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Abstract

Deep compression refers to removing the redundancy

of parameters and feature maps for deep learning models.

Low-rank approximation and pruning for sparse structures

play a vital role in many compression works. However,

weight filters tend to be both low-rank and sparse. Ne-

glecting either part of these structure information in previ-

ous methods results in iteratively retraining, compromising

accuracy, and low compression rates. Here we propose a

unified framework integrating the low-rank and sparse de-

composition of weight matrices with the feature map recon-

structions. Our model includes methods like pruning con-

nections as special cases, and is optimized by a fast SVD-

free algorithm. It has been theoretically proven that, with a

small sample, due to its generalizability, our model can well

reconstruct the feature maps on both training and test data,

which results in less compromising accuracy prior to the

subsequent retraining. With such a “warm start” to retrain,

the compression method always possesses several merits:

(a) higher compression rates, (b) little loss of accuracy,

and (c) fewer rounds to compress deep models. The exper-

imental results on several popular models such as AlexNet,

VGG-16, and GoogLeNet show that our model can signif-

icantly reduce the parameters for both convolutional and

fully-connected layers. As a result, our model reduces the

size of VGG-16 by 15×, better than other recent compres-

sion methods that use a single strategy.

1. Introduction

Deep learning has delivered significant improvements in

several fields including image classification [15, 23, 25, 9]

and object detection [21]. However, the intensive computa-

tional and memory requirements of most deep models limit

their deployment on daily use devices with low storages

and computing capabilities such as cellphones and embed-

ded devices. This limitation has motivated researchers to

exploit the intrinsic redundancy found in parameters and

feature maps in deep models. Generally, this redundancy

is reflected in the structured nature of the weight matrices

and feature maps [3, 24]. By removing the redundancy,

resources can be saved without affecting the capacity and

generalizability of most deep models.

Sparsity and low-rankness independently acted as vital

structure assumptions in the previous work for redundancy

removal. First, pruning is a straightforward strategy to re-

move correlated parameters and co-adapted neurons, and to

obtain sparse structures. For example, LeCun et al. [16]

used the second derivative information to guide the removal

of unimportant weights. Han et al. [8] repeatedly retrained

a sparsified model with unimportant weights removed us-

ing a hard thresholding method. He et al. [10] used mea-

sures like l1 norm of out-linked weights to identify unim-

portant neurons. Mariet and Sra [19] sampled the most un-

correlated neurons by the determinant point processes, and

removed other highly correlated neurons. Another struc-

ture assumption is the low-rankness. Weights in the convo-

lutional and fully connected layers can be reduced by ap-

proximating low-rank filters [4, 27, 14]. Zhang et al. [30]

estimated a low-rank subspace for the feature vectors that

resulted in weight matrix decomposition, parameter reduc-

tion, and faster testing time.

However, we have observed that independently applying

these assumptions is not sufficient and appropriate. Most

previous work suffers from iteratively retraining, compro-

mising accuracy, and low compression rates. Deep com-

pression should thus process much richer structural infor-

mation. We note that the weight filters usually share smooth

components in a low-rank subspace, and also remember

some important information represented by weights that are

sparsely scattered outside the low-rank subspace. The re-

sulting feature maps also contain the smooth components

[30] and the spiky changes that represent the uniqueness of

each feature.

Fig.1 well explains our intuition. We show the filters in

the first layer of AlexNet. The 11×11×3×96 filters are rep-

resented by 96 3-channel images, rescaling the value range

of the weights to [0,255]. The colors can reflect the patterns

in the filters. As shown in Fig.1(a) and Fig.1(b), using the
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(a) (b) (c) (d)

Figure 1. (a) Filters in the first layer of AlexNet (from Caffe Model Zoo). (b) Low-rank and sparse approximation using the proposed

method. Here, rank is 12 (for L) and ratio of non-zero entries is 12.5% (for S). We reduce the number of parameters by 4×. (c) Low-rank

components of the approximated filters. (d) Sparse components of the approximated filters. Here, for better visualization, we add a constant

upon the whole sparse matrix.

low-rank and sparse decomposition, the resulting filters can

well approximate the original counterpart when the number

of paramters is reduced by 4×. Specifically, the low-rank

component retains the smooth patterns in the filters, and the

sparse component keeps some important patterns, such as

directionality of the filters.

