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Abstract. It is shown that key instruments for composition of four-symbol
¿-codes are the Lagrange identity for polynomials, a certain type of quasi-
symmetric sequences (i.e., a set of normal or near normal sequences) and base
sequences. The following is proved: If a set of base sequences for length t and
a set of normal (or near normal) sequences for length n exist then four-symbol
¿-codes of length (In + 1)/ (or nt) can be composed by application of the
Lagrange identity. Consequently a new infinite family of Hadamard matrices
of order 4uw can be constructed, where w is the order of Williamson ma-
trices and u = (In + \)l (or nt) . Other related topics are also discussed.

1. Introduction

Turyn [T1 ] constructed Hadamard matrices of order 4tw from a 4-symbol
¿-code of length / and Williamson matrices of order w using Baumert-Hall
units. (See formal definitions for an Hadamard matrix and others below.) He
[Tl, T2] used certain binary sequences for construction of 4-symbol ¿-codes
which are defined in terms of nonperiodic auto-correlation functions (whose
concept originated in optics and signal transmission problems).

A method to compose 2-symbol ¿-codes of length 2 mn from 2-symbol
¿-codes of lengths 2m and 2n was found by Golay [G] for A > 3 and improved
by Turyn [Tl] for A > 2. It is easy to construct 4-symbol ¿-codes of length 2 /
from a 4-symbol ¿-code of length /, which Turyn found for / < 59 (except
49, 57) and t = g + I , where g = 2a 10 26e (Golay numbers), a ,b and c
are nonnegative integers [TI, T2]. However using only the definition of auto-
correlation functions to prove composition of a 4-symbol ¿-code of length st
from a 4-symbol ¿-code of length / for odd 5 is more difficult. This difficulty
was solved by introduction of an algebraic approach, polynomials defined on
the unit circle [Y4] and the Lagrange identity for polynomials [Y1,Y2]. For
5 = 3,7,13 and 2g + I , i.e., 5 = 5,9,17,21,27,33,41 , 53,65,81, ... , it
was solved using this approach in [Y1,Y2,Y3].
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In this paper, constructions for s — 4n + \ , and for s < 31 , s = 51, 59 and
s = 2g + 1 are made. The former depends on the existence of near normal
sequences (a 4-symbol code) for length An + 1, which exist for n < 11 (and
likely to exist for all n) and the latter on the existence of normal sequences
(a 3-symbol code) for length m = (s - l)/2, which exist for odd m < 15,
m = 25, 29 and m = g (a Golay number). Therefore new cases are solved for
5 = 11,15,19,23,25,29,31,37,45,51 and 59 ; and new constructions are
made for the known An + 1 and 2g + 1 cases.

These new results also lead to construction of four complementary (1, - 1)-
sequences of length u = rst (r = m above, or 2g + I), or equivalently
4-symbol ¿-codes of length 2w ; consequently, to construction of Goethals-
Seidel (Hadamard) matrices of orders Au and 8uw , where w is the order of
Williamson matrices which exist for all w < 100 (except 35, 39, 47, 53, 59,
65, 67, 70, 71, 73, 77, 83, 89 and 94) [W], w = (q+l)/2, where q (a prime
power) = 1 (mod 4) [T3], and others (see [A], [M], [S] and [W]). Each new
case actually leads to construction of infinitely many new matrices.

2. Preliminaries, notations and definitions

A matrix whose every entry is either b or c is called a (b ,c)-matrix. Simi-
larly a (b, c)-sequence has each element b or c. An Hadamard matrix Hn =
[hjj] is a square (1, - l)-matrix of order n such that HtnHn = nln, where In
is the identity square matrix of order n and / indicates the transposed ma-
trix. In Hn , distinct column vectors U(. = [hx¡ ,h2l, ... , hni] are orthogonal, i.e.,
v'j-Vj — J2k hkjhkj = 0, for i ^ j ; similarly distinct row vectors are also orthog-
onal since the matrix and its transpose commute. H exists only if n = 1,2,
or Ak , and the converse is conjectured to be valid. Hadamard matrices H4n
have been constructed for all n < 100 and for infinitely many n . For vari-
ous properties and applications of Hadamard matrices, see [A], [GS], [H], [HS],
[HW] and [K] in the references.

Williamson matrices (W, X, Y, Z) are four square (1,-1 )-matrices of order
w satisfying MlN = NlM for all M and N G {W,X, Y,Z}, i.e., all M*N are
symmetric, and

(1) W'W + X'X + y'y + z'z = 4wlw.

Williamson [Wi] constructed Hadamard matrices Hn (i.e., H'„Hn — nln ,
n = Aw), in which the first, second, third and fourth (block) columns are
respectively.

(2) <?,=[W,-X,-Y,-Z],    e2 = [X,W,Z,-Y],    e3 = [\, -Z,W,X]
and   <?4 = [Z,Y, -X,W].

