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Abstract

Modern neural machine translation (NMT)

models have achieved competitive perfor-

mance in standard benchmarks such as WMT.

However, there still exist significant issues

such as robustness, domain generalization, etc.

In this paper, we study NMT models from the

perspective of compositional generalization by

building a benchmark dataset, CoGnition, con-

sisting of 216k clean and consistent sentence

pairs. We quantitatively analyze effects of var-

ious factors using compound translation error

rate, then demonstrate that the NMT model

fails badly on compositional generalization, al-

though it performs remarkably well under tra-

ditional metrics.

1 Introduction

Neural machine translation (NMT) has shown com-

petitive performance on benchmark datasets such

as IWSLT and WMT (Vaswani et al., 2017; Edunov

et al., 2018a; Liu et al., 2020a), and even achieves

parity with professional human translation under

certain evaluation settings (Hassan et al., 2018).

However, the performance can be relatively low

in out-of-domain and low-resource conditions. In

addition, NMT systems show poor robustness and

vulnerability to input perturbations (Belinkov and

Bisk, 2018a; Cheng et al., 2019). One example is

shown in Table 1, where simple substitution of a

word yields translation with completely different

semantics. Many of these issues origin from the

fact that NMT models are trained end-to-end over

large parallel data, where new test sentences can

be sparse.

Disregarding out-of-vocabulary words, a main

cause of sparsity is semantic composition: given

a limited vocabulary, the number of possible com-

positions grows exponentially with respect to the

composite length. The ability to understand and

Input Translation

Taylor breaks his promise
“·à˙�

(Taylor keeps his promise)

James breaks his promise
y∆Ø›Õ˙�

(James breaks his promise)

Table 1: Translation samples obtained from one popu-

lar web translation engine on January 19, 2021.

produce a potentially infinite number of novel com-

binations of known components, namely composi-

tional generalization (Chomsky; Montague; Lake

and Baroni, 2018; Keysers et al., 2020), has been

demonstrated deficient in many machine learning

(ML) methods (Johnson et al., 2017a; Lake and

Baroni, 2018; Bastings et al., 2018; Loula et al.,

2018; Russin et al., 2019a).

In this paper, we study compositional general-

ization in the context of machine translation. For

example, if “red cars” and “blue balls” are seen

in training, a competent algorithm is expected to

translate “red balls” correctly, even if the phrase

has not been seen in training data. Intuitively, the

challenge increases as the composite length grows.

Recently, several studies have taken steps towards

this specific problem. They either use a few dedi-

cated samples (i.e., 8 test sentences) for evaluation

(Lake and Baroni, 2018; Li et al., 2019b; Chen

et al., 2020), or make simple modifications in sam-

pled source sentences such as removing or adding

adverbs, and concatenating two sentences (Raunak

et al., 2019; Fadaee and Monz, 2020a). Such exper-

imental data is limited in size, scope and specificity,

and the forms of composition are coarse-grained

and non-systematic. As a result, no qualitative con-

clusions have been drawn on the prevalence and

characteristics of this problem in modern NMT.

We make a first large-scale general do-

main investigation, constructing the CoGnition

dataset (Compositional Generalization Machine

Translation Dataset), a clean and consistent paral-
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Dataset Type Source Target

SCAN
Atoms jump, twice

JUMP JUMP
Compounds jump twice

CFQ
Atoms Who [predicate] [entity], directed, Elysium SELECT DISTINCT ?x0 WHERE {

Compounds Who directed Elysium ?x0 a ns:people.person .

?x0 ns:film.director.film m.0gwm wy}

CoGnition
Atoms the, doctor, he liked

÷ú"Ñ;�≈ÜCompounds the doctor he liked
Sentences The doctor he liked was sick

Table 2: Examples of SCAN, CFQ, and our CoGnition datasets.

lel dataset in English-Chinese, along with a syn-

thetic test set to quantify and analyze the compo-

sitional generalization of NMT models. In par-

ticular, we define frequent syntactic constituents

as compounds, and basic semantic components in

constituents as atoms. In addition to the standard

training, validation and test sets, the CoGnition

dataset contains a compositional generalization test

set, which contains novel compounds in each sen-

tence, so that both the generalization error rate can

be evaluated, and its influence on BLEU (Papineni

et al., 2002) can be quantified. Our compositional

generalization test set consists of 2,160 novel com-

pounds, with up to 5 atoms and 7 words. In this

way, generalization ability can be evaluated based

on compound translation error rate.