Therefore, we propose a single strategy to decompose

weight matrices to their low-rank and sparse components.

The novelty is a unified framework which regards the low-

rank approximation and pruning connections as special

cases, and reveals more insights about the richer structure

information of parameters. With such proper structure as-

sumptions, this model alleviates the compromising accu-

racy prior to retraining and achieves higher compression

rate without loss of accuracy.

We integrate an asymmetric data reconstruction term into

the low-rank and sparse decomposition. Further, we theo-

retically prove that, due to its generalizability, the proposed

model guarantees the reconstructed feature maps of training

and test data are not bad even when only a reasonable small

sample is provided. Small reconstruction errors mean high

accuracies for very deep compression which provides good

initializations for retraining. Therefore, Stochastic Gradient

Descent (SGD) solvers do not get stacked in bad local min-

ima and retain the original1 accuracy even with high com-

pression rate. This can reduce the number of rounds2 to

compress the entire network and improve compression.

Motivated by the greedy bilateral smoothing, or briefly

GreBsmo [32], for the low-rank and sparse decomposition,

we develop the greedy bilateral decomposition (GreBdec)

for deep model compression. Specifically, GreBdec uses

1In this paper, the word “original” refers to the well-trained reference

model prior to compression. For example, the original accuracy means the

accuracy of the uncompressed deep model.
2A deep model usually needs to be repeatedly compressed in several

rounds. Weight matrix decompositions for selected layers followed by a

retraining process is one round.

only QR decompositions [5] and random projections, lead-

ing to a lower computational complexity compared with

the traditional generalized Singular Value Decomposition

(SVD) method [28].

Our experimental results demonstrate that our approach

delivers higher compression rates in representative models

compared to [8], the state-of-the-art compression method.

The low sparsity rates and very low-rankness of the compo-

nents result in a model that has a high potential for accel-

eration. Specifically, the sparse rates are lower than most

previous work, which enables more efficient usage of the

sparse matrix-vector multiplication operators.

2. Related Work

Compression by pruning. Han et al. [8] proposed a

simple but effective pruning method that used a hard thresh-

old determined by the standard deviation of the weights

multiplied by a scalar. This threshold helps to remove the

least important weights with small absolute values. To get

sparser weight matrices, iterative hard thresholding was also

applied. A special case of our model is that when we ignore

the low-rank and data reconstruction terms, our method re-

duces to the simple hard thresholding method as in [8].

However, our approach has two main advantages over

[8]. First, because of our feature map reconstruction term,

our model provides a better initialization for retraining. We

can usually compress all the convolutional layers in models

like AlexNet and VGG-16 in one round rather than itera-

tively pruning and retraining. Second, by exploiting both

the smooth components and important weights, we further

reduce the weights in the convolutional layers, and the re-

sulting components are much sparser than those in [8]. This

is of potential values for accelerating the inference stages in

deep models.

Compression by low-rank approximation. Reducing
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parameter dimensions by low-rank approximation saves

storage and simultaneously reduces time complexity dur-

ing training and testing. Most methods [4, 12] approximate

a tensor by minimizing the reconstruction error of the orig-

inal parameters. However, these approaches tend to accu-

mulate errors when multiple layers are compressed sequen-

tially, and the output feature maps deviate far from the orig-

inal values with the increase of compressed layers.

Here we regard this low-rank decomposition as a special

case of our proposed model. Viewing the output features

as a linear matrix product of the weight matrix and input

features, we can treat the convolutional layer and the fully

connected layer in the same way. Furthermore, the pro-

posed model is integrated with a feature map reconstruction

term which helps to alleviate the accumulated errors and

obtain a better initialization for the subsequent retraining.

Although Zhang et al. [30] also incorporate the feature map

reconstruction, we are completely different in the following

two aspects. First, Zhang et al. [30] minimize the recon-

struction error to find an approximate low-rank subspace for

the feature vectors while our model exploits the reconstruc-

tion error to estimate the low-rank and sparse components

for weight matrices. Second, Zhang et al. [30] are mainly

concerned with acceleration. As shown in their experiment

results, the computational complexity based rank selection

criteria often leads to large ranks for layers with more pa-

rameters, which results in less compression. By contrast,

we focus more on deep compression for saving the storage.

