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On complexity of stochastic programming

problems

Alexander Shapiro∗ and Arkadi Nemirovski†

Abstract

The main focus of this paper is in a discussion of complexity of stochastic
programming problems. We argue that two-stage (linear) stochastic program-
ming problems with recourse can be solved with a reasonable accuracy by us-
ing Monte Carlo sampling techniques, while multi-stage stochastic programs,
in general, are intractable. We also discuss complexity of chance constrained
problems and multi-stage stochastic programs with linear decision rules.
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1 Introduction

In real life we constantly have to make decisions under uncertainty and, moreover, we
would like to make such decisions in a reasonably optimal way. Then for a specified
objective function F (x, ξ), depending on decision vector x ∈ R

n and vector ξ ∈ R
d of

uncertain parameters, we are faced with the problem of optimizing (say minimizing)
F (x, ξ) over x varying in a permissible (feasible) set X ⊂ R

n. Of course, such an
optimization problem is not well defined since our objective depends on an unknown
value of ξ. A way of dealing with this is to optimize the objective on average. That
is, it is assumed that ξ is a random vector1), with known probability distribution P
having support Ξ ⊂ R

d, and the following optimization problem is formulated

Min
x∈X

{
f(x) := EP [F (x, ξ)]

}
. (1.1)

We assume throughout the paper that considered expectations are well defined, e.g.,
F (x, ·) is measurable and P -integrable.

In particular, the above formulation can be applied to two-stage stochastic pro-
gramming problem with recourse, pioneered by Beale [4] and Dantzig [13]. That is,
an optimization problem is divided into two stages. At the first stage one has to make
a decision on the basis of some available information. At the second stage, after a
realization of the uncertain data becomes known, an optimal second stage decision is
made. Such stochastic programming problem can be written in the form (1.1) with
F (x, ξ) being the optimal value of the second stage problem.

It should be noted that in the formulation (1.1) all uncertainties are concentrated
in the objective function while the feasible set X is supposed to be known (deter-
ministic). Quite often the feasible set itself is defined by constraints which depend
on uncertain parameters. In some cases one can reasonably formulate such problems
in the form (1.1) by introducing penalties for possible infeasibilities. Alternatively
one can try to optimize the objective subject to satisfying constraints for all values of
unknown parameters in a chosen (uncertain) region. This is the approach of robust
optimization (cf., Ben-Tal and Nemirovski [6]). Satisfying the constraints for all pos-
sible realizations of random data may be too conservative and, more reasonably, one
may try to satisfy the constraints with a high (close to one) probability. This leads to
the chance, or probabilistic, constraints formulation which is going back to Charnes
and Cooper [11].

There are several natural questions which arise with respect to formulation (1.1).

(i) How do we know the probability distribution P? In some cases one has his-
torical data which can be used to obtain a reasonably accurate estimate of the
corresponding probability distribution. However, this happens in rather specific

1)Sometimes, in the sequel, ξ denotes a random vector and sometimes its particular realization
(numerical value). Which one of these two meanings is used will be clear from the context.
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situations and often the probability distribution either cannot be accurately esti-
mated or changes with time. Even worse, in many cases one deals with scenarios
(i.e., possible realizations of the random data) with the associated probabilities
assigned by a subjective judgment.

(ii) Why, at the first stage, do we optimize the expected value of the second stage
optimization problem? If the optimization procedure is repeated many times,
with the same probability distribution of the data, then it could be argued by
employing the Law of Large Numbers that this gives an optimal decision on
average. However, if in the process, because of the variability of the data one
looses all its capital, it does not help that the decisions were optimal on average.

(iii) How difficult is it to solve the stochastic programming problem (1.1)? Eval-
uation of the expected value function f(x) involves calculation of the corre-
sponding multivariate integrals. Only in rather specific cases it can be done
analytically. Therefore, typically, one employs a finite discretization of the ran-
dom data which allows to write the expectation in a form of summation. Note,
however, that if random vector ξ has d elements each with just 3 possible re-
alizations independent of each other, then the total number of scenarios is 3d,
i.e., the number of scenarios grows exponentially fast with dimension d of the
data vector.

(iv) Finally, what can be said about multi-stage stochastic programming, when de-
cisions are made in several stages based on available information at the time of
making the sequential decisions?

It turns out that there is a close relation between questions (i) and (ii). As far
as question (i) is concerned, one can approach it from the following point of view.
Suppose that a plausible family P of probability distributions, of the random data
vector ξ, can be identified. Consequently, the “worst-case-distribution” minimax
problem

Min
x∈X

{
f(x) := sup

P∈P

EP [F (x, ξ)]

}
(1.2)

is formulated. The worst-case approach to decision analysis, of course, is not new. It
was also discussed extensively in the stochastic programming literature (e.g., [15, 16,
19, 22, 38, 48]).

Again we are facing the question of how to choose the set P of possible distri-
butions. Traditionally this problem is approached by assuming knowledge of certain
moments of the involved random parameters. This leads to the so-called Problem of
Moments, where the set P is formed by probability measures P satisfying moment
constraints EP [ψi(ξ)] = bi, i = 1, ..., m (see, e.g., [28]). In that case the extreme
(worst case) distributions are measures with a finite support of at most m+1 points.
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On the other hand, it often happens in applications that one is given a deter-
ministic value µ of the uncertain data vector ξ and does not have an idea what a
corresponding distribution may be. For example, ξ could represent an uncertain de-
mand and µ is viewed as its mean vector given by a forecast. It is well recognized
now that solving a corresponding optimization problem for the deterministic value
ξ = µ may give a poor solution from a robustness point of view. It is natural then
to introduce random perturbations to the deterministic vector µ and to solve the
obtained stochastic program. For instance, one can assume that components ξi of
the uncertain data vector are independent and have a certain type (say, log-normal
if ξi should be nonnegative) distribution with means µi and standard deviations σi

which are defined within a certain percentage of µi, i = 1, ..., d. Often this quickly
stabilizes optimal solutions of the corresponding stochastic programs irrespective of
the underlying distribution (cf., [36]). Furthermore, we can approach this setup from
the minimax point of view by considering a worst distribution supported on, say, a
box region around vector µ. If, moreover, we consider unimodal type families of dis-
tributions, then the worst case distribution is uniform (cf., [43]). For a given x, even
unimodal distributions and F (x, ·) := −1lS(·), where 1lS(·) is the indicator function of
a symmetric convex set S, this result was first established by Barmish and Lagoa [3],
where it was called the “Uniformity Principle”.

Question (ii) has also a long history. One can optimize a weighted sum of the
expected value and a term representing variability of the second stage objective func-
tion. For example, we can try to minimize

f(x) := E[F (x, ξ)] + cVar[F (x, ξ)], (1.3)

where c ≥ 0 is a chosen constant. This approach goes back to Markowitz [27]. The
additional (variance) term in (1.3) can be viewed as a risk measure of the second
stage (optimal) outcome. It could be noted, however, that adding the variance term
may destroy convexity of the function f(·) even if F (·, ξ) is convex for all realizations
of ξ (cf., [45]). An axiomatic approach to a mathematical theory of risk measures
was suggested recently by Artzner et al. [1]. That is, value of a random variable Z is
measured by a function ρ(Z) satisfying certain axioms. An example of such function
ρ(Z), called coherent risk measure, is the mean-semideviation

ρ(Z) := E[Z] + c
{

E

([
Z − E[Z]

]2

+

)}1/2

,

where c ∈ [0, 1].
It turns out that ρ(Z) is a coherent risk measure if and only if it can be represented

in the form ρ(Z) = supP∈P EP [Z], where P is a set of probability measures. In differ-
ent frameworks this dual representation was derived in [1, 20, 33, 34]. Therefore, the
min-max problem (1.2) and the problem of minimization of a coherent risk measure,
of F (x, ξ), in fact are equivalent. We may refer to [2, 18, 32, 35] for extensions of this
approach to a multi-stage setting.

3



2 Complexity of two-stage stochastic programs

In this section we discuss question (iii) mentioned in the introduction, that is, how
difficult is to solve a stochastic program. Problem (1.1) is a problem of minimizing a
deterministic implicitly given objective f(x). We should expect that this problem is at
least as difficult as minimizing f(x), x ∈ X, in the case where f(x) is given explicitly,
say by a “closed form analytic expression”, or, more general, by an “oracle” capable to
compute the values and the derivatives of f(x) at every given point. As far as problems
of minimization of f(x), x ∈ X, with explicitly given objective, are concerned, the
“solvable case” is known, this is the Convex Programming case. That is, X is a closed
convex set and f : X → R is a convex function. It is known that generic Convex
Programming problems satisfying mild computability and boundedness assumptions
can be solved in polynomial time. In contrast to this, typical nonconvex problems
turn out to be NP-hard2). It follows that when speaking about conditions under which
the stochastic program (1.1) is efficiently solvable, it makes sense to assume that X
is a closed convex set, and f(·) is convex on X. We gain from a technical point (and
do not lose much from practical viewpoint) by assuming X to be bounded. These
assumptions, plus mild technical conditions, would be sufficient to make (1.1) easy,
if f(x) were given explicitly. However, in Stochastic Programming it makes no sense
to assume that we can compute efficiently the expectation in (1.1), thus arriving at
an explicit representation of f(x). Would it be the case, there would be no necessity
to treat (1.1) as a stochastic program.

We argue now that stochastic programming problems of the form (1.1) can be
solved reasonably efficiently by using Monte Carlo sampling techniques provided that
the probability distribution of the random data is not “too bad” and certain general
conditions are met. In this respect we should explain what do we mean by “solving”
stochastic programming problems. Let us consider, for example, two-stage linear
stochastic programming problems with recourse. Such problems can be written in
the form (1.1) with3)

X := {x : Ax = b, x ≥ 0} and F (x, ξ) := 〈c, x〉 + Q(x, ξ),

where Q(x, ξ) is the optimal value of the second stage problem:

Min
y≥0

〈q, y〉 subject to Tx + Wy ≥ h. (2.1)

2) It is beyond the scope of this paper to give a detailed explanation of what “polynomial time
solvability” and “NP-hardness” mean. Informally speaking, the former property of a problem P
means that P is “easy to solve” – it admits a computationally efficient solution algorithm. NP-
hardness of P means that no efficient solution algorithms for P are known, and there are strong
theoretical reasons to believe that they do not exist. For formal treatment of these issues in Con-
tinuous Optimization, see, e.g. [6, Chapter 5].

We should also stress that a claim “such and such problem is difficult” relates to a generic problem
in question and does not imply that the problem has no solvable particular cases.