We note that the four column vectors ek are orthogonal, i.e., e¡ ■ e. = 0, for
i^j, where 0 is the zero matrix and e'-e¡ = Wl W + X'X + Y'Y + Z'Z = 4u;Iw.
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Let S - (sk)n = (sx ,s2, ... ,sn) be a sequence of real numbers, then S(z) —
J2kskz (1 < k < n) is called the associated polynomial of S and s(j) =
J2ksksk+J (1 < k < n — j), the jth nonperiodic auto-correlation function of
S, where 0 < j < n - 1 , and s(j) = 0 forj>n. We note here that
\S\2 = S(z)S(z~l) = s(0)+>Zks(k)(zk + z~k) (l<k<n-l) is the generating
function for s(k), where z g K = {z G C: |z| = 1} , the unit circle, and C is
the complex field. We shall use the same letter to represent a sequence and its
associated polynomial.

An m-symbol S-code of length « is a sequence of vectors, V = (vx,v2, ... ,
vn), where vk is one of m orthonormal (column) vectors, i. ,i2, ... ,i or
their negatives, such that v (j) = 0 for j / 0, where v (j) = J2k v'k'vk+ ( * —
k < n - j) is the nonperiodic auto-correlation function of V.

When m = A, i.e., for a 4-symbol ¿-code V of length n , it is convenient to
set i, =[1,1,0,0], /2 = [1, -1,0,0], i3 = [0,0,1,1] and i4 = [0,0,1, - 1]
as four orthogonal column vectors with normalized length ^2. By letting vk =
[^'^'■WJ' we have
(3) v(j) = q(j) + r(j) + s(j) + t(j) = 0       for j' ji 0,
where q(j) ,r(j) ,s(j) and t(j) are respectively the nonperiodic auto-correlation
functions of the component sequences of V, i.e.,

(4) Q = (qx,...,qn),    R = (rx,...,rn),    S = (s{, ... ,sn)
and    r = (/,,...,/„).

A ¿-code of length n represented by 4 x n matrix [Q, R ; S, T] is called a
regular ô-code of length n (abbreviated as RD(n)), where Q,R,S and T are
the four component sequences of a 4-symbol ¿-code V - (vx, ... ,vn) in (4).
We note here that [Q,R;0,0] and [0,0;S,T] are in symbols ix,i2 and ii,iA
respectively. Since q(0) + r(0)+s(0) +1(0) = 2n , condition (3) is equivalent to

\Q\2 + \R\2 + \S\2 + |T\2 = 2«    for any z on the unit circle K.
And we also note that in V = [Q,R;S, T], either \qk\ = \rk\ = 1 and sk -
tk = 0, or qk = rk - 0 and \sk\ = |/J = 1, for each k .

A pair of (1, - 1 )-sequences, F = (fx, ... ,f ) and H = (/z,, ... ,h ) is
called a pair of Golay complementary sequences of length g (abbreviated as
GCS(g)), if their auto-correlation functions satisfy f(j) + h(j) = 0 for j' ^ 0

2 2[G], or equivalently |F| +|H| = 2g for any z on the unit circle K [Y4]. Golay
complementary sequences GCS(g) exist for g = 2a 10 26e (Golay numbers),
where a,b and c are nonnegative integers [Tl]. For a given pair of Golay
complementary sequences F and G of length g, [F, G ; 0,0] is a regular 5-
code RD(g) in symbols /, and i2 , where 0 = 0 is the sequence of zeros of
length g . We shall use g for a Golay number.

A square matrix S = [s¡A of order n is circulant if s:j = sk+x for k = j -
i (mod n). We note here that the first, second,... , «th rows of S are respec-
tively,      (sx ,s2, ... ,s),      (sn,sx, ... ,sn_x), ... ,(s2,s}, ... ,sx). Also
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S'S = [p¡..] is symmetric circulant, i.e., pr = p.¡ = s*(h), where h = \i - j\,
and s*(h) = J2k sksk+h C < k < n), where the subscript k + h is congruent
modulo n .

s*(j) is called the jth periodic auto-correlation function of S - (sx ,s2, ... ,
sn). We note that s*(j) = s(j) + s(n - j) = s*(n - j) and s*(0) = 5(0). Also
if <?Ü) + r(j) + s(j) + t(j) = 0 for j jt 0 then q*(j) + r*(j) + s*(j) + t*(j) = 0
for jVO.

Let A, B, C, and D be four circulant square matrices of order m with
entries ±1  satisfying

(5) A* A + B'B + C'C + DfD = Ami   .

Then a Goethals-Seidel (Hadamard ) matrix [Go], G of order Am can be con-
structed, in which the first, second, third and fourth (block) rows are respec-
tively (A,BR,CR,DR), (BR,A, -D'R.C'R), (CR,DR,A, - BR) and
(-DR, - C'R,B'R, A), where R = [/v.] is the matrix with r. = 1 for i + j =
m + 1 , and rr - 0 otherwise, for 1 < i, j < m and P' = [p. ] for P = [p:..].
We note that P' / P' if p\} ¿ p¡j, and G'G = (A'A + B'B + C'C + DlD) x I4 =
(4mIJ x I4 = Aml4m .