Due to the high sparsity and the low-rank approximation,

the proposed model also possesses the potential for acceler-

ation, which is achievable with further careful studies in the

convolution with very sparse kernels.

Compression by other strategies. Weight sharing and

quantization methods assume that many weights have sim-

ilar values, and can thus be grouped in order to reduce

the number of free parameters. Grouping methods include

hashing [2], k-means and vector quantization [7, 6], and Bi-

naryNets [20]. [29] presented an effective CNN compres-

sion approach in the frequency domain using the discrete

cosine transform and quantization strategies. A different

view is knowledge distillation that uses large and mature

networks to teach a small model to learn good representa-

tions. For example, Hinton et al. [11] proposed using the

output soft distributions as the knowledge of teacher net-

works. Romero et al. [22] also utilized the intermediate rep-

resentations as hints to enrich the knowledge of the teacher.

Luo et al. [18] claimed that neurons usually occupy more

compact information to guide face model compression.

In this paper, we emphasize that the proposed method is

orthogonal to compression techniques such as weight shar-

ing , quantization, and Hoffman coding [7]. Consequently,

our model can be combined with these approaches for fur-

ther compression.

3. Deep Compression Model

Deep models are usually over-parameterized [3], with

redundancy often resulting in huge storage and computa-

tional resource demands. But this redundancy also provides

a opportunity to compress deep model without compromis-

ing accuracy provided that the deep network redundancy

is properly removed. The weight matrix components usu-

ally reside in low-rank subspaces but some important en-

tries are sparsely scattered in the weight matrices and mark

the uniqueness of different filters. Therefore, we present

a unified framework for deep compression by the low-rank

and sparse decomposition. Our approach enjoys less infor-

mation loss and produces better reconstructions for feature

maps compared to SVD and pruning. After compression

using low-rank and sparse decompositions, the model can

be retrained to retain the original accuracy.

In deep model, the output response of a convolutional or

fully connected layer can be obtained by

y = Wx,

where x ∈ R
k is the input feature vector, W ∈ R

m×k is

the weight matrix, and y ∈ R
m is the response. To explore

a low-rank subspace combined with a sparse structure for

the weight matrix W , we assume that W ≈ L+S, where L
is a low-rank component and S is a sparse matrix. Then, to

compress the weight matrix, we have the following model:

min
L,S

1

2
‖W − L− S‖2F ,

s.t. rank(L) ≤ r,

card(S) ≤ c,

where rank(L) denotes the rank of L and card(S) denotes

the cardinality of matrix S. This problem can be efficiently

solved by “GoDec” [31]. We did not use “GreBsmo [32]

because the parameter of soft thresholding is very difficult

to be tuned to obtain the desired sparsity rate. Now suppose

L = UV where U ∈ R
m×r and V ∈ R

r×k. We find

that the total number of parameters drops from mk to (m+
k)r + c. If r and c are small enough, many parameters can

be reduced.

This decomposition is easily implemented. Take the con-

volutional layer as an example, we first concatenate two

convolutional layers to implement the low-rank part. V
represents convolutional filters, which fix the kernel sizes

while changing the number of output feature maps to r. U
indicates convolutional filters whose kernel sizes are equal

to 1 with the input channel number equal to r. To obtain

the final result, we sum the result of the low-rank part and

the sparse convolutional layer where we add a mask to the

original filters to help discard unmasked gradients during

back-propagation.
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However, a problem exists in this naı̈ve decomposition

method. If we sequentially and independently apply this

naı̈ve decomposition to several layers prior to a retraining,

the approximation error of each layer will be accumulated.

Thus, to alleviate this, an asymmetric data reconstruction

term is incorporated. We consider a layer whose input fea-

ture map is not precise due to the approximation of the pre-

vious layer/layers. To abuse the notation, we still denote

the approximate input as X = [x1, x2, · · · , xn]. Then, we

use this approximate input to reconstruct the original output

feature vectors Y = [y1, y2, · · · , yn]. Our refined model is:

min
L,S

1

2n
‖Y − (L+ S)X‖2F ,

s.t.
1

2
‖W − L− S‖2F ≤ γ,

rank(L) ≤ r,

card(S) ≤ c.