3)By 〈x, y〉 we denote the standard scalar product of two vectors x, y ∈ R
n.
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Here T and W are matrices of an appropriate order and ξ ∈ R
d is a vector whose

elements are composed from elements of vectors q and h and matrices T and W which,
in a considered problem, are assumed to be random. If we assume that the random
data vector has a finite number of realizations (scenarios) ξk = (qk, Vk, Tk, hk) with
respective probabilities pk, k = 1, ..., K, then the obtained two-stage problem can be
written as one large linear programming problem:

Minx,y1,...,yK
〈c, x〉 +

∑K
k=1 pk〈qk, yk〉

s.t Ax = b, Tkx + Wkyk ≥ hk, k = 1, ..., K,
x ≥ 0, yk ≥ 0, k = 1, ..., K.

(2.2)

If the number of scenarios K is not “too large”, then the above linear program-
ming problem (2.2) can be solved accurately in a reasonable time. However, even a
crude discretization of the probability distribution of ξ typically results in an expo-
nential growth of the number of scenarios with increase of the number d of random
parameters. Suppose, for example, that components of the random vector ξ are mutu-
ally independently distributed each having a small number r of possible realizations.
Then the size of the corresponding input data grows linearly in d (and r) while the
number of scenarios K = rd grows exponentially. Yet in some cases problem (2.2)
can be solved numerically in a reasonable time. For example, suppose that matrices
T and W are constant (deterministic) and only h is random and, moreover, Q(x, ξ)
decomposes into the sum Q(x, ξ) = Q1(x1, h1)+ ...+Qn(xn, hn). This happens in the
case of the so-called simple recourse with

Qi(xi, hi) = q+
i [xi − hi]+ + q−i [hi − xi]+, i = 1, ..., n,

where q+
i and q−i are some positive numbers. Then E[Q(x, ξ)] = E[Q1(x1, h1)] +

... + E[Qn(xn, hn)], i.e., calculation of the multidimensional expectation is reduced to
calculations of one dimensional expectations. Of course, the above is a rather specific
case and in a general situation there is no hope to solve problem (2.2) accurately (say
with machine precision) even for moderate values of r and d (cf., [17]).

It should be said at this point that from a practical point of view, typically,
it does not make sense to try to solve a stochastic programming problem with a
high precision. A numerical error resulting from an inaccurate estimation of the
involved probability distributions, modeling errors, etc., can be far bigger than such
an optimization error. We argue now that two-stage stochastic problems can be solved
efficiently with a reasonable accuracy provided that the following conditions are met:

(a) The feasible set X is fixed (deterministic).

(b) For all x ∈ X and ξ ∈ Ξ the objective function F (x, ξ) is real valued.

(c) The considered stochastic programming problem can be solved efficiently (by a
deterministic algorithm) if the number of scenarios is not “too large”.
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When applied to two-stage stochastic programming, the above conditions (a) and
(b) mean that the recourse is relatively complete4) and the second stage problem is
bounded from below. The above condition (c) certainly holds in the case of two-stage
linear stochastic programming with recourse.

In order to proceed let us consider the following Monte Carlo sampling approach.
Suppose that we can generate an iid (independent identically distributed) random
sample ξ1, ..., ξN of N realizations of the considered random vector. Then we can
estimate the expected value function f(x) by the sample average5)

f̂N(x) :=
1

N

N∑

j=1

F (x, ξj). (2.3)

Consequently, we approximate the true problem (1.1) by the problem:

Min
x∈X

f̂N(x). (2.4)

We refer to (2.4) as the Sample Average Approximation (SAA) problem. The optimal
value v̂N and the set ŜN of optimal solutions of the SAA problem (2.4) provide
estimates of their true counterparts of problem (1.1). It should be noted that once
the sample is generated, f̂N(x) becomes a deterministic function and problem (2.4)
becomes a stochastic programming problem with N scenarios ξ1, ..., ξN taken with
equal probabilities 1/N . It also should be mentioned that the SAA method is not
an algorithm. One still has to solve the obtained problem (2.4) by employing an
appropriate (deterministic) algorithm.

By the Law of Large Numbers we have that f̂N(x) converges (pointwise in x)
w.p.1 to f(x) as N tends to infinity. Therefore it is reasonable to expect for v̂N and
ŜN to converge to their counterparts of the true problem (1.1) with probability one
(w.p.1) as N tends to infinity. And, indeed, such convergence can be proved under
mild regularity conditions. However, for a fixed x ∈ X, convergence of f̂N(x) to f(x)
is notoriously slow. By the Central Limit Theorem it is of order Op(N

−1/2). The
rate of convergence can be improved, sometimes significantly, by variance reduction
methods. However, by using Monte Carlo (Quasi-Monte Carlo) techniques one cannot
evaluate the expected value f(x) very accurately.

The following analysis is based on exponential bounds of the Large Deviations
(LD) theory (see, e.g., [14] for a general discussion of LD theory). Denote by Sε and
Ŝε

N the sets of ε-optimal solutions of the true and SAA problems, respectively, i.e.,
x̄ ∈ Sε iff x̄ ∈ X and f(x̄) ≤ infx∈X f(x) + ε. Choose accuracy constants ε > 0 and
0 ≤ δ < ε, and significance level α ∈ (0, 1). Suppose for the moment that the set X

4)It is said that the recourse is relatively complete if for every x ∈ X and every possible realization
of random data, the second stage problem is feasible.

5)In order to simplify notation we only write in the subscript the sample size N while actually
f̂N (·) depends on the generated sample, and in that sense is random.
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is finite although its cardinality |X| can be very large. Then by using Cramér’s LD
theorem it is not difficult to show that the sample size

N ≥
1

η(ε, δ)
log

(
|X|

α

)
(2.5)

guarantees that probability of the event {Ŝδ
N ⊂ Sε} is at least 1 − α (see [21],[41,

section 3.1]). That is, for any N bigger than the right hand side of (2.5) we are
guaranteed that any δ-optimal solution of the corresponding SAA problem provides
an ε-optimal solution of the true problem with probability at least 1 − α, in other
words, solving the SAA problem with accuracy δ guarantees solving the true problem
with accuracy ε with probability at least 1 − α.

The number η(ε, δ) in the estimate (2.5) is defined as follows. Consider a mapping
u : X \ Sε → X such that f(u(x)) ≤ f(x) − ε for all x ∈ X \ Sε. Such mappings do
exist, although not unique. For example, any mapping u : X \ Sε → S satisfies this
condition. Choice of such a mapping gives a certain flexibility to the corresponding
estimate of the sample size. For x ∈ X, consider random variable

Yx := F (u(x), ξ) − F (x, ξ),

its moment generating function Mx(t) := E
[
etYx

]
and the LD rate function6)

Ix(z) := sup
t∈R

{
tz − log Mx(t)

}
.

Note that, by construction of mapping u(x), the inequality

µx := E [Yx] = f(u(x)) − f(x) ≤ −ε (2.6)

holds for all x ∈ X \ Sε. Finally, we define

η(ε, δ) := Min
x∈X\Sε

Ix(−δ). (2.7)

Because of (2.6) and since δ < ε, the number Ix(−δ) is positive provided that the
probability distribution of Yx is not “too bad”. Specifically, if we assume that the
moment generating function Mx(t), of Yx, is finite valued for all t in a neighborhood
of 0, then the random variable Yx has finite moments and Ix(µx) = I ′(µx) = 0, and
I ′′(µx) = 1/σ2

x where σ2
x := Var [Yx]. Consequently, Ix(−δ) can be approximated, by

using second order Taylor expansion, as follows

Ix(−δ) ≈
(−δ − µx)

2

2σ2
x

≥
(ε − δ)2

2σ2
x

.

This suggests that one can expect the constant η(ε, δ) to be of order of (ε− δ)2. And,
indeed, this can be ensured by various conditions. Consider the following condition.

6)That is, Ix(·) is the conjugate of the function log Mx(·) in the sense of convex analysis.
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(A1) There exists constant σ > 0 such that for any x′, x ∈ X, the moment generating
function M∗(t) of F (x′, ξ) − F (x, ξ) − E [F (x′, ξ) − F (x, ξ)] satisfies:

M∗(t) ≤ exp
(

1
2σ

2t2
)
, ∀ t ∈ R. (2.8)

Note that random variable F (x′, ξ)−F (x, ξ)−E [F (x′, ξ) − F (x, ξ)] has zero mean.
Moreover, if it has a normal distribution, with variance σ2, then its moment generating
function is equal to the right hand side of (2.8). Condition (2.8) means that tail prob-

abilities Prob
(
|F (x′, ξ)−F (x, ξ)| > t

)
are bounded from above7) by O(1) exp

(
− t2

2σ2

)
.

This condition certainly holds if the distribution of the considered random variable
has a bounded support.

For x′ = u(x), random variable F (x′, ξ) − F (x, ξ) coincides with Yx, and hence
(2.8) implies that Mx(t) ≤ exp(µxt + σ2t2/2). It follows that

Ix(z) ≥ sup
t∈R

{
zt − µxt − σ2t2/2

}
=

(z − µx)
2

2σ2
, (2.9)

and hence for any ε > 0 and δ ∈ [0, ε):

η(ε, δ) ≥
(−δ − µx)

2

2σ2
≥

(ε − δ)2

2σ2
. (2.10)

It follows that, under assumption (A1), the estimate (2.5) can be written as

N ≥
2σ2

(ε − δ)2
log

(
|X|

α

)
. (2.11)

Remark 1 Condition (2.8) can be replaced by a more general condition

M∗(t) ≤ exp(ψ(t)), ∀ t ∈ R, (2.12)

where ψ(t) is a convex even function with ψ(0) = 0. Then log Mx(t) ≤ µxt + ψ(t)
and hence Ix(z) ≥ ψ∗(z −µx), where ψ∗ is the conjugate of the function ψ. It follows
then that

η(ε, δ) ≥ ψ∗(−δ − µx) ≥ ψ∗(ε − δ). (2.13)

For example, instead of assuming that the bound (2.8) holds for all t ∈ R, we can
assume that it holds for all t in a finite interval [−a, a], where a > 0 is a given
constant. That is, we can take ψ(t) := 1

2σ
2t if |t| ≤ a, and ψ(t) := +∞ otherwise. In

that case ψ∗(z) = z2/(2σ2) for |z| ≤ aσ2, and ψ∗(z) = a|z| − 1
2a

2σ2 for |z| > aσ2.

7)By O(1) we denote generic absolute constants.
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Now let X be a bounded, not necessary finite, subset of R
n of diameter

D := supx′,x∈X ‖x′ − x‖.