If Williamson matrices W,X,Y and Z satisfying (1) and a 4-symbol
¿-code RD(n) of (4) exist, then we can construct a Goethals-Seidel (Hadamard)
matrix G of order Am (m = nw) with entries from Q = {±W, ±X, ±Y, ±Z},
by finding matrices A,B,C and D satisfying (5), as follows. The first rows
of circulant matrices A,B,C and D of order m = nw are respectively the
corresponding component sequences A,B ,C and D obtained by replacing the
four orthogonal column vectors i, , 1 < k < A, with the four orthogonal col-
umn vectors ek of (2) in the ¿-code RD(n) of (4). Let A = (ax, ... ,an),
B = (bx, ... ,bn), C = (c,, ...,cn) and D = (dx, ... , dn), where ak , bk , ck
and dk are from Q.. Then the following conditions corresponding to (3) hold:

a(j) + b(j) + c(j) + d(j) = 0   for j ± 0,       where s(j) = J^ s'k ■ sk+j

(1 <k<n-j),skGQ,

and

a(0) + b(0) + c(0) + d(0) = «(W'w + X'X + Y*Y + z'Z) = 4«u;Iw .

Also for any circulant matrix S of order n having the first row (sx, ... ,sn)
with entries s. G Í2, we have SS = [s*(h)], where h = \i-j\, s*(h) =
s(h) + s(n - h) and s*(0) = s(0), consequently

a'a + b'b + C'C + d'd = [a*(h) + b* (h) + c*(h) + d*(h)]
= (AnwlJ x In = Anwlnw.
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A quadruple of ( 1, - 1 )-sequences (A,B;C,D) respectively with lengths
m + p and m pairs, where

A = (ax,...,am+p),    B = (bl,...,bm+p),    C = (c,, ... ,cj
and   D = (dx,...,dJ,       p>0,

is called a set of (Turyn) base sequences for length t = 2m + p (abbreviated as
BS(t)), if they have zero auto-correlation sum i.e., a(j) + b(j) + c(j) + d(j) = 0
for j' f 0, or equivalents if |/*|2 + |£|2 + |C|2-l-|£>|2 = 2/ for any z on K. Sets
of base sequences BS(t) are known (published) for t G {3, ... , 47,51,53,59,
and 2gA-\:g = 2" 10 26c (Golay numbers), a,b,c nonnegative integers}
(/ = 2m + 1) with lengths m + 1, m pairs and t = g + g', where g and
g are any Golay numbers (e.g., we may take g' = 1). [See below for the cases
/ = 37,39,43 and 45.]

From the above BS(t): (A,B;C ,D), t — 2m+p , we can obtain the following
regular ¿-codes RD(t): [Q,R;S,T], trivially.

(6) Q = (A,0),    R = (B,0),    S = (Q,C)    and    T = (0,D),

where 0 = 0m = the sequence of zeros of length m , and 0 = 0m ; and when
p = 1 or 0, i.e., with lengths m + 1 and m pairs or with m and m pairs.

(7) Q = (A/0),    R = (B/0),    S = (0/C)    and    T={0/D),
where (X/Y) means the interleaved sequence (xx,yx, ... ,xk,yk, ■ ■ ■) for
X - (xx, ... ,xk, ■ ■ ■) and Y = (yx, ... ,yk, ■■ ■). The ¿-codes (6) and (7)
are called Turyn ô -codes of length t.

The following Lagrange identity for polynomials is the key for composition
of 4-symbol ¿-codes and other related codes [Y1,Y2].

Theorem L (Lagrange identity for polynomials). Let a,b,c,d,e,f ,g and h
be polynomials in z with real coefficients. Also let p = p(z~ ) for p = p(z)
and
. q=-b'e + afl + cg + dh,       s = -d'e - cf + ag - bh,

r = a'e + bf + dg - ch',        t = ce - df + bg + ah'.

Then |q|2 + |r|2 + |s|2 + |t|2 = (\a\2 + \b\2 + \c\2 + \d\2)(\e\2 + \f\2 + \g\2 + \h\2) for
any z on K.

Let P* = (p*, ... ,p*n), where p*k - Pn+i_k, be the reverse of a sequence
P = (px,... ,pn). We note that P' = P(z~x) = J2pkzl~k = z^d»*"1) =
z ~"P*(z) ; consequently \P*\" = \P\~.

