij = 0. In the special case where H is 2-colorable, we can take p1 and p2 as the indicator

Evolutionary Computation Volume x, Number x 11

A. V. Eremeev

vectors for the color classes C1 and C2 of any 2-coloring. Then D(p1, p2) = {1, . . . , n}
and the ORP for the Boolean linear programming problem (14) becomes equivalent to
solving the maximum size independent set in a hypergraph H with a given 2-coloring.
In view of Proposition 4, this leads to the following

Corollary 5 The optimal recombination for Boolean linear programming problem is NP-hard
in the strong sense even in the case where |Ni| = 3 for all i = 1, . . . ,m; cj = 1 for all
j = 1, . . . , n and matrix A is Boolean.

In the rest of this section we will discuss NP-hardness of the ORP for several well-
known Boolean programming problems.

4.2 One-Dimensional Knapsack Problem

Let us consider the complexity of the ORP for the one-dimensional knapsack problem

max

cx :
n∑

j=1

ajxj ≤ b, x ∈ {0, 1}n

 , (15)

aj ≥ 0, cj ≥ 0, j = 1, . . . , n are integer.

Proposition 5 The ORP for the one-dimensional knapsack problem (15) is NP-hard, assuming
the binary representation of solutions by vector x.

Proof. Consider the following NP-complete case of the partition problem (see
e.g. (Schuurman and Woeginger, 2006)): the input consists of 2m positive inte-
gers αj , j = 1, . . . , 2m, such that

B

m + 1
< αj <

B

m− 1
, j = 1, . . . , 2m, (16)

where B =
∑2m

j=1 αj/2. The problem is to decide if there exists such x ∈ {0, 1}2m that

2m∑
j=1

αjxj = B. (17)

The NP-completeness of this special case of the partition problem can be shown by re-
duction from the following NP-compltete modification of the partition problem (Garey
and Johnson, 1979): given a set of 2m positive integers α′j , j = 1, . . . , 2m, recognize the
existence of such x ∈ {0, 1}2m, that

2m∑
j=1

xj = m and
2m∑
j=1

α′jxj =
1
2

2m∑
j=1

α′j . (18)

The reduction consists in setting αi = α′i + M, i = 1, . . . , 2m with a sufficiently large
integer M , e.g. M = 2m max{α′j : j = 1, . . . , 2m}. It is straightforward to verify (16)
and to prove the equivalence of (18) to (17) with this set of αi.

Now we will construct a polynomial-time Turing reduction from the NP-complete
case of the partition problem, satisfying (16), to the ORP for knapsack problem (15)
with n = 2m, b = B and cj = aj = αj , j = 1, . . . , n.

Note that aj > b/(m + 1), j = 1, . . . , n implies that any feasible solution to the
knapsack problem contains at most m ones. It is sufficient for us that the optimal solu-
tion contains less than 2m− 2 ones (when m > 2). This means that if we try to fix equal

12 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

to zero each of
(
2m
2

)
couples of variables with the indices {ik, jk}, k = 1, . . . ,

(
2m
2

)
and

solve each of the resulting knapsack problems for the remaining 2m− 2 variables, then
the objective value for the best outcome will be equal to b iff the answer to the partition
problem is ”yes”. But one can solve each of these supplementary problems as an ORP
problem with appropriate parent solutions. To do this one can set p1

ik
= p2

jk
= 0 and fill

the remaining positions j 6∈ {ik, jk} so that p1
j+p2

j = 1 and there are m−1 ones in each of
the parents. Both of such parent solutions are feasible since aj < b/(m−1), j = 1, . . . , n.
Q.E.D.