Then for τ > 0 we can construct a set Xτ ⊂ X such that for any x ∈ X there is
x′ ∈ Xτ satisfying ‖x − x′‖ ≤ τ , and |Xτ | = O(1)(D/τ)n. Suppose that condition
(A1) holds. Then by (2.11), for ε′ > δ, we can estimate the corresponding sample size
required to solve the reduced optimization problem, obtained by replacing X with
Xτ , as

N ≥
2σ2

(ε′ − δ)2

[
n (log D − log τ) + log

(
O(1)/α

)]
. (2.14)

Suppose, further, that there exists a (measurable) function κ : Ξ → R+ and γ > 0
such that

|F (x′, ξ) − F (x, ξ)| ≤ κ(ξ)‖x′ − x‖γ (2.15)

holds for all x′, x ∈ X and all ξ ∈ Ξ. It follows by (2.15) that

|f̂N(x′) − f̂N(x)| ≤ N−1

N∑

j=1

|F (x′, ξj) − F (x, ξj)| ≤ κ̂N‖x
′ − x‖γ, (2.16)

where κ̂N := N−1
∑N

j=1 κ(ξj).
Let us assume, further, the following:

(A2) The moment generating function Mκ(t) := E
[
etκ(ξ)

]
of κ(ξ) is finite valued for

all t in a neighborhood of 0.

It follows then that the expectation L := E[κ(ξ)] is finite, and moreover, by Cramér’s
LD Theorem that for any L′ > L there exists a positive constant β = β(L′) such that

P (κ̂N > L′) ≤ e−Nβ. (2.17)

Let x̂N be a δ-optimal solution of the SAA problem and x̃N ∈ Xτ be a point such
that ‖x̂N − x̃N‖ ≤ τ . Let us take N ≥ β−1 log(2/α), so that by (2.17) we have that

Prob (κ̂N > L′) ≤ α/2. (2.18)

Then with probability at least 1− α/2, the point x̃N is a (δ + L′τ γ)-optimal solution
of the reduced SAA problem. Setting

τ := [(ε − δ)/(2L′)]1/γ ,

we obtain that with probability at least 1−α/2, the point x̃N is an ε′-optimal solution
of the reduced SAA problem with ε′ := (ε + δ)/2. Moreover, by taking a sample size
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satisfying (2.14), we obtain that x̃N is an ε′-optimal solution of the reduced expected
value problem with probability at least 1 − α/2. It follows that x̂N is an ε′′-optimal
solution of the SAA problem (1.1) with probability at least 1−α and ε′′ = ε′+Lτ γ ≤ ε.
We obtain the following estimate

N ≥
4σ2

(ε − δ)2

[
n

(
log D + γ−1 log

2L′

ε − δ

)
+ log

(
O(1)

α

)]
∨

[
β−1 log (2/α)

]
(2.19)

for the sample size (cf., [41, section 3.2]).
The above result is quite general and does not involve the assumption of convexity.

Estimate (2.19) of the sample size contains various constants and is too conservative
for practical applications. However, in a sense, it gives an estimate of complexity of
two-stage stochastic programming problems. We will discuss this in the next section.
In typical applications (e.g., in the convex case) the constant γ = 1, in which case
condition (2.15) means that F (·, ξ) is Lipschitz continuous on X with constant κ(ξ).
However, there are also some applications where γ could be less than 1 (cf., [42]).

We obtain the following basic positive result.

Theorem 1 Suppose that assumptions (A1) and (A2) hold and X has a finite di-
ameter D. Then for ε > 0, 0 ≤ δ < ε and sample size N satisfying (2.19), we are
guaranteed that any δ-optimal solution of the SAA problem is an ε-optimal solution
of the true problem with probability at least 1 − α.

Let us also consider the following simplified variant of Theorem 1. Suppose that:

(A3) There is a positive constant C such that |F (x′, ξ)−F (x, ξ)| ≤ C for all x′, x ∈ X
and ξ ∈ Ξ.

Under assumption (A3) we have that for any ε > 0 and δ ∈ [0, ε]:

Ix(−δ) ≥ O(1)
(ε − δ)2

C2
, for all x ∈ X \ Sε, ξ ∈ Ξ, (2.20)

and hence η(ε, δ) ≥ O(1)(ε − δ)2/C2. Consequently, the bound (2.5) for the sample
size which is required to solve the true problem with accuracy ε > 0 and probability
at least 1 − α, by solving the SAA problem with accuracy δ := ε/2, takes the form

N ≥ O(1)

(
C

ε

)2

log

(
|X|

α

)
. (2.21)

The estimate (2.21) can be also derived by using Hoeffding’s inequality8) instead of
Cramér’s LD bound.

8)Recall that Hoeffding’s inequality states that if Z1, ..., ZN is an iid random sample from a
distribution supported on a bounded interval [a, b], then for any t > 0,

Prob
(
Z̄ − µ ≥ t

)
≤ e−2t2N/(b−a)2 ,

where Z̄ is the sample average and µ = E[Zi].
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In particular, if we assume that γ = 1 and κ(ξ) = L for all ξ ∈ Ξ, i.e., F (·, ξ)
is Lipschitz continuous on X with constant L independent of ξ ∈ Ξ, then we can
take C = DL and remove the term β−1 log(2/α) in the right hand side of (2.19). By
taking, further, δ := ε/2 we obtain in that case the following estimate of the sample
size

N ≥ O(1)

(
DL

ε

)2 [
n log

(
DL

ε

)
+ log

(
O(1)

α

)]
. (2.22)

We can write the following simplified version of Theorem 1.

Theorem 2 Suppose that X has a finite diameter D and condition (2.15) holds with
γ = 1 and κ(ξ) = L for all ξ ∈ Ξ. Then with sample size N satisfying (2.22) we
are guaranteed that every (ε/2)-optimal solution of the SAA problem is an ε-optimal
solution of the true problem with probability at least 1 − α.

In the next section we compare complexity estimates implied by the bound (2.22)
with complexity of “deterministic” convex programming.

3 What is easy and what is difficult in stochastic

programming?

Since, generically, nonconvex problems are difficult already in the deterministic case,
when discussing the question of what is easy and what is not in Stochastic Pro-
gramming, it makes sense to restrict ourselves with convex problems (1.1). Thus, in
the sequel it is assumed by default that X is a closed and bounded convex set, and
f : X → R is convex. These assumptions, plus mild technical conditions, would be
sufficient to make (1.1) easy, provided that f(x) were given explicitly, but the latter
is not what we assume in SP. What we usually (and everywhere below) do assume in
SP is that:

(i) The function F (x, ξ) is given explicitly, so that we can compute efficiently its
value (and perhaps the derivatives in x) at every given pair (x, ξ) ∈ X × Ξ.

(ii) We have access to a mechanism which is capable of sampling from the distribu-
tion P , that is, we can generate a sample ξ1, ξ2,... of independent realizations
of ξ.

For the sake of discussion to follow we assume in this section that we are under the
premise of Theorem 2 and that problem (1.1) is convex. To proceed, let us compare
the complexity bound given by Theorem 2 with a typical result on the “black box”
complexity of the usual (deterministic) Convex Programming.
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Theorem 3 Consider a convex problem

Min
x∈X

f(x), (CP)

where X ⊂ R
n is a closed convex set which is contained in a centered at the origin

ball of diameter D and contains a ball of given diameter d > 0, and that f : X → R is
convex Lipschitz continuous, with constant L. Assume that X is given by a Separation
Oracle which, given on input a point x ∈ R

n, reports whether x ∈ X, and if it is not
the case, returns e ∈ R

n which separates x and X: such that 〈e, x〉 > maxy∈X〈e, y〉.
Assume, further, that f is given by a First Order oracle which, given on input x ∈ X,
returns on output the value f(x) and a subgradient ∇f(x), ‖∇f(x)‖2 ≤ L, of f at x.

In this framework, for every ε > 0 one can find an ε-solution to (CP) by an
algorithm which requires at most

M = O(1)n2

[
log

(
DL

ε

)
+ log

(
D

d

)]
(3.1)

calls to the Separation and First Order oracles, with a call accompanied by O(n2)
arithmetic operations to process oracle’s answer.

In our context, the role of Theorem 3 is twofold. First, it can be viewed as a neces-
sary follow-up to Theorem 2 which reduces solving (1.1) to solving the corresponding
SAA problem and says nothing on how difficult is the latter task. This question is
answered by Theorem 3 in the convex case9). However, the main role of Theorem 3
in our context is the one of a benchmark for the SP complexity results. Let us use
this benchmark to evaluate the result stated in Theorem 2.

Observation 1 In contrast to Theorem 3, Theorem 2 provides us with no more than
probabilistic quality guarantees. That is, the random approximate solution to (1.1)
implied by the outlined SAA approach, being ε-solution to (1.1) with probability
1 − α, can be very bad with the remaining probability α. In our “black box” infor-
mational environment (the distribution of ξ is not given in advance, all we have is an
access to a black box generating independent realizations of ξ), this “shortcoming”
is unavoidable. Note, however, that the sample size N as given by (2.19) is “nearly
independent” of α, i.e., to reduce unreliability from 10−2 to 10−12 requires at most
6-fold increase in the sample size. Note that unreliability as small as 10−12 is, for all
practical purposes, the same as 100% reliability.

Observation 2 To proceed with our comparison, it makes sense to measure the
complexity of the SAA method merely by the number of scenarios N required to

9)In our context, Theorem 3 allows to handle the most general “black box” situation – no assump-
tions on F (·, ξ) and X except for convexity and computability. When F (·, ξ) possesses appropriate
analytic structure, the complexity of solving the SAA problem can be reduced by using a solver
adjusted to this structure.
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get an ε-solution with probability at least 1 − α, and to measure the complexity of
deterministic convex optimization as presented in Theorem 3 by the number M of
oracle calls required to get an ε-solution. The rationale behind is that “very large”
N definitely makes the SAA method impractical, while with a “moderate” N , the
method becomes practical, provided that F (·, ·) and X are not too complicated, and
similarly for M in the context of Theorem 3.