Empirical results show that the dominant Trans-

former (Vaswani et al., 2017) NMT model faces

challenges in translating novel compounds, despite

its competitive performance under traditional eval-

uation metrics such as BLEU. In addition, we ob-

serve that various factors exert salient effects on

model’s ability of compositional generalization,

such as compound frequency, compound length,

atom co-occurrence, linguistic patterns, and con-

text complexity. The CoGnition dataset along

with the automatic evaluation tool are realesed on

https://github.com/yafuly/CoGnition.

2 Related Work

Analysis of NMT. Our work is related to re-

search analyzing NMT from various perspectives.

There has been much linguistic analysis of NMT

representations (Shi et al., 2016; Belinkov et al.,

2017; Bisazza and Tump, 2018), interpretability

(Ding et al., 2017; He et al., 2019; Voita et al.,

2019a), and attention weights (Voita et al., 2019b;

Michel et al., 2019). Robustness is also an impor-

tant research direction. Work has shown that NMT

models are prone to be negatively affected by both

synthetic and natural noise (Belinkov and Bisk,

2018b; Cheng et al., 2018; Ebrahimi et al., 2018).

For better exploration of robust NMT, Michel and

Neubig (2018) propose an MTNT dataset contain-

ing several types of noise. Wang et al. (2020) pro-

vide in-depth analyses of inference miscalibration

of NMT resulting from the discrepancy between

training and inference. Our work is in line but we

discuss robustness from the perspective of compo-

sitional generalization.

In this respect, Lake and Baroni (2018) propose

a simple experiment to analyze compositionality

in MT, followed by Chen et al. (2020) and Li et al.

(2019b). Specifically, they introduce a novel word

“dax”, and their training data contains a single pat-

tern of sentence pairs (e.g. “I am daxy”, “je suis

daxiste”) while the test set contains different pat-

terns. However, their work is limited in that there

are only 8 sentences in the test set. Raunak et al.

(2019) observe a performance drop on a dataset of

concatenated source sentences. Fadaee and Monz

(2020b) modify source sentences by removing ad-

verbs, substituting numbers, inserting words that

tend to keep syntax correct (e.g. “very”), and chang-

ing the gender, and find unexpected changes in the

translation. In contrast to these studies, we quanti-

tatively measure compositionality of NMT under

compound translation error rate.

Translation involves various challenges such as

low-frequency words, polysemy and compositional

complexity. In this work, we focus on how the

NMT model generalizes to complex compositions

in a controllable setting and minimize the effects

of the other factors.

Compositional Generalization. Neural net-

works have been shown sample-inefficient,

requiring large-scale training data, which suggests

that they may lack compositionality (Lake and

Baroni, 2018). Lake and Baroni (2018) introduce

the SCAN dataset to help study compositional

generalization of neural networks, which has

received increasing interests (Russin et al., 2019b;



4769

Dessı̀ and Baroni, 2019; Li et al., 2019c; Lake,

2019; Andreas, 2020; Gordon et al., 2020). Various

benchmarks have been proposed including in the

area of visual reasoning (Johnson et al., 2017b;

Hudson and Manning, 2019), mathematics (Saxton

et al., 2019), and semantic parsing (CFQ) (Keysers

et al., 2020). However, no benchmark has been

dedicated to machine translation in practice. We

fill this gap by introducing a dataset with 216,000

instances and an average sentence length of 9.7

tokens.

3 Problem Definition

Following Keysers et al. (2020), compositional gen-

eralization is defined as the capacity to systemati-

cally generalize to novel combinations of compo-

nents which are learned sufficiently during train-

ing. Key elements to measure compositional gen-

eralization include atoms and compounds. Specif-

ically, atoms are primitive elements in the train

set whereas compounds are obtained by compos-

ing these atoms. The research question is whether

neural models perform well on unseen compounds.

Take Table 2 for example, in the SCAN dataset, the

atoms are simple commands such as “jump” and

the composite command “jump twice” is a com-

pound. In the CFQ, the compounds are questions

such as “Who directed Elysium”, and the atoms

correspond to the primitive elements in the ques-

tions such as the predicate “directed”, the question

patterns “Who [predicate] [entity]” and the entities

“Elysium”.