A (0, ± l)-sequence of length n,S = (sk) = (sx , ... ,sn) is symmetric if
s*k = sk for each k, (i.e., S* — S) ; it is skew if s*k = -sk for each k, (i.e.,
S* - -S) ; and it is said to be quasi-symmetric if s*k = eksk for each k,
where ek = 1 or -1 , i.e., zeros appear symmetrically in S. Consequenlty
symmetric or skew sequences are quasi-symmetric. Two (0, ± l)-sequences of
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length n ,G = (gk) and H = (hk) are said to be supplementary if G + H =
(gk + hk) is a (1 > - l)-sequence; i.e., \gk\ = 1 and hk = 0, or gfc = 0 and
1^1 = 1, for each k . We note here that Q,R and S, T are supplementary in
a regular ¿-code: [Q, R ; 5, T] ; i.e., G + // is a ( 1, - 1 )-sequence for G - Q
or /?, and H = S or F.
Definition 1. A triple (F;G,H) of sequences is said to be a set of normal
sequences for length n (abbreviated as NS(n)) if the following two conditions
are satisfied.

(i) F = (fk) is a (1, - l)-sequence of length n ; G = (gk) and H =
(hk) are quasi-symmetric supplementary (0, ± l)-sequences of length n ; i.e.,
G + H = (gk + hk) is a (1,-1 )-sequence and zeros appear symmetrically in G
and H.

(ii) f(j) + g(j) + h(j) = 0 for ;' ^ 0, i.e., they have zero auto-correlation
sum.

Condition (ii) is also equivalent to
(iii)    \F\2 + |G|2 + \H\2 = 2« for any z on K.

It is known that if J = L + M is a sequence of real numbers with symmetric
L and skew M, then |/| = |L| + |M| for any z on K. From a given pair
of Golay sequences GCS(g): (F, H), we can obtain trivially two sets of normal
sequences, (F;H,0 ) and (F;L,M), where L and M are respectively the
symmetric and skew parts of H. Therefore, a set of normal sequences can be
regarded as a generalization of a pair of Golay complementary sequences. We
can also obtain sets of normal sequences NS(2m + l):(A/C;B/0m,0m+x/D)
from Turyn base sequences TBS(2m + l):(A,B;C,D) with lengths m + 1
and m pairs, for even m with symmetric A and skew C, and for odd m
with skew A and symmetric C. It is known that TBS(2m + 1) with such
properties exists for m < 1, m = 14 [Tl] and m = 12 [GS]. For exam-
ple, from TBS(3): (A,B;C,D) = (1-,11;1,1), where - stands for -1,
we obtain NS(3):F = A/C = 11-; G = B/0 = 101, H = 02/D = 010,
where m = 1 is odd, A = 1- is skew and C = 1 is symmetric. Also
from TBS(5): (111,11-; 1-, 1-), we obtain NS(5):F = A/C = 111-1;
G = B/02 = 1010- , H = O3/D = 010 - 0, where m = 2 is even, A = 111 is
symmetric and C=l- is skew. Also from C7CS(4):(F,H) = (111-, 11 - 1),
we get (F;L,M) = (111-; 1001,01 -0), where L= 1001 and M = 01 - 0
are respectively symmetric and skew parts of H.

The following are examples of NS(n):(F;G,H), which are unobtainable
from TBS and GCS.

n = 7:1 - 111 - -; 11010- 1, 0010100 and 11 - -1 - 1 ; 101110-,
0100010, as F;G,H.

« = 9:1-11111--; 11 -0101 - 1, 00010-000.
n- 11:1111 —-1 —11—; 1100-0100- 1, 00110101 -00.
« = 12:111-1--1--;  111000000- 11, 00011 - 1 - 1000.
« = 13:111-1-1-; 111 -0000011 - 1, 00001 - 11 -0000.
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Definition 2. A quadruple (E ,F;G,H) of (0, ± l)-sequences is said to be a
set of near normal sequences for length n = Am+l (abbreviated as NN(n)) if
the following conditions are satisfied.

(i) E = (X/0,1), F = (Y/O), where X and Y are (1, - l)-sequences
of length m and 0 = 0m_, , the sequence of zeros of length m - 1 , i.e., E
and F are respectively of lengths 2m and 2m - I ; G and H are quasi-
symmetric supplementary (0, ± l)-sequences of length 2m, i.e., G + H is a
(1, - l)-sequence of length 2m and zeros appear symmetrically in G and H.

(ii) e(j) + f(j) + g(j) + h(j) = 0 for ; ^ 0, i.e., they have zero auto-
correlation sum. Condition (ii) is also equivalent to

(iii)    \E\2 + \F\2 + \G\2 + \H\2 = Am + l for any z on K.

The following are examples of sets of near normal sequences NN(n): (E ,F ;
G,H). The cases for « > 21 were found by a computer search. (All NN(n)
for « < 37 have been found and classified in [Y5].