When comparing bounds (2.22) and (3.1), our first observation is that both of
them depend polynomially on the design dimension n of the problem, which is nice.
What does make difference between these bounds, is their dependence on the required
accuracy ε, or, better to say, on the relative accuracy10) ν := ε/(DL). In contrast to
bound (3.1) which is polynomial in log(1/ν), bound (2.22) is polynomial (specifically,
quadratic) in 1/ν. In reality this means that the SAA method could solve in a
reasonable time to a moderate relative accuracy, like ν = 10% or even ν = 1%,
stochastic problems involving an astronomically large, or even infinite, number of
scenarios. This was verified in a number of numerical experiments (e.g., [24, 26,
36, 46]). On the other hand, in general, the SAA method does not allow to solve,
even simply-looking, problems to high relative accuracy11): according to (2.22), the
estimated sample size N required to achieve ν = 10−3 (ν = 10−5) is at least of order
of millions (respectively, tens of billions). In sharp contrast to this, bound (3.1) says
that in the deterministic case, relative accuracy ν = 10−5 is just by factor 5 “more
costly” than ν = 0.1.

It should be stressed that in our general setting the outlined phenomenon is not a
shortcoming of the SAA method – it is unavoidable. Indeed, given positive constants
L,D and ε such that ν = ε/(LD) ≤ 0.1, consider the pair of stochastic problems:

Min
x∈[0,D]

{
fχ(x) := EPχ

[xξ]
}

(SPχ)

indexed by χ = ±1, and with distribution Pχ of ξ supported on the two-point set
{−L; L} on the axis. Specifically, P1 assigns the mass 1/2−4ν to the point −L and the
mass 1/2 + 4ν to the point L, while P−1 assigns to the same points −L, L the masses
1/2 + 4ν, 1/2− 4ν, respectively. Of course, f1(x) = 4εD−1x, f−1(x) = −4εD−1x, the
solution to (SP1) is x1 = 0, while the solution to (SP−1) is x−1 = D. Note, however,
that the situation is that trivial only when we know in advance what is the distribution
Pχ we deal with. If it is not the case and all we can see is a sample of N independent
realizations of ξ, the situation changes dramatically: an algorithm capable of solving
with accuracy ε and reliability 1 − α = 0.9 every one of the problems (SP±1) using

10)Recall that, under assumptions of Theorem 2, DL gives an upper bound on the variation of
the objective on the feasible domain. While using bound (2.19) we can take ν := ε/σ. Passing from
ε to ν, means quantifying inaccuracies as fractions of the variation, which is quite natural.

11)It is possible to solve true problem (1.1) by the SAA method with high (machine) accuracy in
some specific situations, for example, in some cases of linear two-stage stochastic programming with
a finite (although very large) number of scenarios, see [37, 39].

13



sample of size N , would, as a byproduct, imply a procedure which, given the sample,
decides, with the same reliability, which one of the two possible distributions P±1

underlies the sample. The laws of Statistics say that such a reliable identification of
the underlying distribution is possible only when N ≥ O(1)D2L2

ε2 (compare with bound
(2.22)). Note that both stochastic problems in question satisfy all the assumptions
in Theorem 2, so that in the situation considered in this statement the bound (2.22)
is the best possible (up to logarithmic term) as far as the dependence on D, L and ε
is concerned.

To make our presentation self-contained, we explain here what are the
“laws of Statistics” which underlie the above conclusions. First, an algo-
rithm A capable of solving within accuracy ε and reliability 0.9 every one
of the problems (SP±1), given an N -element sample drawn from the cor-
responding distribution, indeed implies a “0.9-reliable” procedure which
decides, based on the same sample, what is the distribution; this procedure
accepts hypothesis I stating that the sample is drawn from distribution P1

if and only if the approximate solution generated by A is in [0, D/2]; if it
is not the case, the procedure accepts hypothesis II “the sample is drawn
from P−1”. Note that if the first of the hypotheses is true and the outlined
procedure accepts the second one, the approximate solution produced by
A is not and ε-solution to (SP1), so that the probability pI to accept the
second hypothesis when the first is true is ≤ 1 − 0.9 = 0.1. Similarly,
probability pII for the procedure to accept the first hypothesis when the
second is true is ≤ 0.1. The announced lower bound on N is given by
the following observation: Consider a decision rule which, given on input
a sequence ξN of N independent realizations of ξ known in advance to
be drawn either from the distribution P1, or from the distribution P−1,
decides which one of these two options takes place, and let pI, pII be the
associated probabilities of wrong decisions. Then

max{pI, pII} ≤ 0.1 implies that N ≥ O(1)ν−2, (3.2)

where O(1) is a positive absolute constant.

Indeed, a candidate decision rule can be identified with a subset S of LN ;
this set is comprised of all realizations ξN resulting, via the decision rule in
question, in acceptance of hypothesis I. Let PN

1 , PN
−1 be the distributions

of ξN corresponding to hypotheses I, II. We clearly have

pI =
∑

ξN 6∈S

PN
1 (ξN), pII =

∑

ξN∈S

PN
−1(ξ

N).

Now consider the Kullback distance from PN
1 to PN

−1:

K =
∑

ξN∈LN

log

(
PN

1 (ξN)

PN
−1(ξ

N)

)
PN

1 (ξN).
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the function p log p
q

of two positive variables p, q is jointly convex; denoting

by S̄ the complement of S in LN and by |A| the cardinality of a finite set
A, it follows that

|S̄|−1
∑

ξN∈S̄

log
(

P N
1 (ξN )

P N
−1(ξN )

)
PN

1 (ξN)

≥

(
|S̄|−1

∑

ξN∈S̄

PN
1 (ξN)

)
log

(
|S̄|−1

∑

ξN∈S̄

P N
1 (ξN )

|S̄|−1
∑

ξN∈S̄

P N
−1(ξN )

)
,

whence ∑

ξN∈S̄

log

(
PN

1 (ξN)

PN
−1(ξ

N)

)
PN

1 (ξN) ≥ pI log

(
pI

1 − pII

)
,

and similarly

∑

ξN∈S

log

(
PN

1 (ξN)

PN
−1(ξ

N)

)
PN

1 (ξN) ≥ (1 − pI) log

(
1 − pI

pII

)
,

whence

K ≥ pI log

(
pI

1 − pII

)
+ (1 − pI) log

(
1 − pI

pII

)
.

For every p ∈ (0, 1/2), the minimum of the left hand side in the latter
inequality in pI, pII ∈ (0, p] is achieved when pI = pII = p and is equal to
p log p

1−p
+ (1 − p) log 1−p

p
≥ 4(p − 1/2)2. Thus,

p := max[pI, pII] ≤ 1/2 implies that K ≥ (2p − 1)2. (3.3)

On the other hand, taking into account the product structure of PN
±1, we

have

K = N
[
P1(−L) log P1(−L)

P−1(−L)
+ P1(L) log P1(L)

P−1(L)

]

= N
[
(1/2 − 4ν) log

(
1−8ν
1+8ν

)
+ (1/2 + 4ν) log

(
1+8ν
1−8ν

)]
= 8Nν log

(
1+8ν
1−8ν

)
.

The concluding quantity is ≤ O(1)Nν2, provided that ν ≤ 0.1. Combining
this observation and (3.3), we arrive at (3.2).

Observation 3 One can argue that the phenomenon discussed in Observation 2 is
not too dangerous from the practical viewpoint. In reality, especially in an “uncertain
one”, treated in stochastic models, relative accuracy like 1% or 5% is more than
satisfactory. This indeed is true in numerous applications, which, in our opinion, is
the intrinsic reason for Stochastic Programming to be of significant practical value.
At the same time, there are some unpleasant exceptions; the most disturbing, from
applied viewpoint, is the one related to problems without relatively complete recourse.
This is the issue we are consider next.

15



The above analysis, summarized in Theorem 2, implicitly depends on the assump-
tions (i) and (ii) formulated in the beginning of this section (which are parallel to
the assumptions (a)-(c) specified in the previous section). When applied to two-stage
stochastic programming with recourse these assumptions imply that the recourse is
relatively complete, i.e., for every x ∈ X and every possible realization of ξ, the sec-
ond stage problem is feasible. If, on the other hand, for some x ∈ X and ξ ∈ Ξ the
second stage problem is infeasible, we can formally set the value F (x, ξ) of the second
stage problem to be +∞. In order to avoid such infinite penalizations and to restore
the applicability of Theorem 2 one can introduce a finite penalty for infeasibility.
In some cases this can reasonably solve the problem. However, in some situations
the infeasibility may result in a catastrophic event. In that case the penalty could
be huge. Translated into the sample size bounds considered in the previous section,
this means huge variances in the estimate (2.19) or huge Lipschitz constant in (2.22),
which makes these estimates useless. In a sense, in such situation “nothing works”.

It is NP-hard even to check whether a given first-stage decision x ∈ X leads to
feasible, with probability 1, second-stage problem, and even in the case when the
second-stage problem is as simple as

Min
y

〈q, y〉 subject to Tx + Wy ≥ h, (3.4)

with only the second-stage right hand side vector h = h(ξ) being random.

To see that a generic problem of checking whether (3.4) is feasible for a
given x is NP-hard, consider the case when the constraints Tx+Wy ≥ h(ξ)
read y ≤ 0, y + x ≥ h(ξ), where x, y ∈ R,

h(ξ) :=
∑

i,j Qijξiξj,

Q = [Qij] is a given d × d symmetric matrix, and ξ = (ξ1, ..., ξd) is uni-
formly distributed in [−1, 1]d. Here x results in feasible, with probability
1, second stage problem if and only if x ≥ ρ(Q), where

ρ(Q) := max
ξ

{
〈ξ, Qξ〉 : ξ ∈ [−1, 1]d

}
.

It is well-known that given x and Q, it is NP-hard to distinguish between
the cases of x ≤ ρ(Q) and x > 1.01 ρ(Q). This NP-hard problem is,
of course, not more difficult than to decide whether x ≥ ρ(Q). Note
that replacing in the above example the uniform distribution on [−1, 1]d

with the uniform distribution on the discrete set, of cardinality 2d, of d-
dimensional vectors with entries ±1, we end up with an equally difficult
problem.

Thus, if a two-stage (linear) problem has no relatively complete recourse (which in
many applications is a rule rather than an exception), it is, in general, NP-hard just
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to find a feasible first-stage solution x (one which results in finite f(x)), not speaking
about minimizing over these x’s. As it was mentioned above, the standard way to
avoid, to some extent, this difficulty is to pass to a penalized problem. For example,
we can replace the second stage problem (2.1) with the penalized version:

Min
y≥0, z≥0

〈q, y〉 + rz subject to Tx + Wy ≥ h − ze, (3.5)

where e is vector of ones and r >> 1 plays the role of the penalty coefficient. With this
penalization, the second stage problem becomes always feasible. At the same time,
one can hope that with large enough penalty coefficient r, the first-stage optimal
solution will lead to “nearly always nearly feasible” second-stage problems, provided
that the original problem is feasible. Unfortunately, in the situation where one cannot
tolerate arising, with probability bigger than α, a second-stage infeasibility z bigger
than τ (here α and τ are given thresholds), the penalty parameter r should be of order
of (ατ)−1. In the “high reliability” case α << 1 we end up with problem (3.5) which
contains large coefficients, which can lead to large value of the Lipschitz constant
Lr of the optimal value function Fr(·, ξ) of the penalized second stage problem. As
a result, quite moderate accuracy requirements (like ε being of order of 5% of the
optimal value of the true problem) can result in the necessity to solve (3.5) within
a pretty high relative accuracy ν = ε/(DLr) like 10−6 or less, with all unpleasant
consequences of this necessity.