In theory, compounds in MT can be defined as

phrases, sentences or even document. In practice,

however, we want to control the number of atoms

in a novel compound for quantitative evaluation.

In addition, it can be highly difficult to construct

a large-scale dataset where novel compounds are

sentences of practical sizes (the number of synthe-

sized sentences increases exponentially with their

length) while ensuring their grammatical correct-

ness. Therefore, we constrain compounds to syntac-

tic constituents, and define atoms as basic semantic

components in constituents according to syntactic

and semantic rules for forming constituents (Par-

tee, 1995). As a result, we randomly assign multi-

ple sentential contexts for investigating each novel

compound. Table 2 shows a contrast between our

dataset and existing datasets for compositional gen-

eralization in semantics.

Mistakes caused by weakness in computational

generalization can be easily found in state-of-

the-art NMT models. In particular, we train a

Transformer-based model (Vaswani et al., 2017)

on WMT17 En-Zh Dataset 1. One sentence in the

standard test set, “but the problem is , with the

arrival of durant , thompson ’s appearance rate

will surely decline , which is bound to affect his

play”, is translated into “FÓò/,è@\py

Ñ0e, dnÓÑ�hØö⇢↵M, Ÿ�ö⇢

qÕ0÷Ñh” (English: but the problem is ,

with the arrival of durant , thompson ’s will surely

look worse , which is bound to affect his play). The

novel compound “appearance rate” is composed

of two atoms (i.e., “appearance” and “rate”), both

with a high frequency of more than 27,000 times in

the training set. However, the sentence semantics is

completely distorted due to the failure of semantic

composition, which is possibly influenced by the

context word “play”. More importantly, as the over-

all translation highly overlaps with the reference,

the model achieves a high score in similarity-based

metrics such as BLEU, demonstrating that fatal

translation errors can be overlooked under tradi-

tional evaluation metrics.

4 Dataset

Figure 1 gives an overview of our data construction

process. We first source monolingual data (Section

4.1), and then build parallel data based by transla-

tion (Section 4.2). Then we synthesize a test set

of novel compounds (Section 4.3), and offer an

automatic evaluation method (Section 4.4).

4.1 Monolingual Data Source

Our goal is to focus on compositional general-

ization and minimize the influence of additional

factors such as polysemy (Berard et al., 2019),

misalignment (Munteanu and Marcu, 2005), and

stylistic problems (Hovy et al., 2020). The dataset

should ideally have following characteristics. First,

the vocabulary size should be small and contain

only words of high-frequency in order to avoid

problems caused by rare words. In other words, va-

riety of composition should come from combining

different frequent words instead of word diversity,

as suggested in (Keysers et al., 2020). Metaphor-

ical words, which can increase the translation dif-

ficulty, should be excluded. Second, source sen-

tences should not be too long or have complex

syntactic structures. As a result, a sentence can be

1http://www.statmt.org/wmt17/
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Monolingual Data Source

WMTⅹ
IWSLTⅹ
ROC Story√

Parallel Data Construction

The small dog was sick.           那只小狗病了。

The red car is running.             那辆红色的车正在行驶。

……

……

Making 

Novel Compounds

DT ADJ N

the red dog

the small car

… … …

Synthesizing 

Source Sentences

The red dog is running.

The red dog was sick.

The red dog had fun with a toy.

……

Making Reference

Automatic Evaluation

For Pattern 1.2:

Compound 

Translation 

Error Rate

那只红色的狗正在跑。
那只红色的狗病了。
那只红色的狗和一个玩具玩得很开心。

Source:

The red dog is running.

Hypothesis:

那只红色的狗正在跑。 ……

4.1 4.2 4.3

4.3

Compound Patterns

Pattern 1.1: DET+N

Pattern 1.2: DET+ADJ+N

Pattern 1.3: DET+N+MOD

……

4.3

4.3

4.4

……

CG test set

Training set

Validation set

Random test set
CoGnitionDictionary

the red dog

- 红 狗/犬

the small car

- 小 车/汽车

… … …

Figure 1: Summary of dataset construction.

Pattern # Composition Example

Pattern 1.1 DET+N all the sudden the waiter screamed in pain .