« = 5: 11 , 1 ; 1 - , 00 , as E ,F ;G ,H, where - stands for -1 .
« = 9: —011,101 ; 1001,01 -0.
«= 13: 10 — 011,10101 ; 11 - 1 --, 06.
n = 17:-0-01011,  10-010-;  111-1-11, 08.
« = 21:1010-01011,101010-0-; 10101-010-, 010-0010-0.
« = 25:10101010-011,1010-0-0-01; H0g--, 001 --11 - 1-00.
« = 29:10101010-010-1, 1010-0101010-; 1 — 01Q1— , 0011 — 1111 —

-00.
« = 33:-0-010101010-011, 101010-010-0101; 1001—01-0-001,

01 -0001001000- 10.
« = 37:-010101010101010- 1,   1010 - 0 - 01010 - 010-;   1101-

001-110— 1, 001051 -o5-oo.
« = 41:1010-0-010101010-011, -0101010101010-010-; 110-10-

— 1 — 1-10110 — , 00100108-00-00.
« = 45:10-0-010-010-010101011, -01010-01010-0-010101; -

00105100105 - 001 , 0- 101 - 1 - -01101111 -01 -0.
We note that we can obtain base sequences BS(2n + 1 ): (A , B ; C, D) with

lengths « + 1 , « pairs, from a set of normal sequences NS(n):(F;G,H) as
follows: A = (F,\),B = (F,-l); C = G+H, D = G-H. And BS(n) from
a set of near normal sequences NN(n): (E ,F ;G ,H), where E = (X/0,1 ) and
F = (Y/0), as follows: A = F/E = (Y/X,\), B = (-F)/E = ((-Y)/X,\)
C = G + H, D = G - H . For example, from the above NS( 12), we obtain
the following new construction for BS(25) :   A =111--1-1-1,
5=111-1--1-; C= 11111-1-1-11, £>= 111-1 — 1-11.
Also from the above NN(n), we obtain the following new construction for
BS(n), « = 29,37 and 45.
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« = 29:1111-1111-11 — 1, -1-111-1-11-1; 1-11-1111-1-,
1-i-1111-,as (A,B;C,D).

n = 37:1 - 11 - 1- 11111 - 111- -1,-11111-1-111-11-1;
1111-1 — 1-11,-1, 11 — 1-11--111-1.

« = 45: —11 — 1 —11 — 11-11111111,11-11-11 — 11 — 1 —
1-11; — 111 — 1 —11111111 —1 — 1 , —1 — 1 — 1 — 111 — 1-1 —11.

(For « = 37 also see [K].) The only unpublished among BS(p) for all primes
p < 59 is p = A3, so we give these as follows, p = 43:11 — 1 — 1-1 -
-11-1 — , 11-1-1-11-1-111-1; 1-11-111111-11 — 111,
11-1-1111 — 1 —11-1. We also give another previously unpublished
case, BS(39) as follows:  11 - 1 - 1 - 111--1--1 - 1--, 11-1-
11-11111-1; 1 — 11 — 11 —111 — 1 — 1111, 11-111 — 1-1.

3. General results

Forgiven BS(t):(A,B ;C ,D) with lengths m+p and m pairs, t = 2m+p,
and NS(n):(F;G,H) with F = (fk) and G + H = (gk + hk) = (jk), let

(f)    when jk = gk: ajk = Ag*k , ßjk = Bgk , yjk = Cgk , Sjk = Dg¡ ;
(ii*)    when jk = hk:ajk = -Bhk , ßjk = Ah\ , yjk = Dhk , ôjk = -C«*.

We also define five 2 x / matrices as follows.

,„ k" W?.    *Jk)'    Tk~\ßJk,-Dfk*
n_ f0>°-\ ( ~B*> Q\ f0'   ~D*\0,Q) '   e'_ V    A", 0) '   e2- ^o,     C*

where 0 = 0m and 0 = 0m+p .

Theorem 1. Let (A,B;C,D) be base sequences BS(t) with lengths m+p and
m pairs, t — 2m +p, and (F;G,H) be normal sequences NS(n). Then the
following Ax (st) matrix [Q,R;S,T] is a regular S-code RD(st), s = 2« + 1,
where [Q,R] and [S,T] are column vectors, i.e., 2 x (st) matrices.

[Q,R] = [(qk),(rk)] = (ox,0,a2,0,...,an,0,ex),
[S,T] = [(sk),(tk)] = (0,xx,0,x2,...,0,xn,e2),

where ak , xk , ek and 0 are defined in (*).
Proof. In (I), each column vector [qk ,rk,sk, tk] is obviously one of orthogonal
vectors ih or their negatives, 1 < « < 4. In (L), let a = A(z), b = B(z),
c = C(z)zM , and d = D(z)zM . Also let / = F(z2t)z~x, g = G(z2')z~x,
h - H(z2')z~x and e - zy , where t - 2m + p, M = m + p, x = (n - \)t
and y = (« + l)í + M - 1 . Then we have Q = qzx , R = rzv, S = szx+l and
rr       .   x+tT = tz

Consequently we obtain from Theorem L, |ö|2 + |^|2 + \S\2 + \T\2 = |q|2 +
|r|2 + |s|2 + |t|2 = (M|2 + \B\2 + \C\2 + \D\2)(\2 + \F\2 + \G\2 + \H\2) = 1st for
any z on K. Thus the theorem is proved.
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We note here that p = p(z) - P(z ')z x is symmetrized, i.e., p = p(z ) =
P*(z ')z~x for p = f,g and « . And in q,r,s and t, the quasi-symmetry of
sequence P = (pk) is required for P — F , G and H, since pk and p*k of the
reverse P* determine the Acth block of length 2/ and align its nonzero and zero
parts. Similarly G and H must be supplementary. Therefore quasi-symmetry
and supplementary are essential for the construction of a ¿-code in Theorem 1.