3.1 What is difficult in the two-stage case?

We already know partial answer to this question: generically, under the premise of
Theorem 2 it is difficult to solve problem (1.1) (even a convex one) to a high relative
accuracy ν = ε/(DL). Note, however, that the statistical arguments demonstrating
that this difficulty lies in the nature of the problem work only for the black-box
setting of (1.1) considered so far, that is, only in the case when the distribution
P of ξ is not known in advance, and all we have in our disposal is a black box
generating realizations of ξ. With a “good description” of P available, the results
could be quite different, as it is clear when looking at problems (SP±1) – with the
underlying distributions given in advance, the problems become trivial. Note that in
reality stochastic models are usually equipped with known in advance and easy-to-
describe distributions, like Gaussian, or Bernoulli, or uniform on [−1, 1]d. Thus, it
might happen that our conclusion “it is difficult to solve (1.1) to high accuracy” is
an artifact coming from the black-box model we used, and we could overcome this
difficulty by using more advanced solution techniques based on utilizing a given in
advance and “simple” description of P . Unfortunately, this virtual possibility does
not exist in reality. Specifically, it is shown in [17] that indeed it is difficult to solve
to high accuracy already two-stage linear stochastic programs with complete recourse
and easy-to-describe discrete distributions.

17



Another difficulty, which we have already discussed, is the case of two-stage lin-
ear problems without complete recourse or, more generally, convex problems (1.1)
with only partially defined integrand F (x, ξ). As we have seen, this difficulty arises
already when looking for feasible first-stage solutions with known in advance simple
distribution P .

3.2 Complexity of multi-stage stochastic problems

In a multi-stage stochastic programming setting random data ξ is partitioned into
T ≥ 2 blocks ξt, t = 1, ..., T , i.e., ξt is viewed as a (discrete time) random process,
and the decisions are made at time instants 0, 1, ..., T . At time t the decision maker
already knows the realizations ξτ , τ ≤ t, of the process up to time t, while realizations
of the “future” blocks are still unknown. The goal is to find the first-stage decisions
x (which should not depend on ξ) and decision rules yt = yt(ξ[t]) which are functions
of ξ[t] := (ξ1, ..., ξt), t = 1, ..., T , which satisfy a given set of constraints

gi(ξ, x, y1, ..., yT ) ≤ 0, i = 1, ..., I, (3.6)

and minimize under these restrictions the expected value of a given cost function
f(x, y1, ..., yT ). Note that even in the case when the functions gi do not depend of ξ,
the left hand sides of the constraints (3.6) are functions of ξ, since all yt are so, and
that the interpretation of (3.6) is that these functional constraints should be satisfied
with probability one.

In the sequel, we focus on the case of linear multi-stage problems

Min
x,y(·)

EP

{
〈c0, x〉 +

∑T
t=1〈ct(ξ[t]), yt(ξ[t])〉

}

s.t. A0
0x ≥ b0 (C0)

A1
0(ξ[1])x + A1

1(ξ[1])y1(ξ[1]) ≥ b1(ξ[1]) (C1)
A2

0(ξ[2])x + A2
1(ξ[2])y1(ξ[1]) + A2

2(ξ[2])y2(ξ[2]) ≥ b2(ξ[2]) (C2)
· · · · ·

AT
0 (ξ[T ])x + AT

1 (ξ[T ])y1(ξ[1]) + ... + AT
T (ξ[T ])yT (ξ[T ]) ≥ bT (ξ[T ]) (CT )

(3.7)

where y(·) = (y1(·), ..., yT (·)) and the constraints (C1), ..., (CT ) should be satisfied
with probability one. Problems (3.7) are called problems with complete recourse, if
for every instant t and whatever decisions x, y1,...yt−1 made at preceding instants, the
system of constraints (Ct) (treated as a system of linear inequalities in variable yt)
is feasible for almost all realizations of ξ. The major focus of theoretical research is
on multi-stage problems even simpler than (3.7), specifically, on problems with fixed
recourse where matrices At

t = At
t(ξ[t]), t = 1, ..., T , are assumed to be deterministic

(independent of ξ).
We argue that multi-stage problems, even linear of the form (3.7) with complete

recourse, generically are computationally intractable already when medium-accuracy
solutions are sought. (Of course, this does not mean that some specific cases
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of multi-stage stochastic programming problems cannot be solved effi-

ciently.) Note that this claim is rather a belief than a statement which we can
rigorously prove. It is even not a formal statement which can be true or wrong since,
in particular, we do not specify what does “medium accuracy” mean12). What we are
trying to say is that we believe that in the multi-stage case (with T treated as varying
parameter, and not as a once for ever fixed entity), even “moderately positive” results
like the one stated in Theorem 2 are impossible. We are about to explain what are
the reasons for our belief.

Often practitioners do not pay attention to a dramatic difference between two-
stage and multi-stage case. It is argued that in both cases the problem of interest can
be written in the form of (1.1), with appropriately defined integrand F . Specifically,
in case of the linear two-stage problem, with relatively complete recourse, we have
that F (x, ξ) = 〈c, x〉+ Q(x, ξ), where Q(x, ξ) is the optimal value of the second stage
problem (2.1). In the case of problem (3.7) with complete recourse, F (x, ξ) is given
by a recurrence as follows. We start with setting

FT (x, y1, ..., yT , ξ[T ]) := 〈c0, x〉+ 〈c1(ξ[1]), y1〉+ ...+ 〈cT−1(ξ[T−1]), yT−1〉+ 〈cT (ξ[T ]), yT 〉

and specifying the conditional, given ξ[T−1], expected cost of the last-stage problem:

FT−1(x, y1, ..., yT−1, ξ[T−1]) := E|ξ[T−1]
Min
yT

{
FT (x, y1, ..., yT−1, yT , ξ[T ]) :

AT
0 (ξ[T ])x + AT

1 (ξ[T ])y1 + ... + AT
T (ξ[T ])yT ≥ bT (ξ[T ])

}
,

where E|ξ[T−1]
is the conditional, given ξ[T−1], expectation. Observe that (3.7) is

equivalent to the (T − 1)-stage problem:

Min
x,{yt(·)}

T−1
t=1

EP T−1

{
FT−1(x, y1, ..., yT−1, ξ[T−1])

}

s.t. x, y1(·), ..., yT−1(·) satisfy (C0), (C1), ..., (CT−1) w.p.1,
(PT−1)

where P T−1 is the distribution of ξ[T−1]. Now we can iterate this construction, ending
up with the problem

Min
x∈X

[F0(x)] .

It can be easily seen that under the assumption of complete recourse, plus mild
boundedness assumptions, all functions Fℓ(x, y1, ..., yℓ, ξ[ℓ]) are Lipschitz continuous
in the x, y-arguments.

The “common wisdom” says that since both, two-stage and multi-stage, problems
are of the same generic form (1.1), with the integrand convex in x, and both are
processed numerically by generating a sample of scenarios and solving the resulting

12)To the best of our knowledge, the complexity status of problem (3.7), even in the case of
complete and fixed recourse and known in advance easy-to-describe distribution P , remains unknown
(cf., [17]).
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“scenario counterpart” of the problem of interest, there should be no much difference
between the two and the multi-stage case, provided that in both cases one uses the
same number of scenarios. This “reasoning”, however, completely ignores a crucial
point as follows: in order to solve generated SAA problems efficiently, the integrand
F should be efficiently computable at every pair (x, ξ). This is indeed the case for
a two-stage problem, since there F (x, ξ) is the optimal value in an explicit Linear
Programming problem and as such can be computed in polynomial time. In contrast
to this, the integrand F produced by the outlined scheme, as applied to a multi-stage
problem, is not easy to compute. For example, in 3-stage problem this integrand is
the optimal value in a 2-stage stochastic problem, so that its computation at a point
is a much more computationally involving task than similar task in the two-stage
case. Moreover, in order to get just consistent estimates in an SAA type procedure
(not talking about rate of convergence) one needs to employ a conditional sampling
which typically results in an exponential growth of the number of generated scenarios
with increase of the number T of stages (cf., [40]).

Analysis demonstrates that for an algorithm of the SAA type, the total number of
scenarios needed to solve T -stage problem (3.7), with complete recourse, would grow,
as ε diminishes, as ε−2T , so that the computational effort blows up exponentially as the
number of stages grows13) (cf., [44]). Equivalently, for a sampling-based algorithms
with a given number of scenarios, existing theoretical quality guarantees deteriorate
dramatically as the number of stages grows. Of course, nobody told us that sampling-
type algorithms are the only way to handle stochastic problems, so that the outlined
reasoning does not pretend to justify “severe computational intractability” of multi-
stage problems. Our goal is more modest, we only argue that the fact that when
solving a particular stochastic program a sample of 107 scenarios was used does not
say much about the quality of the resulting solution: in the two-stage case, there are
good reasons to believe that this quality is reasonable, while in the 5-stage the quality
may be disastrously bad.