4.3 Set Covering and Location Problems

The next example of an NP-hard ORP is that for the set covering problem, which may
be considered as a special case of (1)-(3):

min {cx : Ax ≥ e, x ∈ {0, 1}n} , (19)

where A is a Boolean (m × n)-matrix; cj ≥ 0, j = 1, . . . , n. Let us assume the bi-
nary representation of solutions by the vector x. Given an instance of the set covering
problem, one may construct a new instance with a doubled set of columns in the ma-
trix A′ = (AA) and a doubled vector c′ = (c1, . . . , cn, c1, . . . , cn). Then an instance of
the NP-hard set covering problem (19) is equivalent to the ORP for the modified set
covering instance where the input consists of (m × 2n)-matrix A′, 2n-vector c′ and the
feasible parent solutions p1, p2, with p1

j = 1, p2
j = 0 for j = 1, . . . , n and p1

j = 0, p2
j = 1

for j = n + 1, . . . , 2n. So, the ORP for the set covering problem is also NP-hard.
It is interesting that in some cases the ORP may be even harder than the original

problem (assuming P6= NP). This can be illustrated on the example of the set cover-
ing problem. A special case of this problem, defined by the restriction ai,1 = 1, i =
1, . . . ,m; c1 = 0 is trivially solvable: x = (1, 0, 0, . . . , 0) is the optimal solution. How-
ever, in the case p1

1 = p2
1 = 0, the ORP becomes NP-hard on this restriction as well.

The set covering problem may be efficiently transformed to the simple plant loca-
tion problem (6)-(9) – see e.g. transformation T3 in (Krarup and Pruzan, 1983). To do
this, it suffices to take K = n, L = m, Ck = ck for k = 1, . . . , n and set

ck` =
{ ∑n

j=1 cj + 1, if a`k = 0,

0, if a`k = 1,
for all k = 1, . . . , n, ` = 1, . . . ,m.

It is easy to verify that a vector y from the optimal solution to this instance of the simple
plant location problem will be an optimal set covering solution as well.

Thus, if the solution representation in problem (6)-(9) is given only by the vector y,
then this reduction meets the conditions of Proposition 2, in view of Notes 1, 2. The
set of ”high quality” solutions to the simple plant location problem is characterized in
this case by the threshold on objective function fsplp(y) <

∑n
j=1 cj + 1, which ensures

that all constraints of the set covering problem are met. If the ORP for (6)-(9) with this
representation was polynomially solvable, this would imply P=NP, therefore, we have

Proposition 6 The ORP for the simple plant location problem (6)-(9), where the solutions are
represented only by the vector y, is NP-hard.

The well-known p-median problem may be defined using the formulation of the
simple plant location problem (6)-(9): it suffices to assume that all Ck = 0, adding a
single constraint

∑K
k=1 yk = p, where 1 ≤ p ≤ n is a given parameter. For this problem

the following proposition holds.

Evolutionary Computation Volume x, Number x 13

A. V. Eremeev

Proposition 7 The ORP for the p-median problem, where the solutions are represented by the
vector y, is NP-hard.

Proof. The authors of (Alekseeva et al., 2007) propose a reduction of an NP-hard
graph partitioning problem to the p-median problem with n = |V | and p = |V |/2,
where V is the set of the graph vertices and |V | is even. Thus, this special case of the
p-median problem is NP-hard as well. Now if the vector y is used for the solutions
representation, we can consider an ORP for this case of the p-median problem with
parent solutions p1 = (1, . . . , 1, 0, . . . , 0) and p2 = (0, . . . , 0, 1, . . . , 1) of n/2 ones. Obvi-
ously, such ORP instance is equivalent to the given p-median instance, which implies
the NP-hardness of the ORP. Q.E.D.

4.4 Maximum Satisfiability Problem

Another example of an NP-hard ORP is the maximum satisfiability problem (MAX-
SAT): given a CNF formula with clauses c1, . . . , cM , where each clause is a disjunction
of logical variables or their negations, it is required to maximize the number of satisfied
clauses. The vector ξ ∈ {true,false}N of N logical variables is the most natural and
compact representation of solutions of MAX-SAT. Optimal recombination for MAX-
SAT with this encoding is NP-hard: just consider the parent solutions where p1

j + p2
j =

1, j = 1, . . . , N , which make the ORP equivalent to the original MAX-SAT problem and
it is NP-hard. Notice that in this formulation MAX-SAT does not belong to the class of
Boolean integer programming problems.