Pattern 1.2 DET+ADJ+N one day another lazy lawyer snapped and broke every window in the car .

Pattern 1.3 DET+N+MOD each doctor he liked was talking to a friend on the phone .

Pattern 1.4 DET+ADJ+N+MOD every smart lawyer at the store decided to go back next week .

Pattern 2.1 V+DET+N she said she liked the building !

Pattern 2.2 V+DET+ADJ+N he soon met the special girl named taylor .

Pattern 2.3 V+DET+N+MOD she took the child he liked out to enjoy the snow .

Pattern 2.4 V+DET+ADJ+N+MOD when taylor saw the dirty car he liked , he was amazed .

Pattern 3.1 P+DET+N taylor felt really awful about the bee .

Pattern 3.2 P+DET+ADJ+N inside the small apartment were some of my old toys .

Pattern 3.3 P+DET+N+MOD taylor forgot about the chair on the floor !

Pattern 3.4 P+DET+ADJ+N+MOD he jumped from the bench towards the large airplane on the floor .

Table 3: Compound patterns in the CG test set. Compounds are in bold and shown in sentence context.

translated literally, directly, and without rhetoric.

Third, the corpus size should be large enough for

training an NMT model sufficiently.

Widely-adopted corpora such as parallel data

released on WMT and IWSLT2 have large vocab-

ularies and also contain noisy sentences and rich

morphology (Li et al., 2019a), which do not fully

meet our goal. We choose Story Cloze Test and

ROCStories Corpora (Mostafazadeh et al., 2016,

2017) as our data source. The dataset is created for

commonsense story understanding and generation,

and consists of 101903 5-sentence stories. These

stories are rather simple in items of vocabulary and

syntax, but still contain rich phrases. In addition,

the topic is constrained to daily life.

Since the vocabulary size of 42, 458 is large,

we select the top 2, 000 frequent words as our vo-

cabulary and extract sentences where the words

are exclusively from the restricted vocab. More-

over, sentences that are longer than 20 words are

removed. In this way, we finally obtain 216, 246

2https://wit3.fbk.eu/

sentences for parallel data construction. More de-

tailed statistics including comparison to WMT and

IWSLT data are shown in Appendix B.

4.2 Parallel Data Construction

We take an MT post-editing method to construct

parallel data, first using a public translation engine

to obtain model-generated translations, and then

requesting expert translators to post-edit them. The

following aspects are highlighted:

• Ensure the fluency of translations.

• Ensure word-level matching between trans-

lated sentences and source sentences. Typi-

cally, every word should be correctly trans-

lated, without omission for legibility.

Finally, we obtain a parallel dataset of 216, 246
sentences in CoGnition, and randomly split it into

three subsets: 196, 246 sentence pairs for training,

10, 000 sentence pairs for validation, and 10, 000
sentence pairs as the random test set. In addition
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to the above split, we additionally make a composi-

tional generalization test set, which is described

in the next section.

4.3 Compositional Generalization Test Set

We manually construct a special test set dedicated

for evaluation of compositional generalization, by

synthesizing new source sentences based on novel

compounds and known contexts.

Designing Compound Patterns We use Berke-

ley Parser to obtain constituent trees (Kitaev and

Klein, 2018). In CoGnition, noun phrases (NP),

verb phrases (VP) and positional phrases (PP) are

three most frequent constituents, accounting for

85.1% of all constituents, and thus we construct

compounds based on them. According to syntactic

and semantic rules (Partee, 1995), we choose ba-

sic semantic components as our atoms including

determiners (DET), nouns (N), verbs (V), preposi-

tions (P), adjectives (ADJ), and postpositive mod-

ifiers (MOD). Specifically, postpositive modifiers

include prepositional phrases and relative clauses,

and can contain multiple words. We consider them

as a single atom due to their semantic inseparability.

In this way, we generate 4 compound patterns for

NP, VP, and PP, respectively, which are listed in

Table 3 with corresponding examples.

Making Novel Compounds We use Stanza (Qi

et al., 2020) to obtain POS tagging for each word in

training sentences. We construct novel compounds

by first selecting atom candidates with relatively

consistent translation in the training set. The fre-

quency of candidate atoms covers a wide range

from 34 to 73518. We list full set of atom candi-

dates in Table 4. For constructing compounds, we

enumerate all possible combinations of atoms ac-

cording to the patterns in Table 3, and then remove

those that are ungrammatical or likely to cause

ethic issues, obtaining 2,160 compounds finally.

