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Abstract. When it is desired to transmit redundant data over an in-
secure and bandwidth-constrained channel, it is customary to first com-
press the redundant data and then encrypt it for security reasons. In this
paper, we investigate the novelty of reversing the order of these steps,
i.e. first encrypting and then compressing. Although counter-intuitive,
we show surprisingly that through the use of coding with side infor-
mation principles, this reversal in order is indeed possible. In fact, for
lossless compression, we show that the theoretical compression gain is
unchanged by performing encryption before compression. We show that
the cryptographic security of the reversed system is directly related to
the strength of the key generator.

1 Introduction

Consider the problem of transmitting redundant data over an insecure,
bandwidth-constrained communications channel. It is desirable to both com-
press and encrypt the data. The traditional way to do this is to first compress
the data to strip it of its redundancy followed by an encryption of the compressed
bitstream. In this paper, we investigate the novelty of reversing the order of these
steps, i.e. first encrypting and then compressing, and the effect of that reversal
on the compression efficiency and the cryptographic security.

We present a scheme, based on distributed source coding, that enables us to
realize this reversal of operations. Our scheme allows us to compress a stationary,
i.i.d. source that has been encrypted with a stream cipher (cf., [1]) to a rate close
to the entropy rate of the source. Although the code that is used to compress
the encrypted source is entirely different from the code that would be used
to compress the original source, we can in fact compress the encrypted source
to the same rate as we could have compressed the original source. We focus
exclusively on this class of stationary, i.i.d. sources in this work. The existence
of linear codes that achieve these compression gains can be proven in a non-
constructive manner. Furthermore, recent results from distributed source coding
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can be applied to this problem to give constructions for codes that can compress
any i.i.d. source that has been encrypted with a stream cipher. In general, these
codes will have inefficient decoding algorithms, which limits their usefulness.
However, for the case of binary i.i.d. sources, we present code constructions from
the literature that support computationally efficient decoding and still achieve
compression gains close to the information-theoretic bounds.

Our scheme requires that the decompression algorithm have access to the
cryptographic key, but importantly, the compression algorithm does not receive
the key. The compressor must know the entropy rate of the original source in
order to select an appropriate code, but it does not use the encryption key. To
be specific, the compressor only needs to know the entropy rate of the source,
not the full distribution. Our scheme is statistical in nature, and there is the
possibility that the output of the decoder will not match the original source.
We show that for i.i.d. sources this probability of error decreases exponentially
toward 0 as the blocklength of the code increases.

While we focus here on the theoretical feasibility of our claim, we have uncov-
ered a few application scenarios of possible interest. In one scenario, the genera-
tor of the redundant data (the content author) has no incentive to compress the
data as it is not interested in saving bandwidth that it does not own at the cost
of unnecessary computational complexity. Nevertheless, the content generator
is very interested in protecting the privacy of the content via encryption. This
content is typically distributed to its client base by a content distribution unit
which has great incentive to remove all redundancy from the content in order to
maximize its network utilization. However, there is no trust between the content
generator and the compressor, so the former will supply only encrypted data to
the latter. Our scheme allows the compressing unit to compress the encrypted
data at the same efficiency as if it was compressing the original, unencrypted
data, even though the compressor does not have access to the key used in the
encryption step.

The main contribution of this work is in the identification of the connection
between the stated problem and distributed source coding, as well as an analy-
sis of the compression efficiency and cryptographic security of our scheme. This
paper is organized as follows. Section 2 gives some background information. The
scheme for compressing encrypted data is presented in Section 3. The crypto-
graphic security of the scheme is studied in Section 4. Related work is discussed
in Section 5. Some conclusions and future work are described in Section 6.

2 Background

Before describing our solution to the problem of compressing encrypted data,
we will briefly present some background information. First, we will discuss the
principles of distributed compression that underpin our solution. Then we will
cover some concepts from cryptography that will be used to quantify the strength
of the encryption.
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2.1 Distributed Source Coding

Distributed source coding considers the problem of separately compressing
sources X and S that are correlated, where the two compressors cannot com-
municate with each other. The Slepian-Wolf theorem [2] gives the smallest rates
required to losslessly communicate X and S to the decoder, when both X and
S come from memoryless sources outputting an unending stream of i.i.d. values.
The Slepian-Wolf theorem is a non-constructive result that states these smallest
rates, but does not show how to construct codes that approach the minimum
rates. For a practical code construction there will be a tradeoff between the
blocklength and the probability or error, i.e. as the blocklength increases the
probability of error can be made smaller. However, this theorem also does not
provide any specific insight what the tradeoff is. Subsequent work by Csiszar [3],
which we discuss in Theorem 1 in Section 3, has shown that linear codes can
approach the bounds given by the Slepian-Wolf theorem.