A set of four (1, - l)-sequences (U, W,X, Y) of length m is said to be
complementary, if u(j) + w(j) + x(j) + y(j) = 0 for j / 0, or equivalently, if
|t/|2-r-|IF|2-r-|X|2-r-|y|2 = 4m for any z on K. The sequences U ,W ,X and Y
can be regarded as respectively the first rows of circulant matrices A, B, C and
D of order m satisfying condition (5), i.e., A1 A + B'B + C'C + tío = Amlm ,
thus a Goethals-Seidel (Hadamard) matrix of order Am can be constructed.
Also we note here that the above (U, W;X, Y) can be regarded as BS(2m)
with lengths m and m pairs.

Theorem 2. Let BS(t) and NS(n) be given as in Theorem 1. Then the following
(Q,R,S,T) is a set of four complementary sequences of length nt (i.e., BS(2nt)
with lengths nt and nt pairs).

(II) [Q,R] = (ax,a2,...,an);       [S, T] = (t, ,x2, ... ,xn),

where ak and xk are defined in (*).

The proof of Theorem 2 is similar to that of Theorem 1, therefore we omit
it. We note here that z' should be used instead of z ' in F, G and H ; and
e - 0, consequently there are no A* ,B*, C* and D* in (II). Also there are
no shifting for S and T, i.e., S = szx and T = tzx , x = (n - \)t/2.

Let the four components of a regular ¿-code RD(u): [A, B ; C, D] be

(II*) A = U,0),    B = (B_,0);    C = (0,CJ   and   D = (0,D),
where P_ is the part of P = (pk) in which pk ^ 0 and 0 is that in which
pk = 0, for Pg {A,B,C,D}. Thus X + Y= (X,Y) for Xg {±A, ± B} and
Y G {±C, ± D} , since X and Y are supplementary.

For example, in RD(3t): A = (A, C;0,0; -B* ,0), B=(A)D;0,0;/,0);
C = (0,0;/f, -C;0, -£>*) and D = (0,0;£, -£>;0,C*), we have (A,C) =
A + C = (A,C;A, -C; -B*, -D*) = (A,C), etc.

By observing that in Theorem 2 our argument is still valid if we replace
BS(t):(A,B;C,D) by RD(u) of (II*), i.e., by replacing P of BS with P of
RD for P G {A, B, C, D} and / with u .

Consequently we have the following.

Theorem 2*. Let [A,B;C,D] be a regular à-code RD(u) of (II*), then
(Q,R,S ,T) of (II) is a set of four complementary sequences of length nu (or
equivalently BS(2nu)).

We note here that, from condition (iii) of Definition 1, a set of normal se-
quences NS(2m) exists only if Am is the sum of three squares of even inte-
gers, consequently m must be the sum of three squares of integers. Therefore
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NS(2m) does not exist for m = l (mod 8). It is known that NS(6) does not
exist. Although RD(nt) cannot be composed by Theorem 1 for n = 2k + 1,
k = 6 or 14 (since NS(k) does not exist for these cases), RD(nt) can be con-
structed for « = Am + 1, which includes 13,29, ... , by the following theorem
with a set of near normal sequences NN(n).

Theorem 3. Let (A,B;C,D) be a set of base sequences BS(t) with lengths
s+p and s pairs, and (E,F;G,H) be a set of near normal sequences NN(n)
of Definition 2, where n = Am + 1 and t = 2s +p. Then the following A x (nt)
matrix [Q,R;S,T] is a regular 5-code RD(nt).

[ß,5] = (A,,//,,...,Am,/im,e2,0,0,...,0,0),
[5,r] = (0,0,...,0,0,e3,i/m,Jtm,.v. ,*,,*,),

where

x _ ( aJ2k-i >-cyk\      u _ ( ahk.  ~D*xk \
k~\ßJ^,-Dyk)'       "»"U/a.     C\ )>

v -(-Bxk> y*J2k\      - -(A*y*k> v*J2k-A
k~\Axk,   /Jj- k~Wvl    fJuJ'
£2=(2; "?*) and   £3=("lo)-