We do not deliberately make all compounds un-

seen, yet only 0.93% of them appear in the training

data.

Synthesizing Source Sentences We embed the

compounds in specific context to form complete

source sentences. Concretely, we first apply Berke-

ley Parser on the training sentences to obtain sen-

tence templates, where certain constituents are

replaced by placeholders according to their con-

stituent types, e.g., “NP-placeholder spent a lot

of time to set up a wedding .”. Then we select 5

sentence templates for each constructed compound

accordingly, so that every compound can be eval-

uated under 5 different contexts. To distinguish

from VP and PP, we put NP compounds only in

sentences with the placeholder outside VP and PP.

Making Reference To maintain statistical con-

sistency, target translations of synthetic sentences

are also obtained using the same MT post-edit ap-

proach. In addition to the annotation principles

listed in 4.2, we set several additional rules:

• Filter sentences with ethical issues and replace

them with other synthetic ones.

• Ensure the accuracy of compound translation.

Finally, we obtain a compositional generaliza-

tion test set (CG test set) of 10, 800 parallel sen-

tences. The final dataset statistics is shown in table

5.

4.4 Automatic Evaluation

We mainly adopt human evaluation for the exper-

iments of this paper (Section 5) for ensuring re-

liability of findings. Despite its accuracy, human

evaluation can be expensive. To facilitate fast evalu-

ation in future research, we introduce an automatic

evaluation approach to quantify a model’s general-

ization ability on our CG test set.

In particular, we manually construct a dictio-

nary for all the atoms based on the training set

(See Appendix C). The prerequisite of correctly

translating one compound is that all of the atom

translations should be contained. Besides, in most

cases the translation of nouns should be placed af-

ter that of other atoms. Based on this, we design

a heuristic algorithm to determine whether com-

pounds are translated correctly. With the human

annotation as ground truth, our automatic evalu-

ation tool achieves a precision of 94.80% and a

recall of 87.05%, demonstrating it can serve as an

approximate alternative to human evaluation.

5 Experiments

We conduct experiments on CoGnition dataset and

perform human evaluation on the model results.

5.1 Settings

We tokenize the English side using Moses tokenizer

and do not apply byte pair encoding (BPE) (Sen-

nrich et al., 2016) due to the small vocabulary (i.e.,

2000). The Chinese sentences are segmented by
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Type Candidates

DET the, every, any, another, each

N
car, dog, girl, doctor, boyfriend, apartment, child, sandwich

chair, farm, building, hat, waiter, airplane, lawyer, peanut, farmer, clown, bee

ADJ small, large, red, special, quiet, empty, dirty, lazy, smart, fake, silly

MOD he liked, at the store, on the floor

V
took, told, found, asked, saw, left, gave, lost, liked

woke, stopped, invited, met, caught, heard, hated, watched, visited, chose

P
to, for, on, with, from, about, before, like, around

inside, without, behind, under, near, towards, except, toward

Table 4: Atoms used in constructing compounds, sorted by frequency in the training set.

Split # Samples

Training set 196,246

Validation set 10,000

Random test set 10,000

CG test set 10,800

Table 5: Statistics of CoGnition Dataset.

jieba segmenter3. We employ BPE with 3,000

merge operations, generating a vocabulary of 5,500

subwords.

We focus on Transformer (Vaswani et al., 2017)

because of its state-of-the-art performance on ma-

chine translation (Edunov et al., 2018b; Takase

and Kiyono, 2021; Raffel et al., 2020; Zhu et al.,

2020; Liu et al., 2020b) and better performance

on existing compositional generalization dataset

(Daniel et al., 2019). We implement our model us-

ing BASE configuration provided by Fairseq (Ott

et al., 2019). The model consists of a 6-layer en-

coder and a 6-layer decoder with the hidden size

512. We tie input and output embeddings on the

target side. The model parameters are optimized

by Adam (Kingma and Ba, 2015), with �1 = 0.1,

�2 = 0.98 and ✏ = 10−9. The model is trained for

100,000 steps and we choose the best checkpoint

on validation set for evaluation.