An important special case of this problem, upon which we will focus, is
when X needs to be sent to a decoder which has access to the correlated side-
information S. For this special case, the Slepian-Wolf theorem asserts that the
minimum rate required to transmit X is given by the conditional entropy (cf.,
[4]) of X given S, denoted by H(X|S) bits/sample.

While the Slepian-Wolf theorem is non-constructive, there has been some
recent work that provides practical code constructions to realize these distributed
compression gains [5]. We will use an example to show the intuition behind these
constructions.

We begin by looking at the problem where S is available at both the encoder
and the decoder, as depicted in Figure 1. In our example, X and S are correlated,
uniformly distributed binary strings of length 3. The correlation structure is such
that their Hamming distance is at most 1, i.e. they differ in at most one of the
three bit positions. For example, if X is 010, then S will equally likely be one
of the four patterns {010,011,000,110}. The encoder forms the error pattern
e = X ⊕S. Because X and S differ in at most one bit position, the error pattern
e can take on only four possible values, namely {000,001,010,100}. These four
values can be indexed with two bits. That index is transmitted to the decoder,

Encoder Decoder· · ·
X X̂

S

Fig. 1. A source coding with side information problem: The side information
S is available at both the encoder and the decoder.
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Encoder Decoder· · ·
X X̂

S

Coset 1
(00) =

{
0 0 0
1 1 1

}
Coset 2

(01) =
{

0 0 1
1 1 0

}

Coset 3
(10) =

{
0 1 0
1 0 1

}
Coset 4

(11) =
{

1 0 0
0 1 1

}

Fig. 2. A source coding with side information problem: X and S are three bit
binary sequences which differ by at most one bit. S is available only at the decoder.
The encoder can compress X to two bits by sending the index of the coset in which X
occurs.

which looks up the error pattern corresponding to the index received from the
encoder, and then computes X = e ⊕ S.

Now, we consider the case in Figure 2 where S is available at the decoder,
but not the encoder. Without S, the encoder cannot form the error pattern e.
However, it is still possible for the encoder to compress X to two bits and for
the decoder to reconstruct X without error. The reason behind this surprising
fact is that there is no reason for the encoder to spend any bits to differentiate
between X = 000 and X = 111. The Hamming distance of 3 between these two
codewords is sufficiently large to enable the decoder to correctly decode X based
on its access to S and the knowledge that S is within a Hamming distance of 1
from X. If the decoder knows X to be either X = 000 or X = 111, it can resolve
this ambiguity by checking which of the two is closer in Hamming distance to
S, and declare that codeword to be X. We observe that the set {000,111} is a
3-bit repetition code with a Hamming distance of 3.

Likewise, in addition to the set {000,111}, we can consider the following 3
sets for X: {100,011}, {010,101}, and {001,110}. Each of these sets is composed
of two codewords whose Hamming distance is 3. These sets are the cosets of
the 3-bit repetition code. While we typically use the set {000,111} as the 3-bit
repetition code (0 is encoded as 000, and 1 as 111), it is clear that one could
just as easily have used any of the other three cosets with the same performance.
Also, these 4 sets cover the complete space of binary 3-tuples that X can assume.
Thus, instead of describing X by its 3-bit value, all we need to do is to encode
the coset in which X occurs. There are 4 cosets, so we need only 2 bits to index
the cosets. We can compress X to 2 bits, just as in the case where S was available
at both the encoder and decoder.

In practical situations, the correlation structure between X and S is often
not as simple as in this example. For instance, X and S could be three-bit binary
numbers such that the Hamming distance between X and S is equal to 0 or 1
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with probability 1 − 10−6. If we compress X with the same code construction
as above, then with probability 1 − 10−6 the Hamming distance between X and
S will be at most 1 and X̂ will be equal to X. However, with probability 10−6

the Hamming distance between X and S will be more than 1. In that case, X̂
and X will be different, which means that the decoder has incorrectly decoded
the message. The important point is that in these code constructions, unlike in
standard source codes, there is a probability of error at the decoder.