We have described one source of severe difficulty arising when solving multi-stage
stochastic problems – dramatic growth, with increase of the number of stages, in the
complexity of evaluating the integrand F in representation (1.1) of the problem. We
are about to demonstrate that even when this difficulty does not arise, a multi-stage
problem still may be very difficult. To this end, consider the following story: at time
t = 0, one has $ 1, and should decide how to distribute this money between stocks
and a bank account. When investing amount of money x into stocks, the value ut of
the portfolio at time t will be given by chain of t relations

u1 = ρ1(ξ[1])x, u2 = ρ2(ξ[2])u1, ..., ut = ρt(ξ[t])ut−1,

where the returns ρt(ξ[t]) ≡ ρt(ξ1, ..., ξt) ≥ 0 are known functions of the underlying
random parameters. Amount of money 1−x put to bank account reach at time t the

13)Note that in the considered framework, T = 1 corresponds to two-stage programming, T = 2
corresponds to 3-stage programming, and so on.
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value vt = ρt(1 − x), where ρ > 0 is a given constant. The goal is to maximize the
total expected wealth E[uT + vT ] at a given time T . The problem can be written as
a simple-looking T -stage stochastic problem of the form (3.7):

Min
x,y(·)

EP

[
uT (ξT ) + vT (ξT )

]

s.t. 0 ≤ x ≤ 1 (C0)
u1(ξ[1]) = ρ1(ξ[1])x, v1(ξ[1]) = ρ(1 − x) (C1)
u2(ξ[2]) = ρ2(ξ[2])u1(ξ[1]), v2(ξ[2]) = ρv1(ξ[1]) (C2)

· · · · ·
uT (ξ[T ]) = ρT−1(ξ[T−1])uT−1(ξ[T−1]), vT (ξ[T ]) = ρvT−1(ξ[T−1]) (CT ),

(3.8)

where y(·) = (ut(·), vt(·))
T
t=1. Now let us specify the structure and the distribution of

ξ as follows: a realization of ξ is a permutation ξ = (ξ1, ..., ξT ) of T elements 1, ..., T ,
and P is the uniform distribution on the set of all T ! possible permutations. Further,
let us specify the returns as follows: the returns are given by a T × T matrix A with
0-1 elements, and

ρt(ξ1, ..., ξt) := κAt,ξt
, κ := (T !)1/T

(Note that by Stirling’s formula κ = (T/e)(1 + o(1)) as T → ∞.) We end up with a
simple-looking instance of (3.7) with complete recourse and given in advance “easy-to-
describe” discrete distribution P ; when represented in the form of (1.1), our problem
becomes

Min
x∈[0,1]

{
f(x) := EP F (x, ξ)

}
, F (x, ξ) = ρT (1 − x) + x

T∏

t=1

(κAtξt
), (3.9)

so that F indeed is easy to compute. Thus, problem (3.8) looks nice – complete
recourse, simple and known in advance distribution, no large data entries, easy-to-
compute F in representation (1.1). At the same time the problem is disastrously
difficult. Indeed, from (3.9) it is clear that f(x) = ρT (1−x)+x per(A), where per(A)
is the permanent of A:

per(A) =
∑

ξ

T∏

t=1

Atξt
,

(the summation is taken over all permutations of T elements 1, ..., T ). Now, the
solution to (3.9) is either x = 1 or x = 0, depending on whether or not per(A) ≥ ρT .
Thus, our simple-looking T -stage problem is, essentially, the problem of computing
the permanent of a T ×T matrix with 0-1 entries. The latter problem is known to be
really difficult. First of all, it is NP-hard, [47]. Further, there are strong theoretical
reasons to doubt that the permanent can be efficiently approximated within a given
relative accuracy ε, provided that ε > 0 can be arbitrarily small, [12]. The best known
to us algorithm capable to compute permanent of a T × T 0-1 matrix within relative
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accuracy ε has running time as large as ε−2 exp{O(1)T 1/2 log2(T )} (cf., [23]), while
the best known to us efficient algorithm for approximating permanent has relative
error as large as cT with certain fixed c > 1, see [25]. Thus, simple-looking multi-stage
stochastic problems can indeed be extremely difficult...

A reader could argue that in fact we deal with a two-stage problem (3.9) rather
than with a multi-stage one, so that the outlined difficulties have nothing to do with
our initial multi-stage setting. Our counter-argument is that the two-stage problem
(3.9) honestly says about itself that it is very difficult: with moderate ρ and T , the
data in (3.9) can be astronomically large (look at the coefficient ρT of (1 − x) or at
the products

∏T
t=1(κAtξt

) which can be as large as κT = T !), and so is the Lipschitz
constant of F . In contrast to this, the structure and the data in (3.8) look completely
normal. Of course, it is immediate to recognize that this “nice image” is just a
disguise, and in fact we are dealing with a disastrously difficult problem. Imagine,
however, that we add to (3.8) a number of redundant variables and constraints; how
could your favorite algorithm (or you, for that matter) recognize in the resulting messy
problem that solving it numerically is, at least at the present level of our knowledge,
a completely hopeless endeavor?

4 Some novel approaches

Here we outline some novel approaches to treating uncertainty which perhaps can
cope, to some extent, with intrinsic difficulties arising in two-stage problems without
complete recourse and in multi-stage problems.

4.1 Tractable approximations of chance constraints

As it was already mentioned, a natural way to handle two-stage stochastic problems
without complete recourse is to impose chance constraints. That is, to require that
a probability of insolvability of the second-stage problem is at most ε << 1 instead
of being 0. The rationale behind this idea is twofold: first, from the practical view-
point, “highly unlikely” events are not too dangerous: why should we bother about a
marginal chance, like 10−6, for the second stage to be infeasible, given that the level
of various inaccuracies in our model, especially in its probabilistic data, usually is by
orders of magnitude larger than 10−6? Not speaking of the fact that 5 days a week
we take worse chances in the morning traffic. Second, while it might be very difficult
to check whether a given first-stage solution results in a feasible, with probability 1,
second-stage problem, it seems to be possible to check whether this probability is at
least 1 − ε by applying Monte-Carlo simulation. Note that chance constraints arise
naturally not only in the context of two-stage problems without complete recourse,
but in a much more general situation of solving a constrained optimization problem
with the data affected by stochastic uncertainty. Thus, it makes sense to pose a
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question how could one process numerically a chance constraint

φ(x) := Prob
{
g(x, ξ) ≤ 0

}
≥ 1 − ε, (4.10)

where x is the decision vector, ξ is the random disturbance with, say, known distri-
bution, and ε << 1 is a given tolerance.

The concept of chance constraints originates from [11] and is one of the oldest
concepts in Operations Research. Unfortunately, in its nearly 50 year old age, this
concept still cannot be treated as practical. The first reason is that typically it is
extremely difficult to verify exactly whether this constraint is satisfied at a given point.
This problem is difficult already in the case of a single linear constraint g(x, ξ) := 〈a∗+
ξ, x〉 with perturbations ξ uniformly distributed in a box. Another severe problem
is that usually constraint (4.10), even with very simple, say bi-affine in x and in ξ,
function g(x, ξ) and simple-looking distribution of ξ (like uniform in a box) defines
a nonconvex feasible set in the space of decision variables, which makes problematic
subsequent optimization over this set of even pretty simple – just linear – objectives.

The difficulty we have just outlined rules out the idea to approximate (4.10)
by a “sample version” of this constraint, that is, by

φ̂N (x) :=
1

N

N∑

j=1

1l{g(x,ξj)≤0} ≥ 1 − θε, (4.11)

where ξ1, ..., ξN is a sample of N independent realizations of ξ, 1l{g(x,ξj)≤0} is

the indicator function14) of the event {g(x, ξj) ≤ 0}, and θ < 1 is fixed (say,

θ = 0.99). When N >> ε−1, the validity of (4.11) at a point x implies, with

probability close to 1, the validity of (4.10), so that (4.11) can be thought of

as a “computable approximation” of (4.10). Unfortunately, the left hand side

in (4.10) is, generically, a nonconvex (and even discontinuous) function of x, so

that we have no way to optimize under this constraint.

To the best of our knowledge, the only generic case where both these severe difficulties
disappear is the case of linear constraint 〈a∗+ξ, x〉 ≤ 0 with normally distributed data
ξ ∼ N (0, Σ). In this case, (4.10) is equivalent to the convex deterministic constraint

〈a∗, x〉 + Ω(ε)
√

〈x, Σx〉 ≤ 0, (4.12)

where the “safety parameter” Ω(ε) =
√

2 log(1/ε)(1 + o(1)), ε → 0, is readily given
by ε (which we assume to be ≤ 1/2).

There is another generic case when the feasible set given by a chance con-
straint is convex. This is the case when the constraint can be represented

14) 1lA = 1 if the event A happens, and 1lA = 0 otherwise
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in the form (x, ξ) ∈ Q, where Q is a closed and convex set, and the dis-
tribution P of the random vector ξ ∈ R

d is logarithmically quasi-concave,
meaning that

P (λA + (1 − λ)B) ≥ max [P (A), P (B)]

for all closed and convex sets A, B ⊂ R
d (cf., Prekopa [31]). Examples

include uniform distributions on closed and bounded convex domains,
normal distribution and every distribution on R

d with density f(ξ) with
respect to the Lebesgue measure such that the function f−1/d(ξ) is convex.
The related result (due to Prekopa [31]) is that in the situation in question,
the set

{
x : P ({ξ : (x, ξ) ∈ Q}) ≥ α

}
is closed and convex for every α.

This result can be applied, e.g., to two-stage stochastic programs with
chance constraints of the form

Min
x∈X

〈c, x〉 s.t. Prob{∃y ∈ Y : Tx + Wy ≥ ξ} ≥ 1 − ε,

where X, Y are closed convex sets and T , W are fixed matrices. Here the
chance constraint indeed is of the form Prob{(x, ξ) ∈ Q} ≥ 1 − ε, where

Q = {(x, ξ) : ∃y ∈ Y : Tx + Wy ≥ ξ} .

The set Q clearly is convex; under mild additional assumptions, it is
also closed. Thus, the feasible set of the chance constraint in question
is convex, provided that the distribution of ξ is logarithmically quasi-
concave.

Note that the outlined convexity results are applicable only to the chance
constraints coming from scalar or vector inequalities where the only term
affected by uncertainty is the right hand side, not the coefficients at the
variables. For example, nothing similar is known for the chance constraint

Prob {〈a∗ + ξ, x〉 ≤ 0} ≥ 1 − ε,

except for the already mentioned case of normally distributed vector ξ.

Aside of few special cases we have mentioned, chance constraint (4.10) “as it is” seems
to be too difficult for efficient numerical processing, and what we can try to do is to
replace it with its “tractable approximation”. For the time being, there exist two
approaches to building such an approximation: “deterministic” and “scenario”.

Tractable deterministic approximations of chance constraints. With this
approach, one replaces (4.10) with a properly chosen deterministic constraint

ψε(x) ≤ 0, (4.13)

which is a “safe computationally tractable” approximation of (4.10), with the latter
notion defined as follows:
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1. “Safety” means that the validity of (4.13) is a sufficient condition for the validity
of (4.10);

2. “Tractability” means that (4.13) is an explicitly given convex constraint.