We report character-level BLEU scores using

SacreBLEU (Post, 2018) to measure the overall

translation performance. In addition, we request

expert translators to annotate the correctness of

compound translation. Translators are asked to

only focus on examining whether the compound

itself is translated correctly or not, disregarding er-

rors in context. Specifically, a compound is correct

only if its translation contains semantic meaning of

all atoms and is fluent in human language. Since

each of the 2,160 compounds is provided with 5

contexts, we can compute the translation error-rate

for each compound.

3https://github.com/fxsjy/jieba

5.2 Main Results

Table 6 shows the results. Besides the CG test set,

we also list results on three of its subsets, which

only contain NP, VP or PP compounds respectively.

The model achieves a 69.58 BLEU score on the ran-

dom test set, which partly indicates distributional

consistency and quality of the dataset. In compari-

son, the performance on the CG test set drops dra-

matically by more than 20 BLEU points. Given that

the only difference between synthetic sentences

and training sentences is the unseen compounds

(i.e., contexts are seen in training), the decrease of

20 BLEU points indicates that unseen compounds

pose a significant challenge, which is however easy

to be overlooked in traditional evaluation metrics.

For example, the model mis-translates “alas , he

became sick from eating all of the peanut butter on

the ball” into “ �÷‡:⇤âÜ⇤:⌦@ Ñ

±�q��≈Ü” (English: alas , he became sick

from eating all of the peanut butter on the field).

With a minor mistake on the compound “on the

ball”, the model achieves a sentence-level BLEU

of 61.4, despite that the full sentence meaning is

largely affected. In other words, the BLEU score

of 69.58 can be misleading since novel compounds

can be rare in the random test set. Such mistakes

in generalizing new compounds can severely hin-

der overall performance of translation engines in

practice, as shown earlier in Table 1. Also, we

calculate BLEU for the original training sentences

that provide contexts for the CG test set (row 3).

The model achieves 99.74 BLEU, further demon-

strating that the performance degradation is mainly

caused by the unseen compounds.

Instance-wise, 27.31% compounds are translated

incorrectly. However, when aggregating all 5 con-

texts, 61.62% compounds suffer at least one incor-

rect translation. This suggests that a well-trained

NMT model is not robust in translating compounds,

though all atoms within them are highly frequent in
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Test Set
Error Rate

BLEU
Instance Aggregate

Random-test - - 69.58

Train - - 99.74

CG-test 27.31% 61.62% 48.66

CG-test/NP 21.94% 54.03% 51.29

CG-test/VP 22.25% 55.56% 47.55

CG-test/PP 37.72% 75.28% 47.14

Table 6: BLEU score and compound translation error

rate on the random test set and the CG test set.
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Figure 2: Effect of compound frequency on compound

translation error rate.

the training set. We also observe that the error rate

of PP compounds, 37.72%, is much higher than

the other two, 21.94% and 22.25%, which we will

discuss in detail in the following section.

6 Analysis

We conduct experiments to explore in what sit-

uations the model is error-prone by considering

compound frequency, compound length, compound

structure, atom frequency, atom co-occurrence, and

the complexity of external context.

6.1 Compound Frequency

Intuitively, compounds with higher frequencies in

the training set are easier to infer. We classify com-

pounds according to their frequency levels, includ-

ing many-shots (frequency higher than 10), few-

shots (frequency from 1 to 10) and zero-shot, and

show the error rate for each bucket in Figure 2. The

model translates all the many-shots compounds cor-

rectly. For few-shot compounds, translation error

rate increases to 5.00%, but is still much lower than

zero-shot compounds with an error rate of 27.53%.

The result suggests the model is good at memo-

rizing correspondence between sentence segments.

However, the model deteriorates severely when test

samples are unseen in the training set, which fur-

ther confirms model’s weakness in compositional

generalization (Lake and Baroni, 2018).
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Figure 3: Effect of compound length on compound

translation error rate.
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Figure 4: Effect of atom frequency on compound trans-

lation error rate.

6.2 Compound Length

As shown in Figure 3, the error rate grows with the

increase of compound length (i.e., the number of

atoms in a compound). Only 4.50% of the short-

est compounds are translated incorrectly, each of

which consists of a determiner and a noun. The

error rate increases to 13.72% when the compound

length grows to 3 atoms (e.g., “the smart lawyer”).