In the Boolean integer programming formulation the MAX-SAT remains NP-hard.
To see this, let us introduce the Boolean variables y1, . . . , yN , assuming for j = 1, . . . , N
that yj = 1 iff ξj = true. Introduce additionally a set of Boolean variables z1, . . . , zM ,
corresponding to the clauses of the CNF. Let C−

i denote the set of indices of logical
variables that belong to a clause i in negated form and let C+

i correspond to the non-
negated variables of the clause. Then the MAX-SAT problem can be written as fol-
lows (Cheriyan et al., 1996):

max fsat(y) =
M∑
i=1

zi, (20)

∑
j∈C−

i

yj −
∑

j∈C+
i

yj + zi ≤ |C−
i |, i = 1, . . . ,M, (21)

yj ∈ {0, 1}, j = 1, . . . , N, zi ∈ {0, 1}, i = 1, . . . ,M. (22)

If a variable zi equals 1, this implies that the vector y gives a true assignment to
clause ci.

Proposition 8 The optimal recombination is NP-hard for the MAX-SAT problem in Boolean
linear programming formulation (20)–(22), assuming solutions representation (y, z).

Proof. Suppose, an arbitrary CNF with clauses c′1, . . . , c
′
M ′ and variables

ξ1, . . . , ξN ′ is given. Consider a modified set of clauses c1, . . . , cM ′ , where each
clause ci i = 1, . . . ,M ′ contains all literals of clause c′i, appended with a new logical
variable ξN ′+i. Let us construct one new clause cM ′+i = (ξN ′+i) for each i = 1, . . . ,M ′.
Here ξ denotes the negation of a variable ξ. Note that any assignment of variables,
where clause cM ′+i evaluates to ”true”, will also satisfy the clause ci iff the original
clause c′i is satisfied.

Now let us consider the ORP for the constructed instance c1, . . . , cM of MAX-SAT,
using formulation (20)–(22) with N = N ′ + M ′ and M = 2M ′. Consider the parent

14 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

solutions p1 = (y1, z1) and p2 = (y2, z2), where y1 = (0, . . . , 0), y2 = (1, . . . , 1) and

zk
i =

 1, if
∑

j∈C−
i

yk
j −

∑
j∈C+

i

yk
j < |C−

i |

0, otherwise,
, i = 1, . . . ,M, k = 1, 2.

By the definition of this instance, z1
M ′+1 = . . . = z1

M = 1 and z2
1 = . . . = z2

M ′ = 1,
but z2

M ′+1 = . . . = z2
M = 0. Thus, in the optimal recombination problem we should

only fix equal to 1 those variables zi, i ≤ M ′, for which z1
i = 1. The rest of the variables

are set free.
By means of the described reduction, the NP-complete satisfiability recognition

problem (SAT) can be solved on the basis of the value fsat(y), where y is the optimal
solution to the constructed ORP instance. Indeed, let us give the positive answer for
SAT iff fsat(y) = 2M ′. On the one hand, whenever a satisfying assignment ξ1, . . . , ξN ′

exists, the corresponding vector y = (y1, . . . , yN ′ , 0, 0, . . . , 0) yields fsat(y) = 2M ′. On
the other hand, when fsat(y) = 2M ′, this implies that all clauses ci are satisfied, as well
as all clauses c′i of the original CNF. Q.E.D.

As it was demonstrated in Corollary 2 (ii) and Note 6, even in the cases where the
most natural representation of solutions induces an NP-hard ORP, additional redun-
dancy in the representation can make the ORP polynomially solvable.

Another example of this type may be observed on the unit-cost maximum 3-
satisfiability problem (MAX-3-SAT), a restriction of the unit-cost MAX-SAT where each
clause involves only three logical variables or their negations. By the same reasoning
as in the general case of MAX-SAT it follows that when the vector of logical variables is
taken as solution representation, the optimal recombination problem for the unit-cost
MAX-3-SAT is NP-hard.