Also ¿tjj, for Ç = a, ß,y and â, are defined as in (i*) and (ii*), where
í*j¡ = (íjj)* for 1 < i < 2m, o«úf v* = ym+l_k for \ <k < m; we note that
0 and e2 are similar to those defined in (*), i.e., 0 = 0s+p and 0 = 0s.
Proof. Obviously each column vector in (III) is one of orthogonal vectors or
their negatives ±ik . In (L), let p = P(z) for p = a,b,c and d. Also let
/ = F(z )z~" , e — E(z )z~"', g = G(z )z~A and « = H(z )z~x , where
t = 2s+p, U = (m-l)t- (p/2), w = (2m - 5)//2 + 1 , and x = (2m - l)f/2.
Then Q = szv, R = tzx , S = qV and T = rV , where y = 3(2w+ l)//2- 1 .
Consequently, |<2|2 + \R\2 + \S\2 + \T\2 = |s|2 + |t|2 + |q|2 + |r|2 = (|^|2 + \B\2 +
\C\2 + \D\2)(\E\2 + \F\2 + \G\2 + \H\2) = 2nt for any z on K.

We note here that because of the quasi-symmetry of sequences F, G and
H , in q, r, s and t, the first 2m nonzero blocks of length / are aligned and
in the (2m + l)th (last) block, the nonzero (or zero) part in q,r and the zero
(or nonzero) part in s, t are of the same length, thus q', r' and s, t can be
fitted to from a ¿-code.

From given two sets of base sequences with lengths m + 1 , m pairs and
« + 1 , « pairs, we can also construct four complementary (1, - l)-sequences
of length (2m + 1)(2« + 1) as follows.

Theorem 4. Let (A,B;C ,D) and (F ,G;H ,E) be two sets of base sequences
respectively with lengths m+ 1 , m pairs and n + \, n pairs. Then the following
(Q, R,S, T)are four complementary(\, - 1 )-sequences of length(2m + 1 )(2« + 1 ).
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[Q,R] = (ax,ßx,a2,ß2, ... ,an,ßn,an+x),

[S,T] = (yx,ôx,y2,ô2,...,yn,ôn,yn+x),

where

AfkICgk\       a  „(-B*ek/Dhk
Bf;/Dg*k)>    ß*     \Aek/-CKk

y  -(Agll-Cfk\ _(-Bhk/-D*ek\
y«-\Bgkl-Dfk)    and   ö*-\    Ah]/C\    )■

Proof. Obviously (Q,R,S,T) are four (1, - 1 )-sequences of length (2m +
1)(2« + 1). By letting a = A(z2), b = B(z2), c = zC(z2) and d = zD(z2),

, r —nMr-,   2M, -nM,-,,   2M\      ¡ x TT,   2A/\ , vr,   2M,also j = z F(z ), g = z G(z ), h - z H(z ) and e = z E(z ),
where M = 2m + 1 , x = (1 - n)M and y = 2m + (1 - n)M, in (L), and by
observing that Q = qw , R = rw , S — sw and T — tw , where w = z" , we
obtain

|Ö|2 + |Ä|2 + |5|2 + |r|2 = |s|2 + |t|2 + |q|2 + |r|2

= (\A\2 + \Bq\2 + \C\2 + \D\2)(\E\2 + \F\2 + \G\2 + \H\2)
= A(2m + 1)(2« + 1)     for any z on K.

BS(t) with m + 1 and m pairs (/ = 2m + 1) exist for / < 59 (except
49, 57) and t = 2g + 1  [T1,T2].

From given sets of base sequences BS(t): (A,B;C ,D) and normal sequences
NS(m) (or near normal sequences NN(n)), we can construct a regular ¿-code
RD((2m + l)t) by Theorem 1 (or RD(nt) by Theorem 3). I.e., we can construct
RD(ut), where u G U = (the set of 2m + l and « such that NS(m) or NN(n)
exists) = {«:« < 33,« = 37,41,45,51,53,59,65,81, ... , and « = 2g + 1}.

Thus, we can construct BS(2mut) by Theorem 2* with NS(m) and
RD(ut), where u G U and m G M = (the set of all m such that NS(m)
exists) = {«:odd« < 15,« = 25,29;« = 12or« = g} . We note also that from
given RD(ut) and Golay sequences GCS(g), four complementary (1, - 1)-
sequences of length (2g + \)ut, equivalently BS(2(2g + \)ut) can be
constructed [Y2].

Consequently from the above, we can obtain BS(tx ), with tx = 2sxt, sx gS,
where

(IV) S = {mu: m G M or m = 2g + 1, u G U},

which contains all positive integers < 100 (except 43, 47 and primes > 61).
By repeating the above process, we obtain BS(t-,), where /, = 2s2tx =

22sxs2t, s2eS.
After repeating the process « times, we have the following:
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Theorem 5. Four-symbol ô-codes of length r exist for r = 2"t T[ s. ( 1 < j< n),
where s.eS, / G T = {k: k < 59 (except 49, 57) or k = g + g'}, g and g'
are Golay numbers; and S is defined in (IV).