The longest compounds contain a determiner, a

noun, an adjective, a modifier and a preposition or

verb in each of them, e.g., “taking every special

chair he liked”. The error rate increases to 36.63%,

demonstrating that it is more difficult to generalize

in longer compounds, which contain richer seman-

tic information. We conjecture that if the range of

compound is further expanded, the error rate will

be much higher.

6.3 Atom Frequency

We empirically divide compounds into multiple

groups according to the minimum frequency of

their atoms, where each group consists of similar

numbers of compounds. The intuition is that the

atom with low frequency might be difficult to trans-

late and therefore hinders the whole compound

translation. We fix the compound length to 3 in

order to reduce effects of compound length.

As shown in Figure 4, the error rate has no strong
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Figure 5: Effect of atom co-occurrence on compound

translation error rate.

correlation with the atom frequency. This can be

because all atoms in our corpus are simple and rel-

atively frequent and thus it is easy for the NMT

model to memorize the semantics of most atoms.

Therefore, simply increasing atom frequency does

not enhance model’s generalization ability of novel

compounds. We observe similar patterns for com-

pounds of other lengths (Appendix A).

6.4 Atom Co-occurrence

Although the NMT model may never see a com-

pound, there can exist many local segments where

atoms co-occur. For example, in the unseen com-

pound “the smart lawyer”, “smart” and “lawyer”

may occur within some training sentences. Intu-

itively, the compounds of which atoms co-occur

more frequently may be translated better. We cal-

culate pointwise mutual information (PMI) and

compare error rates of compounds with positive or

negative mean PMI scores (MPMI):

MPMI(C) =
1

M

N−1X

i=1

NX

j=i+1

PMI(ai, aj), (1)

where ai is the i-th atom in the compound C, N is

the compound length, M is the number of possi-

ble combinations of two atoms, and PMI score is

computed as:

PMI(x, y) = log
p(ai, aj)

p(ai)p(aj)
, (2)

where the probabilities p(ai) and p(ai, aj) are ob-

tained by dividing the number of n-grams in which

one word or both words occur by the total number

of n-grams4.

We divide compounds into 4 groups by their

length and compare error rates within each group.

As shown in Figure 5, across all groups, the error

rates with positive mean PMI scores are lower than

those with negative ones, verifying our hypotheses.

4We use 5-gram here
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Figure 6: Compound translation error rates of different

patterns.

6.5 Linguistic Factors

Figure 6 shows the error rates of all compound

patterns in Table 3. The MOD atom exerts salient

influence on translation error rate. The error rate of

compounds with MOD is 19.78% higher than those

without on average. In contrast, adding ADJ into

compounds only increases error rate by 2.66%. The

major difficulty caused by MOD is word reorder-

ing. One can translate “the small dog” monotoni-

cally without adjusting word order. However, com-

pounds like “the dog he liked” require the model to

recognize “he liked” as MOD and put its translation

before that of “the dog” in Chinese. We find many

cases where the model translates such compounds

without reordering or breaking the connection be-

tween nouns and modifiers.

Across these groups, we can see that the error

rate of NP (Pattern 1.*) is generally lower than

that of VP (Pattern 2.*) and PP (Pattern 3.*). Such

phenomenon is more obvious for the patterns with-

out MOD. The reason is that compounds in Pat-

tern 1.* are generally shorter and contain less se-

mantic and syntactic information. However, the

error rates of Pattern 2.3 and 2.4 are lower than

other patterns with MOD (i.e., Pattern 1.3, 1.4, 3.3

and 3.4), indicating the model performs better in

“V+DET(+ADJ)+NN+MOD”. This can be because

under certain situations the MOD can be useful for

correctly translating verbs, which are more com-

monly seen in the training set, e.g., “found the

chair on the floor”.

We also observe that compounds of PP (Pat-

tern 3.*) are more difficult to translate compared

with VP (Pattern 2.*), although both types of com-

pounds share the same compound length. In the

training set, verbs typically have consistent trans-

lations, whereas the meanings of prepositions vary

with contexts. Therefore prepositional compounds

are more difficult to translate as more context infor-
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Figure 7: Effect of external context on compound trans-

lation error rate.

mation is required to ground their meanings.