In practice, we will use a much more complex channel code than the simple
repetition code. The channel code is chosen based on the correlation structure
between X and S, so as to minimize the probability of error. However, the
encoding and decoding procedures are the same as in our three-bit example.
The encoder finds the coset which contains X and transmits the index of this
coset. The decoder finds the codeword in the coset denoted by the received index
which is closest to S in the Hamming metric.

2.2 Security

We will express an arbitrary encryption scheme with the notation c = Ek(m).
Here, m is the plaintext, c is the ciphertext, and k is the key used by the algo-
rithm.

We will quantify the security of an encryption scheme against chosen-
plaintext attacks by means of the concept of left-or-right (LOR) security, which
was introduced in [6]. The central feature of LOR security is an oracle which
supplies responses to queries. A query consists of a pair of plaintexts, denoted by
(x, y). The response of the oracle will be the encryption of one of the two plain-
texts in the query. There are two types of oracles. A left oracle, which we denote
by §0, will always return the encryption of the first plaintext in the query. The
functionality of selecting the first plaintext is denoted by the function §0, where
we define §0(x, y) = x. In contrast, the right oracle uses a selection function,
written §1, which always returns its second argument: §1(x, y) = y. In either
case, the result of the selection algorithm is encrypted using Ek. Consequently,
the functionality of the left oracle can be expressed as Ek ◦ §0, and the right
oracle as Ek ◦ §1.

In the left-or-right security model, one of the two types of oracles is chosen at
random. An adversary, denoted by A, attempts to determine whether the oracle
is a left oracle or a right oracle by making queries to it. Intuitively, if the encryp-
tion scheme is very weak then the adversary will be able to examine a ciphertext
response and determine with high probability which of the two plaintexts in the
query was encrypted. Conversely, for a very strong encryption scheme it is diffi-
cult to match plaintexts to the corresponding ciphertexts: the adversary cannot
do much better than randomly picking one of the two plaintexts.

We use the superscript notation AEk◦§0 to denote the output of the adversary
after interacting with a left oracle, and AEk◦§1 for its result after interacting with
a right oracle. The output of the adversary will be 0 if the adversary decides that
the oracle is a left oracle, and 1 if the adversary decides that it is a right oracle.
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X̂

Source
Data Encoder Decoder

Public Channel

UX

K ′

Key

Adversary

Secure Channel

K K

Y

PRGPRG

Fig. 3. Secure compression scheme: The data X is first encrypted with a stream
cipher and then compressed. At the receiver, decoding and decryption are performed
in a joint step. The eavesdropper sees U , but (as we show) cannot learn anything useful
about X.

For left-or-right security, we require that:

In this equation, the probability is taken across the distribution of keys k and

any randomness in the adversary. If this equation holds for all possible adver-
saries that run in time t and make q or fewer queries to the oracle, then we say
that the encryption scheme E is (t, q, ε)-LOR-secure. One other cryptographic
concept which we will use is the variational distance. This distance measures
the dissimilarity between two probability distributions 1. If D1 and D2 are two
probability distributions, then the variational distance V (D1, D2) between the
two is defined as:

3 Secure Compression Scheme

Our scheme for compressing encrypted data is illustrated in Figure 3. The mes-
sage is first encrypted with a binary stream cipher. The seed K ′ is used as the
input to a pseudo-random generator (PRG), whose output is denoted by K.
The message is encrypted by forming the bitwise binary sum Y = X ⊕K. Then,
Y is compressed to obtain the result U = C(Y ), and U is transmitted to the
recipient. The adversary is assumed to be able to eavesdrop on the ciphertext
U .
1 The variational distance is related, but not identical, to the K-L divergence (cf., [4]).
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Throughout this work, we will assume that all sources are memoryless. In
other words, we have a distribution D on some alphabet X ; the source outputs
an unending sequence of i.i.d. random variables, each distributed according to
D. If X denotes the sequence of outputs from such a source, we will sometimes
write X1, X2, etc., for the first, second, etc., output from the source. Also, if X
is such a source, we write Xn for the source that outputs a block of n items from
X at a time. The first output of Xn is (X1, X2, . . . , Xn) (which is distributed
according to D × · · · × D); the second output of Xn is (Xn+1, . . . , X2n); and so
on. The entropy rate of the source X is H(D), or sometimes written just H(X);
consequently, the entropy rate of Xn is n · H(X).