Just to give an example, consider a randomly perturbed linear constraint, that is,
assume that

g(x, ξ) := 〈a∗ + Mξ, x〉,

where the deterministic vector a∗ is the “nominal data”, M is a given deterministic
matrix and ξ = (ξ1, ..., ξd) is a tuple of d independent scalar random variables with
zero mean and “of order of 1”:

E
[
exp(ξ2

i )
]
≤ exp{1}, i = 1, ..., d,

e.g., ξi can have a distribution supported on the interval [−1, 1], or ξi can have normal
distribution N (0, 2−1/2), = 1, ..., d. In this case, applying standard results on proba-
bilities of large deviations for sums of “light tail” independent random variables with
zero means, one can easily verify that when ε ∈ (0, 1) and Ω(ε) = O(1)

√
log(1/ε) with

properly chosen absolute constant O(1), then the validity of the convex constraint

〈a∗, x〉 + Ω(ε)
√

〈x, MMT x〉 ≤ 0 (4.14)

is a sufficient condition for the validity of (4.10). (Note that under our assumptions
MMT is an upper bound on the covariance matrix of ξ, and compare with (4.12).)

The simple result we have just described is rather attractive. First, it does not
require a detailed knowledge of the distribution of ξ. Second, the approximation,
although being more complicated than a linear constraint we start with, still is pretty
simple; modern convex optimization techniques can process routinely to high accuracy
problems with thousands of decision variables and thousands of constraints of the form
(4.14). Third, the approximation is “not too conservative” – the safety parameter
Ω(ε) grows pretty slowly as ε → 0 and is only by a moderate constant factor larger
than the safety parameter in the case of Gaussian noise, where our approximation is
not conservative at all.

Recently, “not too conservative” computationally tractable safe approximations
were built (see [29]) for chance versions of well-structured nonlinear convex constraints
with nice analytic structure, specifically, for affinely perturbed least squares con-
straints ∥∥∥

[
A∗ +

∑

i

Aiξi

]
x −

[
b∗ +

∑

i

ξibi

]∥∥∥
2
≤ τ

and Linear Matrix Inequality constraints

[
A0

0 +
∑

i

ξiA
0
i

]
+

m∑

j=1

xj

[
Aj

0 +
∑

i

ξiA
j
i

]
º 0
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(Ap
q are symmetric matrices, A º 0 means that A is symmetric positive semidefinite).

In both cases, ξi are independent scalar disturbances with zero mean and “of order of
1”. However, the outlined approach, whatever promising we believe it is, seemingly
works for a very restricted family of “well-structured” functions g(x, ξ), and even in
these cases requires a lot of highly nontrivial “tailoring” to a particular structure
in question. Consider, for example, the case of chance constraint associated with
two-stage linear stochastic problem:

g(x, ξ) := Min
z,y

{z : T (ξ)x + W (ξ)y ≥ h(ξ) − ze, z ≥ 0} , (4.15)

where e is vector of ones. Note that here g(x, ξ) is convex in x, and g(x, ξ) ≤ 0 if and
only if the second-stage problem

Min
y

〈q(ξ), y〉 s.t. T (ξ)x + W (ξ)y ≥ h(ξ)

is feasible (cf., (3.5)). Thus, the chance constraint requires from x to result in a
feasible, with probability at least 1 − ε, second stage problem. Even in the case of
simple recourse (T, W are independent of ξ) the chance constraint in question seems
to be by far too difficult to admit a safe tractable deterministic approximation.

Scenario approximation. In contrast to the “highly specialized and heavily re-
stricted” approach we have just considered, the scenario-based approach is completely
universal. We just generate a sample ξ1, ..., ξN of N “scenarios” – independent real-
izations of the random disturbance ξ – and approximate (4.10) by the random system
of inequalities

g(x, ξj) ≤ 0, j = 1, ..., N. (4.16)

Extremely nice features of this approach are its generality and computational tractabil-
ity – whenever g(x, ξ) is convex in x and efficiently computable (as it is the case,
e.g., with the function (4.15)), (4.16) becomes a system of explicitly given convex
constraints and as such can be efficiently processed numerically, provided that the
number of scenarios N is not prohibitively large. The question, of course, is how
large should be the sample in order to ensure, with reliability close to 1, that every
feasible solution to (4.16) satisfies the chance constraint (4.10). This question is by
far not easy, and we do not intend to discuss relevant nice and deep results known
from the literature, since in fact we are more interested in a slightly different question,
namely, as follows:

(Q) Assume we are given a convex optimization problem

Min
x∈Rn

f(x) s.t. g(x, ξ) ≤ 0 (4.17)
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(all f , g are convex in x) with ξ being a random vector with a known dis-
tribution, and, given tolerance ε > 0, replace this problem with its “scenario
counterpart”

Min
x∈Rn

f(x) s.t. g(x, ξj) ≤ 0, j = 1, ..., N. (4.18)

How large should be the sample size N in order for the optimal solution x̃N of
(4.18) to be feasible for (4.17) with probability at least 1 − ε?

The difference between the latter question and the former one is that now we do not
require from all points feasible for (4.16) to satisfy (4.10), we require this property to
be possessed by a specific point, x̃N , we are interested in.

As it was discovered in [9, 10], question (Q) admits a nice “universal” answer.
Namely, under extremely mild assumptions it turns out that whenever ε, δ ∈ (0, 1/2)
and

N ≥
2n

ε
log

(
12

ε

)
+

2

ε
log

(
2

δ

)
+ 2n, (4.19)

the probability of “bad sampling” which results in x̃N not satisfying (4.10) is less
than or equal to δ. Note that this result, which heavily utilizes the convexity of
(4.17), is completely “distribution-free” – it is independent of any assumptions on the
distribution of ξ and requires no knowledge of this distribution.

All this being said, there is a serious problem with the scenario approach as
presented so far – it becomes impractical when the required value of ε is really small,
like 10−6 or 10−8. Indeed, for those ε relation (4.19) results in unrealistically large
samples. Note that pretty small values of ε are completely reasonable when speaking
about a “hard” constraint g(x, ξ) ≤ 0, that is, such that its violation has very severe
or even catastrophic consequences, like heavy jam in a communication network, a
blackout caused by malfunctioning of a power supply network, not speaking about
exploding nuclear power plants or airliners falling from the sky. In a sense, in the
context of chance constraints hard restrictions and implied pretty small values of ε
seem to be a rule rather than exception. Indeed, “soft” constraints – those with ε
like 1% or 0.1% – can be eliminated altogether by augmenting the objective with
appropriate penalties15).

One could be surprised by the fact that we treat as acceptable the SAA method

with the complexity proportional to ε−2, ε being the required tolerance in terms

15)It should be added that the outlined “crude” scenario approach is not completely satisfactory
even when ε is not too small. Indeed, assume that your problem has n = 100 variables and you
are ready to take 10% chances (ε = δ = 0.1). To this end, you use the scenario approach with the
smallest N allowed by (4.19), that is, N = 9835. What should be the actual probability ε′ for a fixed
point x̄ to violate the constraint g(x, ξ) ≤ 0 in order to be feasible for (4.18) with probability 0.9?
The answer is: ε′ should be as small as 10−5. Thus, when applied with small ε, the crude scenario
approach becomes impractical, while in the case of “large” ε it seems to be too conservative.
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of the objective, and are dissatisfied with the scenario approach where the

sample size is merely inverse proportional to the tolerance ε. To explain our

point, think whether you will agree (a) to use a portfolio management policy

with the average profit by at most 0.5% less than the “ideal” – the optimal

– one, and (b) to board an airliner which may crash during the flight with

probability 0.5% (or 0.05%).

When handling hard chance constraints – those with really small ε, like 10−6 or less
– we would like to have sample sizes polynomial in both log(1/ε) and log(1/δ) rather
than to be polynomial in (1/ε) and log(1/δ). We are about to explain that under
favorable circumstances, such a possibility does exist; it is given by combining scenario
approach with a kind of importance sampling. To proceed, assume that the constraint
g(x, ξ) ≤ 0 underlying (4.10) is of a specific structure as follows: there exists a closed
convex set K ⊂ R

m and an affine mapping x 7→ A[ξ]x + b[ξ] : R
n → R

m depending
on ξ as on a parameter such that

g(x, ξ) ≤ 0 ⇔ A[ξ]x + b[ξ] ∈ K. (4.20)

Moreover, let us assume that the affine mapping in question is affinely parameterized
by ξ, that is, both A[ξ] and b[ξ] depend affinely on ξ. Finally, we may assume without
loss of generality that ξ has zero mean.

As an instructive example, consider the feasibility constraint associated with
the second-stage problem, that is, the constraint g(x, ξ) ≤ 0 with g(x, ξ) given
by (4.15). Assuming fixed recourse, that is, W (ξ) ≡ W being independent of
ξ, let us set

K :=
{
u : ∃ y such that u ≤ Wy

}
.

Note that K is a convex polyhedral (and thus closed) set. Now, it is clear

from (4.15) that g(x, ξ) ≤ 0 if and only if h(ξ) − T (ξ)x ∈ K. It follows

that when passing from uncertain parameter ξ to the new uncertain param-

eter ξ̄ = [h(ξ), T (ξ)]−E {[h(ξ), T (ξ)]} and updating accordingly the underlying

distribution, we arrive at the situation described in (4.20).

Under our assumptions, the vector A[ξ]x + b[ξ] is affine in ξ, and thus can be repre-
sented as α[x]ξ + β[x], where α[x], β[x] are affine in x. It follows that

g(x, ξ) ≤ 0 ⇔ A[ξ]x + b[ξ] ∈ K ⇔ ξ ∈ Kx := {u : α[x]u + β[x] ∈ K}. (4.21)

Note that the set Kx is closed and convex along with K. Now, numerous important
distributions Π on R

p with zero mean (multivariate normal, uniform on a multidi-
mensional box, etc.) possess a kind of “concentration property” as follows: if Q is
a closed convex set in R

p and Π(Q) ≥ c, where c < 1 is a characteristic constant
of Π, then the probability of the event Ω−1η ∈ Q, η ∼ P , rapidly approaches 1 as
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Ω > 1 grows, namely, Π({η : Ω−1η 6∈ Q}) ≤ C−1 exp{−CΩ2}, where C is another
characteristic constant of Π. For example, in the case of multivariate normal distri-
bution Π with zero mean, then Π(Q) ≥ 0.8 implies, for a closed convex set Q, that
Π({η : η/Ω 6∈ Q}) ≤ exp{−Ω2/3}.