Instead, we can move to a formulation of the MAX-3-SAT with a graph-based rep-
resentation. This representation is motivated by a reduction of the MAX-3-SAT to the
maximum independent set problem, using the graph construction described in (Garey
and Johnson, 1979). Given a set of 3-element clauses c1, . . . , cM in N variables, one con-
structs a graph G = (V,E). Here a clause ci, i = 1, . . . ,M is represented with a triple of
vertices vi

`i1
, vi

`i2
, vi

`i3
, one vertex for each literal `i1, `i2, `i3 of the clause. All vertices of a

triple are connected to form a triangle, a satisfaction testing component. Additionally, for
each variable there is a truth-setting component which consists of two vertices, connected
by an edge. Two literals of variable ξj , j = 1, . . . , N are associated with vertices vξj , vξ̄j

in j-th truth-setting component. Finally, all vertices identified with a literal ` in the sat-
isfaction testing components, are connected to the truth-setting vertex, corresponding
to ¯̀.

Here, the main difference from the textbook reduction is that in our case all vertices
of the truth-setting components in graph G = (V,E) are given weight M , the rest of the
weights are equal to 1.

Now any truth assignment ξ for a MAX-3-SAT instance induces an independent
set S(ξ) of weight NM + nsat(ξ), where nsat(ξ) is the number of clauses satisfied by ξ.
To obtain S(ξ) one can start with a set {vξj

: ξj = true} ∪ {vξ̄j
: ξj = false} and add

an appropriate vertex from each satisfaction testing component that corresponds to a
satisfied clause.

At the same time, any independent set with weight NM + k, k ≥ 0 yields a truth
assignment ξ with nsat(ξ) ≥ k. Obviously, all maximum-weight independent sets in G
have a weight at least NM . So, solving the maximum-weight independent set problem

Evolutionary Computation Volume x, Number x 15

A. V. Eremeev

on G is equivalent to solving the original MAX-3-SAT problem.
We can treat the independent sets of weight at least NM as feasible solutions to

the MAX-3-SAT problem in the graph-based representation of solutions. Then the ORP
for this NP maximization problem is efficiently solvable by Proposition 1. The general
maximum satisfiability problem with arbitrary costs of the clauses may be reduced to
the maximum weight independent set, using the same idea.

It can be shown that Proposition 2 is not applicable to the described transformation
from the MAX-3-SAT to the maximum independent set problem, which is consistent
with the difference of complexity classes of the ORPs.

5 Conclusion

We have shown that the optimal recombination may be efficiently carried out for a
number of NP-hard optimization problems. The well-known reductions between the
NP optimization problems turned out to be useful in development of polynomial-time
optimal recombination procedures. We have observed that the choice of solutions en-
coding has a significant influence upon the complexity of the optimal recombination
problems and often introduction of additional variables can simplify the task. (The
question of practical utility of such simplifications remains open.)

All of the polynomially solvable cases of the optimal recombination problems con-
sidered above rely upon the efficient deterministic algorithms for the max-flow/min-
cut problem (or the maximum matching problem in the unweighted case). However,
the crossover operator was initially introduced as a randomized operator in genetic al-
gorithms (Holland, 1975). As a compromise approach one can solve the optimal recom-
bination problem approximately or solve it optimally but not in all occasions. Examples
of the genetic algorithms using this approach may be found in (Borisovsky et al., 2006b;
Glover et al., 2000; Hohn and Reeves, 1996; Reeves, 1994).

In this paper we did not discuss the issues of convergence of the evolutionary al-
gorithms when the optimal recombination is used. Due to fast localization of the search
process in such heuristics it is often important to provide a sufficiently large initial pop-
ulation and employ some mechanism for adaptation of the mutation strength. Interest-
ing techniques that maintain the diversity of population by constructing the second
child, as different from the optimal offspring as possible, can be found in (Aggarwal
et al., 1997) and (Balas and Niehaus, 1998). It is likely that the general schemes of the
evolutionary algorithms and the procedures of parameter adaptation also require some
revision when the optimal recombination is used.

References
Aggarwal, C., Orlin, J., and Tai, R. (1997). An optimized crossover for maximum independent

set. Operations Research, 45:225–234.

Aho, A., Hopcroft, J., and J.D.Ullman (1974). The design and analysis of computer algorithms.
Addison-Wesley, Reading.