(1)

This “asymmetric” feature map reconstruction process

ensures the optimal approximation of weight matrices and

feature maps in the current layer and reduces accumulated

errors due to the approximate input.

Thanks to this asymmetric data reconstruction approach,

the compressed model only suffers from a small drop in ac-

curacy without retraining in some cases. For example, a

5× compression rate for all convolutional layers with ker-

nel size larger than 1 in GoogLeNet [25] leads to only a

3.7% decrease in testing accuracy (Top-5). We do not sug-

gest that this process results in absolutely no loss of accu-

racy; no method can guarantee this when compression rates

are very high. But, we can retrain the models, which finally

enjoy high compression rates without loss of accuracy.

A special case. We consider a simplified model without

the low-rank component:

min
L,S

1

2n
‖Y − SX‖2F ,

s.t.
1

2
‖W − S‖2F ≤ γ,

card(S) ≤ c.

(2)

Finding a solution to this model is equivalent to minimiz-

ing 1

2n
‖Y − SX‖22 + λ

2
‖W − S‖2F , where λ is a Lagrange

multiplier. If we ignore the reconstruction term, the hard

thresholding method can be applied to find c entries with

the largest absolute values, similar to [8]. Otherwise, the

iterative hard thresholding [1] method can be used to find a

solution.

Dimension reduction layers, for example, the convolu-

tional layers with kernel size 1 × 1 in GoogLeNet, are in-

tegrated into many state-of-the-art deep models [25, 26]. In

these layers, another low-rank component is not necessary

to be found. Therefore, in our method, we apply the simpli-

fied model shown above to prune unimportant weights and

obtain their sparse structures.

4. Optimization

In this section, we explore and exploit the “GreBsmo”, a

fast SVD-free “greedy bilateral” scheme, for the proposed

model. Normally, problem (1) can be solved with an al-

ternating optimization strategy on the equivalent objective

function 1

2n
‖Y − (L+S)X‖22 + λ

2
‖W −L−S‖2F ; that is:

{

Li = TruncatedGSVD(BiA
†, r);

Si = PΩ(M), and M = Si−1 − η(ASi−1 − Ci),
(3)

where A = λI + 1

n
XX⊤; A† is the Moore-Penrose

Pseudoinverse of A; Bi = λ(W − Si−1) +
1

n
(Y X⊤ −

Si−1XX⊤); and Ci = λ(W −Li)+
1

n
(Y X⊤−LiXX⊤);

Ω : |Mp,q∈Ω| 6= 0 and ≥ |Mp,q∈Ω̂
|, |Ω| ≤ c, and Ω̂ is the

complement of Ω. TruncatedGSVD(·, r) refers to the Trun-

cated Generalized Singular Value Decomposition in which

only r left/right singular vectors with the largest singular

values are calculated [28].

However, the generalized SVD involves several SVDs in

each iteration, which takes a lot of time when approximat-

ing large weight matrices, which are common in deep mod-

els. Therefore, developing a fast algorithm is non-trivial.

Greedy Bilateral Decomposition (GreBdec). In this

paper, to solve the low-rank and sparse decomposition with

a feature map reconstruction term, the “greedy bilateral”

scheme [32] is explored and exploited. This greedy scheme

uses only QR decompositions, random projections, and ma-

trix multiplications, which reduces computational complex-

ity and is very efficient.

To develop a SVD-free algorithm, we first modify model

(1) using the bilateral factorization form of L; that is, letting

L = UV . Then we have

min
U,V,S

1

2n
‖Y − (UV + S)X‖2F +

λ

2
‖W − UV − S‖2F ,

s.t. card(S) ≤ c,
(4)

where U ∈ R
m×r, V ∈ R

r×k, and S ∈ R
m×k.

Alternately optimizing U, V and S yields the following

updating rules:











Ui = BiV
⊤
i−1(Vi−1AV ⊤

i−1)
†;

Vi = (U⊤
i Ui)

†U⊤
i (BiA

†);

Si = PΩ(M), and M = Si−1 − η(ASi−1 − Ci),

(5)

where Bi = λ(W −Si−1)+
1

n
(Y X⊤−Si−1XX⊤), Ci =

λ(W−UiVi)+
1

n
(Y X⊤−UiViXX⊤). Here, A is full-rank

if a proper λ is given.
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Updating rules in (5) have two shortcomings. First, a lot

of matrix inversions and multiplications are involved. Sec-

ond, r columns (rows) need to be updated in all iterations.