We note that instead of the above, sx and / may belong to TQ — {h:h < 59
(except 49, 57) or « = 2g+ 1} , since BS(2sxt) can be constructed by Theorem
4; also k = g + g' includes odd g + 1 , when g = 1 .

4. Examples and remark

From given BS(t): (A ,B ; C,D) (or RD(u)), and NS(3): (-11 ; 101,010),
we obtain the following [Q,R;S, T] as RD(lt) from Theorem 1 and as four
complementary sequences of length 3/ (or 3u) from Theorem 2 (or Theorem
2*) respectively.

Q = {A,C;0,0,A,D;0,0;-A,C;0,0;-B*,0)
R = (B,D;0,0;B, -C;0,0; - B,D;0,0;A* ,0)
5 = (0,0;^,C;0,0;-5,-C;0,0;/l,-C;0,-JD*)
r = (0,0;5,D;0,0M,-£>;0,0;fl,-£>;0,C*),

and

Q = (A,C;A,D; -A,C)
R = (B,D;B, -C; - B,D)
S = (A,C; -B, -C;A, - C)
T=(B,D;A, -D;B-D).

Similarly from 7V5(5):(111 - 1; 1010-,010 -0), we obtain the following
RD(llt).

Q = (A,C;0,0;-A,D;0,0;A,C;0,0;A,-D;0,0;A,-C;0,0;-B*,0),
R = (B, -D;0,0; -B,C;0,0;B,D;0,0;B, -C;0,0;B,D;0,0;A* ,0),
5 = (0,0; -A,-C;0,0;-B,-C;0,0;A,-C;0,0;B,C;0,0;A,-C;

0, -tí)
T = (0,0;B, -D;0,0; -A, -D;0,0;B, -D;0,0;A,D;0,0; -B, -D;

0,C*).
Also from given Golay sequences   GCS(g): (F, H)   regarded as   NS(g):

(F:H,0 ), we obtain the following RD((2g+ \)t) from Theorem 1, i.e., 2g +
1 = 3,5,9,17,21,33,41,53,65,81, ••■ .

Q = (Af{ ,Chx;0,0;Af; ,Ch2;0,0;-;Afg;Chg;0,Q; -B* ,0),
R = (Bfx,Dh;;0,0;Bf;,Dh¡;0,0;-;Bfg,Dh¡;0,0;A\0),
S = (0,0;Ah*x, -Cfx;0,0;Ah¡, -C/2;0,0; ■■■ ;Ahg, -Cfg;0, -tí),
T = (0,0;Bhx,-Dfx;0,0;Bh2, - Df2 ;0,0; • • • ;Bhg , -Dfg;0,C*).

Thus Theorem 1 is a generalization of [Yl, Y2, Theorem 2] and we can con-
struct RD(ut) for u = 2«+ 1 = 15,19,23,27,31 ,51  and 59, which are not
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published before. Although sets of NS(n) have not been found for « > 17
(except « = 25,29 and g), we can construct RD((2n + l)t) for any n, by
Theorem 1, if a new set of NS(n) can be found in the future.

Theorem 3 can be regarded as a generalization of [Y2, Theorem 3]. For
Example, from NN(5):(l 1,1 ; 1- ,00) and NN(\3): (10 - Oil, 10101 ; 11 -
1-} , we obtain respectively the following RD(5t) and RD(l3t).

Q = (-A, -C;A, -D*\Q, -Z>*;0,0;0,0),
R = (0,0;0,0; - B,0; — B, - C* ;A*,C*),
S = (B, -D; -ß,C*;0,C*;0,0;0,0),
T = (0,0;0,0; A,Q; A,D*;B*,-D');

and

Q = (-A,-C;-A,-tí;A,-C;-A,tí;A,-C;A,-tí;0,-tí;
0,0;0,0;0,0;0,0;0,0;0,0),

R = (B, -D;B,C*;-B, -D;B, -C*;-B, -D; -B,C*;0,C*;0,0;
0,0;0,0;0,0;0,0;0,0),

S = (0,0;0,0;0,0;0,0;0,0;0,0; -5,0; -B, -C* ;A*, -C* ;B,C* ;
A*, -C*; -B,C*;A* ,C*)

T = (0,0;0,0;0,0;0,0;0,0;0,0;A,0;A,D* ;B* ,D*; -A, -D*;B* ,D*;
A, -tí;B\-tí).

We can also construct regular ¿-codes RD(nt) by Theorem 3 in a similar
way for « = 9,17,21,25,29,33,37,41,45 and any « for which a set of
NN(n) exists.

Finally we remark that in order to compose 4-symbol ¿-codes successfully
by application of the Lagrange identity, when e ^ 0 all terms a, b, ... ,h have
to be quasi-symmetric except possibly e, since e is not involved in (L) as in
Theorems 1, 3 and 4; and when e — 0 /, g and h have to be quasi-symmetric
but not a,b ,c and d, since there are no a , b', c and d' in (L) as in Theorems
2 and 2*.
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