Now assume that we are in the situation of (4.21) and that the distribution of ξ
possesses the outlined concentration property. Let us choose somehow a safety param-
eter Ω > 1, and consider the scenario counterpart of (4.10), where the disturbances
are drawn from the distribution of Ωξ rather than from the distribution of ξ:

g(x, Ωξt) ≤ 0, t = 1, ..., N
m

Ωξt ∈ Kx, t = 1, ..., N
(4.22)

where ξt ∼ P are independent. Specifying N as

O(1)(1 − c)−1 log(1/δ) (4.23)

with appropriate absolute constant O(1), observe that if a fixed x satisfies (4.22),
then it is “highly likely” that Prob{g(x, Ωξ) ≤ 0} ≥ c; specifically, in the case of
Prob{g(x, Ωξ) ≤ 0} < c, the probability to get a realization of N disturbances (with
N given by (4.23)) which results in (4.22) is at most δ. Thus, when a given x
turns out to satisfy (4.22), then, up to probability of “bad sampling” as small as
δ, we have Prob{g(x, Ωξ) ≤ 0} ≡ Prob{Ωξ ∈ Kx} ≥ c. In the latter case, due
to the concentration property of the distribution Π of η = Ωξ (induced by similar
property of the distribution P of ξ), we have Prob{g(x, ξ) > 0} = Prob{ξ 6∈ Kx} ≤
C−1 exp{−CΩ2}. When Ω =

√
C−1 log(C−1ε−1), the latter probability is ≤ ε, that

is, x satisfies the chance constraint (4.10). For example, in the case when P is a
multivariate normal distribution with zero mean and ε in (4.10) is as small as 10−12,
the above rule results in Ω = 9.1. Thus, when ξ ∼ N (0, Σ), N is given by (4.23) and
Ω = 9.1, a fixed point x which satisfies (4.22) is, up to probability of “bad sampling”
at most δ, feasible for the chance constraint (4.10) with ε = 10−12.

The outlined idea – to apply the scenario approach with moderately amplified
disturbances rather than with “true ones” – under favorable circumstances allows
to approximate chance constraints via samples of size N which is polynomial in the
“sizes” of the problem (the dimensions of x, ξ and K) and logarithms of 1/ε, 1/δ,
and thus allows to handle efficiently constraints (4.10) with really small tolerances ε.
For detailed presentation and analysis of this approach, see [30].

4.2 Multistage Stochastic Programming in linear decision

rules

Consider a linear multi-stage stochastic program

Min
x,y(·)

EP

[
〈c0(ξ), x〉 +

T∑

t=1

〈ct, yt(ξ[t])〉
]

s.t. A0(ξ)x +
T∑

t=1

Atyt(ξ[t]) ≥ b(ξ) (4.24)
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with fixed recourse, where the cost coefficients ct and the matrices At, t ≥ 1, are not
affected by uncertainty, as reflected in the notation. Besides this, in what follows
we assume that the data affected by the uncertainty (that is, c0(ξ), A0(ξ), b(ξ)) are
affine functions of ξ; as we remember from the previous section, this “assumption” is
in fact a convention on how we use words: nobody forbids us to treat as the actual
“random parameter” the collection (c(ξ), A0(ξ), b(ξ)) rather than ξ itself.

As we have explained, a multistage problem (even much better structured than
(4.24)) is, generically, “severely computationally intractable”. We are about to pro-
pose a radical way to reduce the complexity of the problem, specifically, to pass from
arbitrary decision rules yt(·) to affine ones:

yt(ξ) = x0
t + XtQtξ, (4.25)

where x0
t , Xt are our new – deterministic! – variables (a vector and a matrix of

appropriate sizes), and Qtξ, Qt being a given deterministic matrix, is the “portion”
of uncertainty which is revealed at time t and thus can be used to make the decision
yt

16).
Now let us look at the problem we end up with. When substituting linear decision

rules (4.25) into the constraint of (4.24), the constraint takes the form

Prob

{
A0(ξ)x +

T∑

t=1

[
Atx

0
t + AtXtQtξ

]
− b(ξ) ≥ 0

}
= 1.

The left hand side of the system of inequalities in the latter Prob {·} is affine in ξ,
thus, the constraint in question says exactly that the system should be satisfied for
all ξ from the support Ξ of the distribution P of ξ. Since the left hand side of the
system is affine in ξ, the latter requirement is equivalent to the system to be valid for
all ξ ∈ Z, where Z is the closed convex hull of Ξ. Thus, the constraint of (4.24) is
nothing but the semi-infinite system of linear inequalities

A0(ξ)x +
T∑

t=1

[
Atx

0
t + AtXtQtξ

]
− b(ξ) ≥ 0 ∀ξ ∈ Z (4.26)

in variables w = {x, {x0
t , Xt}T

t=1}. Besides this, the coefficients of the semi-infinite
inequalities in (4.26) depend affinely on ξ. Now let us use the following known fact
(see [5]):

(!) Assume that Z is a polyhedral set

Z = {ξ : ∃ η such that Mξ + Nη + p ≥ 0},

given by the data M, N, p. Then the semi-infinite system (4.26) is equiv-
alent to a finite system S of linear inequalities:

w satisfies (4.26) ⇔ ∃u : Aw + Bu + q ≥ 0.

16)In the notation of (3.7), Qtξ = ξ[t] = (ξ1, ..., ξt).
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The sizes of S (that is, the row and the column sizes of A,B) are polyno-
mial in the sizes of the matrices A0, A1,...,AT , M , N , and the data A,B, q
of S are readily given by the data of (4.26) and M , N , p (that is, given
the latter data, one can build S in polynomial time).

In fact, [5] asserts much more than stated by (!), namely, that (4.26) is compu-

tationally tractable whenever Z is so. We, however, intend to stay within the

grasp of Linear Programming, and to this end (!) is exactly what we need.

Example: interval uncertainty. Assume that Z is a box; without loss of
generality, we may assume that Z = {ξ : −1 ≤ ξi ≤ 1, i = 1, ..., d}.
Since A0(ξ), b(ξ) are affine in ξ, (4.26) can be rewritten equivalently as
the semi-infinite problem

sj
0[X] +

d∑

i=1

sj
i [X]ξi ≤ 0 ∀ξ ∈ Z, j = 1, ..., J, (4.27)

where X stands for the collection {x, {x0
t , Xt}T

t=1} of design variables in
(4.26), and sj

i [X] are affine functions of X readily given by the data of
(4.26). With our Z, the semi-infinite system (4.27) is clearly equivalent
to the system of constraints

sj
0[X] +

d∑

i=1

|Sj
i [X]| ≤ 0, j = 1, ..., J,

that is, to an explicit system of convex constraints (which can be further
straightforwardly converted to a system of linear inequalities).

By the outlined analysis, when restricted to affine decision rules, (4.24) becomes an
explicit deterministic linear program

Minw={x,{x0
t ,Xt},u} {〈c, w〉 : Aw + Bu + q ≥ 0} ,

〈c, w〉 ≡ E

{
〈c0(ξ), x〉 +

∑T
t=1〈ct, [x

0
t + XtPtξ]〉

}
.

(4.28)

in variables w = {x, {x0
t , Xt}T

t=1}.
Several remarks are in order.

Remark 2 The only reason for restricting ourselves with affine decision rules stems
from the desire to end up with a computationally tractable problem. We do not
pretend that affine decision rules approximate well the optimal ones – whether it is so
or not, it depends on the problem, and we usually have no possibility to understand
how good in this respect is a particular problem we should solve. The rationale behind
restricting to affine decision rules is the belief that in actual applications it is better
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to pose a modest and achievable goal rather than an ambitious goal which we do not
know how to achieve17).

Remark 3 To some extent, what is affine and what is not is a matter of how we use
words. Assume, e.g., that one wants to pass from affine decision rules to quadratic
ones. This is exactly the same as to keep the rules affine and to add to the entries
of ξ their pairwise products, and similarly for more complicated families of decision
rules. Statement (!) explains what are the “limits of sophistication in the decision
rules” we can achieve: representing a sophisticated decision rule as an affine one,
the uncertainty vector ξ being properly extended, we need the convex hull of the
support of this extended vector to be computationally tractable. In principle, this
might be not the case already for “genuinely affine” decision rules; however, in typical
applications distribution P of the “actual” uncertainty ξ is simple enough, so that
Conv(suppP ) is computationally tractable. However, with P as simple as a uniform
distribution on a box, the “quadratic extension” ξ 7→ (ξ, {ξiξj}i,j) of ξ results in
random vector with a distribution too complicated, as far as our needs are concerned.
Thus, the limitations of affine decision rules are in fact limitations of our possibility
to describe efficiently convex hulls of supports of nonlinear transformations of ξ.

Remark 4 One could bet that the idea of multi-stage decision making under uncer-
tainty via linear decision rules is as old as the corresponding optimization model. It
seems, however, that this idea remained completely forgotten for a long time; at least,
we do not know who should be credited with it. Linear decision rules in optimization
under uncertainty were recently “resurrected” in [7] in the framework of Robust Op-
timization. Our exposition follows the methodology developed in [7], with the only
minor exception that in Robust Optimization one is aimed at minimizing the worst-
case value of an uncertainty-affected objective under the restriction that a candidate
solution remains feasible whatever be a realization of uncertainty-affected constraints,
while here we intend to optimize, under the same restriction, the expected value of
the objective.

Remark 5 We have assumed that (4.24) has a fixed recourse; the role of this as-
sumption was to ensure affinity of the constraints in (4.26) in ξ, which in turn made
it possible to use (!) in order to end up with tractable reformulation (4.28) of the
problem of interest. In the case when the recourse is not fixed, that is, the matrices At,
t ≥ 1, in (4.24) depend affinely on ξ, the situation becomes much more complicated

17)In this respect, it is very instructive to look at Control, where the idea of linear feedback
dominates theoretical research, and, to some extent, applications. Aside of a handful of simple
particular cases, there are no reasons to believe that “the abilities” of linear feedback are as good
as those of a general nonlinear feedback. However, Control community realized long ago that a bird
in the hand is worth two in the bush – it is much better to restrict ourselves with something which
we indeed can analyze and process numerically. We believe this is an instructive example for the
optimization community.
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– the left hand sides of the inequalities in (4.26) become quadratic in ξ, which makes
(!) inapplicable18). It turns out, however, that under not too restrictive assumptions
the problem of optimizing under the constraints (4.26), although NP-hard, admits
tractable approximations of reasonable quality [7].

Remark 6 Passing from arbitrary decision rules to affine ones seems to reduce dra-
matically the flexibility of our decision-making and thus – the expected results. Note,
however, that the numerical results for inventory management models reported in
[7, 8] demonstrate that affinity may well be not as a severe restriction as one could
expect it to be. In any case, we believe that when processing multi-stage problems,
affine decision rules make a good and easy-to-implement starting point, and that it
hardly makes sense to look for more sophisticated (and by far more computation-
ally demanding) decision policies, unless there exists a clear indication of “severe
non-optimality” of the affine rules.
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