These issues lead to a great computational complexity.

Since only the product UV determines the objective

function, to avoid the mentioned problems, we can find a

pair of (U, V ) that have the same product as (Ui, Vi) in (5)

but can be computed more efficiently. According to (5), we

have

UiVi = Ui(U
⊤
i Ui)

†U⊤
i (BiA

†). (6)

This implies that the product UiVi equals the orthogonal

projection of BiA
† onto the column space of Ui. According

to (5), the column space of Ui can be represented by arbi-

trary orthogonal bases for the columns of BV ⊤
i−1

because

of the full rank of matrix A. By QR decomposition, we

have BiV
⊤ = QR, then the product UiVi = PQ(BiA

†) =
QQ⊤(BiA

†), where PQ· denotes the orthogonal projection

of a matrix on the column space of Q. Therefore, if we

replace Ui and Vi with Q and Q⊤(BiA
†), we get a faster

updating rule; that is,

{

Ui = Q,QR(BiV
⊤) = QR;

Vi = Q⊤(BiA
†).

(7)

Here updating S remains the same with that in (5). For a

better result, we can repeat (7) several times before updating

S.

Instead of updating r columns (rows) at all iterations, we

apply the greedy method in [32] to update the U and V . We

start from a small rank (for example, rank 1). Then, at each

iteration, we select extra ∆r rows and concatenate them into

V . These ∆r rows are chosen to maximize the decrease in

the objective value. We have

∂L
∂UV

= AUV +B, (8)

where B = λ(W − S) + 1

n
(Y X⊤ − SXX⊤). Thus, the

∆r rows are the top ∆r right singular vectors of the matrix

U⊤ ∂L
∂UV

, which can be approximated by a fast random pro-

jection R⊤U⊤ ∂L
∂UV

, where R ∈ R
r×∆r is a random matrix.

This greedy selection enables a “warm start” for higher-

rank optimization and ensures faster computation compared

to updating r columns (rows) at all iterations, not to men-

tion updating L by generalized SVD. We summarize our

approach in Algorithm 1.

5. Theoretical Analysis

Given an input feature x, we have the reconstruction er-

ror of its output feature vector y:

fU,V,S(x, y) = ‖y − (UV + S)x‖22,

Algorithm 1 Greedy Bilateral Decomposition (GreBdec)

Input: X , W , Y , target rank r, rank step size ∆r, objective

function f , and power K. Initial rank r0 and initial

V = V0.

Output: U , V and S.

1: while unconvergence do

2: for i = 0 to K do

3: Update U and V using equation (7).

4: end for

5: Update S using last equation in (5).

6: Calculate the top ∆r right singular vectors v or ran-

dom projections of U⊤ ∂L
∂UV

.

7: Set V := [V, v].
8: end while

where ŷ = (UV + S)x is the reconstructed feature vector

of the compressed model. During compression, we hope to

find a decomposition so that for any pair (y, ŷ) in the train-

ing and test datasets, this reconstruction error can be small,

which ensures that the accuracy will not drop too much. To

this end, we need to minimize the expected reconstruction

error, which is defined as:

R(U, V, S) = Ex,y[fU,V,S(x, y)].

However, in practice, we cannot access the test data. The

worse case is that, the training dataset, such as ImageNet, is

often so large that using all training data to feed the recon-

struction term is not permitted by the limited computational

resources. Thus, we try to find a solution by minimizing the

empirical reconstruction error on a finite number of exam-

ples; that is,

Rn(U, V, S) =
1

n

n
∑

i=1

fU,V,S(xi, yi),

where x1, · · · , xn ∈ R
k and y1, · · · , yn ∈ R

m correspond

to the input and output feature vectors, respectively, and n
is the sample size.

If the empirical reconstruction error can quickly con-

verge to the expected one when increasing the sample size

n, then the proposed model has good generalizability. After

minimizing the empirical reconstruction error, we can ex-

pect that the feature map reconstruction on the unseen data

is also good. Therefore, we provide a worst case analysis

for the expected reconstruction error by upper bounding the

gap between the empirical and expected reconstruction er-

ror.