6.6 Effect of External Context

Due to the nature of NMT, the semantic repre-

sentation of each compound is context-aware. In-

tuitively, translation of compounds is also influ-

enced by external context, which is sentential in

our case but can also be document-level in prac-

tice. We investigate effects of context lengths

and sentence comprehension difficulty. In partic-

ular, the context length is calculated by subtract-

ing the sentence length by the number of words

in the compound. Comprehension difficulty of

the training sentences which provide contexts, is

quantified by the dependency distance (Liu, 2008):

MMD(x) = 1

N−1

PN
i Di, where N is the number

of words in the sentence and Di is the dependency

distance of the i-th syntactic link of the sentence.

The results are shown in Figure 7. The trans-

lation error rate increases stably with the context

length as well as the dependency distance. These

observations demonstrate that the generalization

for novel compounds correlates strongly with con-

text complexity. Sentences with higher dependency

distances are harder for model to comprehend dur-

ing training. Given that our test sentences are re-

stricted to 20 words, compositional generalization

can be more challenging in practice where average

sentence lengths can be much longer.

7 Conclusion

We proposed a dedicated parallel dataset for mea-

suring compositional generalization of NMT and

quantitatively analyzed a Transformer-based NMT

model manually. Results show that the model ex-

hibits poor performance on novel compound trans-

lation, which demonstrates that the NMT model

suffers from fragile compositionality, and it can be

easily overlooked under transitional metrics. To

the best of our knowledge, we are the first one to

propose a practical benchmark for compositionality

of NMT, which can be a testbed for models tailored

for this specific problem.

8 Ethics Consideration

As mentioned, we collected our data from Story

Cloze Test and ROCStories Corpora that all are

public to academic use, and they contain no sensi-

tive information (Mostafazadeh et al., 2016, 2017).

The legal advisor of our institute confirms that the

sources of our data are freely accessible online

without copyright constraint to academic use. Our

data construction involves manual annotation. An-

notators were asked to post-edit machine transla-

tion and filter out samples that may cause ethic

issues, which do not involve any personal sensitive

information.

We hired 4 annotators who have degrees in En-

glish Linguistics or Applied Linguistics. Before

formal annotation, annotators were asked to an-

notate 100 samples randomly extracted from the

dataset, and based on average annotation time we

set a fair salary (i.e., 32 dollars per hour) for them.

During their training annotation process, they were

paid as well.
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A Atom Frequency

For compounds of other lengths, we also compute

their error rates with respect to minimum atom

frequency. As shown in Figure 8, 9 and 10, the

error rate does not correlates with atom frequency

across all compound lengths.
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Figure 8: Effect of atom frequency with compound

length fixed to 2.
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Figure 9: Effect of atom frequency with compound

length fixed to 4.
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Figure 10: Effect of atom frequency with compound

length fixed to 5.

B Data Statistics

Table 7 and Table 8 lists statistics of several mono-

lingual data sources, compared with the data source

(ROC-Filter) used in constructing the CoGnition

dataset. We can see that our dataset has both shorter

sentences and vocabulary made up of more fre-

quent words.

Data
Property

Vocab #Tokens #Sents

WMT17 En-Zh 1,201,752 518,286,577 20,616,495

IWSLT17 En-Zh 70,950 4,715,201 231,266

ROC-Original 42,458 5,283,521 532,093

ROC-Filter 2,000 2,096,524 216,246

Table 7: Statistics of data sources: vocabulary size,

number of tokens and number of sentences.

Data
Property

Avg Len Avg Freq Min Freq

WMT17 En-Zh 25.1 431.3 1

IWSLT17 En-Zh 20.4 66.5 1

ROC-Original 9.3 124.4 1

ROC-Filter 9.7 1048.3 35

Table 8: Statistics of data sources: average sentence

length, average token frequency and minimum token

frequency.

C Lexicon

Part of the lexicon for automatic evaluation is

shown in Table 9.

Atom Lexical Translation

dog ◊/¨

doctor ;�

sandwich  �ª

hat =

waiter �°X

lawyer ã�

peanut ±�

farmer ú+/ú:;/ú8⇥:/ú⌘

small ✏

red ¢

dirty ✏

lazy “

smart j�/�z/z˝
the -

every œ/@ 

any ˚U

another Ê/»/ç/ÿ/+

each œ

he liked ÷ú"Ñ

at the store óÃ/Fó

Table 9: Lexicon for automatic evaluation.