Alekseeva, E., Kochetov, Y., and Plyasunov, A. (2007). Complexity of local search for the p-
median problem. European Journal of Operational Research. In Press.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M.
(1999). Complexity and Approximation: Combinatorial optimization problems and their approximabil-
ity properties. Springer Verlag.

Balas, E. and Niehaus, W. (1996). Finding large cliques in arbitrary graphs by bipartite matching.
In Johnson, D. and Trick., M., editors, Series in Discrete Mathematics and Theoretical Computer
Science, volume 26, pages 29–49. AMS.

16 Evolutionary Computation Volume x, Number x

Complexity of Optimal Recombination

Balas, E. and Niehaus, W. (1998). Optimized crossover-based genetic algorithms for the maxi-
mum cardinality and maximum weight clique problems. Journal of Heuristics, 4(2):107–122.

Borisovsky, P., Dolgui, A., and Eremeev, A. (2006a). Genetic algorithms for a supply manage-
ment problem: MIP-recombination vs greedy decoder. European Journal of Operational Research.
Submitted.

Borisovsky, P., Dolgui, A., and Eremeev, A. (2006b). Genetic algorithms for supply management
problem with lower-bounded demands. In Dolgui, A., Morel, G., and Pereira, C., editors, Proc.
of 12th IFAC Symposium ”Information Control Problems in Manufacturing 2006” (INCOM’2006),
volume 3, pages 521–526. Elsevier Science, St Etienne, France.

Cheriyan, J., Cunningham, W., Tuncel, L., and Wang, Y. (1996). A linear programming and round-
ing approach to max 2-sat. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, volume 26, pages 395–414.

Garey, M. and Johnson, D. (1979). Computers and intractability. A guide to the theory of NP -
completeness. W.H. Freeman and Company.

Glover, F., Laguna, M., and Marti, R. (2000). Fundamentals of scatter search and path relinking.
Control and Cybernetics, 29(3):653–684.

Guruswami, V., Hastad, J., and Sudan, M. (2002). Hardness of approximate hypergraph coloring.
SIAM Journal of Computing, 31(6):1663–1686.

Hochbaum, D. S. (1997). Approximating covering and packing problems: Set cover, vertex cover,
independent set, and related problems. In Hochbaum, D., editor, Approximation Algorithms for
NP-Hard Problems, pages 94–143. PWS Publishing Company, Boston.

Hohn, C. and Reeves, C. R. (1996). Graph partitioning using genetic algorithms. In G.R.Sechi,
editor, Proc. of the 2nd International Conference on Massively Parallel Computing Systems, pages
31–38. IEEE Computer Society Press, Los Alamitos, CA.

Holland, J. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Jansen, T. and Wegener, I. (2002). On the analysis of evolutionary algorithms - a proof that
crossover really can help. Algorithmica, 34(1).

Krarup, J. and Pruzan, P. (1983). The simple plant location problem: survey and synthesis. Euro-
pean Journal of Operational Research, 12:36–81.

Meyers, C. and Orlin, J. B. (2006). Very large-scale neighborhood search techniques in timetabling
problems. In Proc. of The 6th International Conference on the Practice and Theory of Automated
Timetabling PATAT-2006, pages 36–52.

Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and Complex-
ity. Prentice-Hall.

Radcliffe, N. J. (1991). Forma analysis and random respectful recombination. In Proc. of the Fourth
International Conference on Genetic Algorithms, pages 31–38. Morgan Kaufmann.

Reeves, C. R. (1994). Genetic algorithms and neighbourhood search. In Fogarty, T., editor, Evolu-
tionary Computing, AISB Workshop. Selected Papers, pages 115–130. Springer-Verlag, Berlin.

Schuurman, P. and Woeginger, G. (2006). Approximation schemes – a tutorial. Manuscript, to ap-
pear in Lectures on Scheduling, edited by R.H. Möhring, C.N. Potts, A.S. Schulz, G.J. Woeginger
and L.A. Wolsey.

Yagiura, M. and Ibaraki, T. (1996). The use of dynamic programming in genetic algorithms for
permutation problems. European Journal of Operational Research, 92:387–401.

Evolutionary Computation Volume x, Number x 17