We denote T = {{U, V, S}|U ∈ R
m×r;V ∈

R
r×k;S ∈ R

m×k, card(S) ≤ c; ‖W − UV −
S‖F ≤ γ} as the set of all possible decomposi-

tions, {Un, Vn, Sn} = argmin{U,V,S}∈T Rn(U, V, S),
and {U∗, V ∗, S∗} = argmin{U,V,S}∈T R(U, V, S), where
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R(U∗, V ∗, S∗) is the optimal expected reconstruction error.

By minimizing the empirical reconstruction error, we try to

search for a {Un, Vn, Sn} in T such that R(Un, Vn, Sn) is

close to the expected reconstruction error R(U∗, V ∗, S∗).
The proposed model is claimed to be consistent if the defect

R(Un, Vn, Sn) − R(U∗, V ∗, S∗) converges to zero when

sufficient examples are given. Here we define the general-

ization error of this model as:

sup
{U,V,S}∈T

|R(U, V, S)−Rn(U, V, S)|.

Similar to the analysis method in [17], the error bounds

are derived as follows:

Theorem 1. Suppose that the reconstruction error function

fU,V,S for any {U, V, S} ∈ T has a range contained in

[0, b]. There exist constants c1 ≥ 1, α ≥ 0 and s ≥ 0 such

that, for any δ ∈ (0, 1), with probability at least 1 − δ, we

have

R(Un, Vn, Sn)−R(U∗, V ∗, S∗)

≤ 2 sup
{U,V,S}∈T

|R(U, V, S)−Rn(U, V, S)|

≤ 2b

√

(mk + (m+ k)r) ln (4nc1β) + ln 1/δ

2n
+

4

n
,

where β = [(
√
kr +

√
mr)c1s +

√
2cs +

√
krαc1 +√

cc21α(
√
mr +

√
kr +

√
2) +

√
2cc1α]α.

Remark 1. More discussions about the universal con-

stants c1, α, and s can be found in the Supplementary Ma-

terial. They are introduced to bound {U, V, S}, input and

output feature vectors.

Remark 2. According to Theorem 1, we upper bound

the generalization error with the order of O(
√

lnn
n

). There-

fore, as the sample size n increases, the gap between these

two reconstruction errors converges to 0, and {Un, Vn, Sn}
converges to {U∗, V ∗, S∗}. This result implies we only

require a reasonable small sample to solve the proposed

model, which is supported by our empirical experiments

that only 3,000 training images are employed. In prac-

tice, by minimizing the empirical reconstruction error us-

ing GreBdec, the obtained empirical reconstruction error of

feature maps is often small. This indicates that the feature

map reconstruction error of the unseen data in the training

and test datasets is also not large according to our theorem.

6. Experiments

In this section, we compress several frequently used con-

volutional neural networks (CNNs). Test accuracies (Top-1

and Top-5) on ILSVRC2012 validation dataset are reported

in order to evaluate the performances of deep compression

Table 1. Compression rates for deep networks. O: Reference net-

work. C: Compressed network. R: Compression rate. #W : Total

number of weights in the networks.

Network Top-1 Top-5 #W R

AlexNet(O)

AlexNet(C)

57.22%

57.26%

80.27%

80.31%

61M

6M
10

VGG-16(O)

VGG-16(C)

68.50%

68.75%

88.68%

89.06%

138M

9.7M
15

GoogLeNet(O)

GoogLeNet(C)

68.70%

67.30%

88.90%

88.11%

7M

1.5M
4.5

methods. We first show the overall parameters and accura-

cies before and after compression (Table 1). Then, we pro-

vide further details about how we compress each network,

and by applying low-rank and sparse structure assumptions,

we reduce the size of several networks by 4.5× to 15×,

which surpasses many recent compression methods. Fi-

nally, the compression results on the convolutional layers

are analyzed. Compared to representative state-of-the-art

methods, our approach shows significant potential for com-

pressing convolutional layers, which is crucial for the most

advanced CNNs such as inception models [25, 26].

All our experiments are implemented on Caffe [13]. To

implement the sparse layers, we add masks on original

weight matrices to discard the parameters (resp. gradients)

during the inference (resp. training) stage. Our reference

models are from the Caffe Model Zoo, and all accuracies

are measured without data augmentation.

In our experiments, we fixed the parameter η = 10−3

and, empirically, we let λ = 10tσmax(
1

n
(XX⊤)), where

σmax(·) denotes the largest singular value; we tune t to ob-

tain the best result. We randomly sampled 3,000 training

images to optimize the proposed model, which is sufficient

to reconstruct the feature maps with only small errors. This

is in accordance with our theoretical analysis.

6.1. Analysis on the Whole Networks

AlexNet and VGG-16 on ImageNet. We first examine

two popular deep networks, AlexNet [15] and VGG-16

[23]. To compress them, we follow the strategy in [8] and

choose a three-phase scheme: first, we compress all the con-

volutional layers and retrain them with fixed parameters in

the fully connected layers. Second, we do the opposite.

Third, when the accuracy stops increasing, we retrain the

entire model with small learning rates 10−5 or 10−6. In the

first phase, we do not need iteratively compressing and re-

training as in [8]. All convolutional layers are compressed

to the desired compression rates in one round.

Both AlexNet and VGG-16 have 3 fully connected lay-

ers, which occupy the most storage space. The proposed

model compresses these layers as well as most state-of-

the-art methods. Furthermore, our method achieves higher

compression rates for the convolutional layers compared

with methods like [8]. The results are shown in Table 2
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Table 2. Compression statistics for AlexNet. L: Low-rank. S:

Sparse. R: Compression rate.

Layer #W #L/#W #S/#W R

conv1 35K 47% 38% 85%

conv2 307K 11% 10% 21%

conv3 885K 12% 10% 22%

conv4 663K 12% 10% 22%

conv5 442K 11% 10% 21%

fc6 38M 0% 8% 8%

fc7 17M 0% 9% 9%

fc8 4M 0% 24% 24%

Total 61M – – 9.9% (10×)

Table 3. Compression statistics for VGG-16. L: Low-rank. S:

Sparse. R: Compression rate.

Layer #W #L/#W #S/#W R

conv1 1 2K 0% 100% 100%

conv1 2 37K 10% 10% 20%

conv2 1 74K 12% 11% 23%

conv2 2 148K 11% 10% 23%

conv3 1 295K 12% 12% 24%

conv3 2 590K 11% 11% 22%

conv3 3 590K 11% 11% 22%

conv4 1 1M 12% 12% 24%

conv4 2 2M 11% 11% 22%

conv4 3 2M 11% 11% 22%

conv5 1 2M 11% 11% 22%

conv5 2 2M 11% 11% 22%

conv5 3 2M 11% 11% 22%

fc6 103M 0% 4% 4%

fc7 17M 0% 4% 4%

fc8 4M 0% 20% 20%

Total 138M – – 6.9% (15×)

and 3, where # represents the number of parameters and

W is the original weight matrix.

GoogLeNet on ImageNet. Our method can powerfully

compress traditional networks with fully connected layers,

which usually dominate the model size. The most recent

networks such as inception models, however, tend to re-

place the fully connected layer with a convolutional layer

or global average pooling layer to save storage. Thus, how

to compress the most common convolutional layers in these

models becomes the critical problem. Testing our method

on GoogLeNet, it shows that our model is good at removing

redundancy in convolutional layers (Table 4). The number

of parameters is reduced by a factor of 4.5× with only a

small decrease of accuracy. Here we first compress the con-

volutional layers with kernel size larger than 1 in the first

round. Then, we iteratively reduce the parameters in other

layers using the simplified model.

Comparison of compression methods. To verify the

overall performance of our method, our algorithm is com-

pared to network pruning method [8], low-rank tensor

decomposition method [27], and Trucker decomposition

Table 4. Compression statistics for GoogLeNet. L: Low-rank. S:

Sparse. R: Compression rate.

Module #W #L/#W #S/#W R

conv1 1 9K 0% 100% 100%

conv2 115K 57% 26% 83%

inception 3a 164K 8% 13% 21%

inception 3b 389K 9% 13% 22%

inception 4a 376K 6% 16% 22%

inception 4b 449K 7% 15% 22%

inception 4c 510K 8% 15% 23%

inception 4d 605K 8% 14% 22%

inception 4e 868K 8% 15% 23%

inception 5a 1M 6% 16% 22%

inception 5b 1M 7% 15% 22%

fc 1M 0% 20% 20%

Total 7M – – 22% (4.5×)

Table 5. Comparison of overall compression rates. O: Reference

model. R: Compression rate. #W: The total number of weights in

the networks.
Network Top-1 Top-5 #W R

AlexNet (O) 57.22% 80.27% 61M 1×
Tai et al. [27] – 79.66% 12.2M 5×
Kim et al. [14] – 78.33% 11M 5.46×
Han et al. [8] 57.23% 80.33% 6.7M 9×
GreBdec 57.26% 80.31% 6M 10×
VGG-16 (O) 68.50% 88.68% 138M 1×
Tai et al. [27] – 90.31% 50.2M 2.75×
Kim et al. [14] – 89.40% 127M 1.09×
Han et al. [8] 68.66% 89.12% 10.3M 13×
GreBdec 68.75% 89.06% 9.7M 15×
GoogLeNet (O) 68.70% 88.90% 6.9M 1×
Tai et al. [27] – 91.79% 2.4M 2.84×
Kim et al. [14] – 88.66% 4.7M 1.28×
GreBdec 67.30% 88.11% 1.5M 4.5×

method [14]. These works represent the start-of-the-art

compression methods which use a single structure assump-

tion; that is, sparsity [8] or low-rankness [27, 14]. Shown

in Table 5, by appropriately applying both the low-rank

and sparse structures, the proposed method achieves higher

compression rates for the entire networks.

6.2. Analysis on the Convolutional Layers

Comparsion of compression methods. To reduce the

number of parameters and exploit the spatial structure of

representations, the state-of-the-art deep learning models

such as GoogLeNet, Inception V3, and ResNet tend to re-

place the fully connected layers by some other types of lay-

ers, such as the convolutional layers. Thus, compressing

the convolutional layers is crucial. By incorporating the

proper structures of weight matrices, our method signifi-

cantly reduce the parameters for the convolutional layers.

We address this by analyzing the compression results of the

convolutional layers. As shown in Fig.2, our method al-
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(a) Comparison on VGG-16

(b) Comparison on AlexNet

Figure 2. Comparison of compression rates on the convolutional

layers on AlexNet and VGG-16. x-axis is the percentage of the

total number of original weights.

most doubles the compression rates on many convolutional

layers compared to the state-of-the-art pruning method [8].

The following discussion also provides some insights about

the advantages of the low-rank and sparse decomposition.

Discussion. Low-rank and sparse decompositions usu-

ally result in smaller reconstruction errors of output features

compared with SVD and pruning. This also motivates the

idea that weight matrices in deep models can be better rep-

resented by its low-rank and sparse components, and we

can compress deep models by low-rank and sparse decom-

positions. We verify this by evaluating the performances

of compressed models prior to retraining. This experiment

is based on the VGG-16 model [23]. We compress all the

convolutional layers by different compression rates, and an-

alyze the corresponding test accuracies prior to retraining

are shown in Fig.3. It can be seen that low-rank and sparse

decompositions (“GreBdec” and “GoDec”) result in larger

gains in test accuracies when the compression rate is high.

(a) Top-1 Accuracy

(b) Top-5 Accuracy

Figure 3. Testing accuracy (without retraining) comparison be-

tween the proposed method “GreBdec”, “GoDec” [31], SVD and

pruning [8]. x-axis is the percentage of the total number of param-

eters in the convolutional layers.

The effectiveness of the feature map reconstruction term is

also highlighted by the higher accuracies of our model com-

pared to “GoDec”.

7. Conclusion

Here we propose a unified deep compression frame-

work that decomposes weight matrices into their low-rank

and sparse components. Compared to traditional SVDs

and pruning methods, the proposed model significantly im-

proves the performance prior to retraining, especially when

feature map reconstructions are integrated into the frame-

work. This high performance provides a better initializa-

tion for the subsequent retraining, which helps the proposed

model to achieve high compression rates without loss of ac-

curacy for many popular models. We can save at most 15×
storage space, which beats many recent methods using a

single strategy.
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