Also, we assume that the seed has been transmitted to the decoder through a
secure channel. By implementing an identical PRG, the decoder also has access to
K. This reduces the problem of compressing encrypted data to the distributed
source coding problem. Y and K are two correlated sources, because Y was
generated via Y = X ⊕ K. Our goal is to compress Y , using the fact that K is
available at the decoder as side information. The Slepian-Wolf theorem asserts
that Y can be compressed to a rate of H(Y |K). Because Y = X ⊕ K, it follows
that H(Y |K) = H(X). Hence, we can compress the encrypted source Y to a rate
H(X), which is the entropy rate of the original source X, conditioned on the
fact that K is available at the decoder. In order to select a code to perform this
compression, the encoder needs only to know H(X), not the full distribution on
X.

3.1 Theoretical Bounds on Compression Efficiency

Although the Slepian-Wolf theorem is non-constructive, the distributed source
coding using syndromes (DISCUS) framework [5] provides a constructive method
of achieving the coding gains promised by Slepian-Wolf through the use of linear
codes. In order for the DISCUS encoder to select a code matched to the particular
source, it only needs to know the entropy rate of the original source, not the full
distribution. Csiszar showed in [3] that linear codes can achieve the bounds
given by the Slepian-Wolf theorem as the block length of the code approaches
∞. Therefore, by restricting our attention to linear codes we do not reduce the
compression gains that can be achieved. We present the following theorem, which
is our statement of a more general theorem from Csiszar as applied to our specific
problem.

Theorem 1 (Csiszar). Let X and Y be memoryless sources with entropy H(X)
and H(Y ), respectively. Suppose that X and Y are correlated, in the following
sense: we have a joint distribution function f(x, y) which describes the distri-
bution of (Xi, Yi) for every i. Also, suppose that Y n is side-information that is
available perfectly at the decoder. Then, for every ε > 0 and every blocklength n,
there exists a linear code Cn for compressing the source Xn at an encoding rate of
n·(H(X|Y )+ε) such that the probability pe of not being able to recover the source
message correctly at the decoder is bounded above by: pe ≤ exp{−n ·g(ε)+o(n)}.
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The function g(·) depends on the distribution (X, Y ), but not on n. Thus,
Csiszar’s work shows not only that the probability of error pe can be made
arbitrarily small for large blocklengths and rates greater than H(X|Y ), but also
that pe will decrease exponentially with the blocklength n for suitably chosen
codes. Although this theorem proves the existence of linear codes that approach
the Slepian-Wolf bounds, it makes no guarantees on the decoding complexity
or uniformity of such codes. In general, the codes will require computationally
inefficient decoding and nonuniform encoding.

Notice that Csiszar’s result is also non-constructive, in that it proves only
the existence of a linear code achieving these rates, but does not specify how to
find such a linear code explicitly. Hence, this result is achieved in a non-uniform
model of computation: the code might depend in a non-uniform way on ε, p,
X, Y , f , and n; there is no guarantee that we can find a single compression
algorithm that works for all n. These non-constructive aspects are unfortunate,
but we do not know how to avoid them.

The advantage of using a linear code is in the computational complexity
required to implement the encoder. The encoder divides the encrypted source Y
into blocks of length n. Each block, which we will denote as Y n

i , is then mapped
to a value Ui in the set {0, 1}nR, where R is the rate of the code. Hence, Ui

can be represented by nR binary digits. This mapping is performed via a simple
matrix multiplication, Ui = HT Y n

i , where H is a matrix of size nR by n that is
referred to as a parity check matrix in the coding theory literature (cf., [7])2. The
complexity of the compressor is quadratic in the block length, since the encoder
compresses each block by performing a single matrix multiplication.

The parity check matrix used in the encoder corresponds to a particular
code. This code in turn partitions the space of all n bit binary numbers into
cosets, just as in the example in Section 2 where the repetition code partitioned
the space of three-bit binary numbers into four cosets. The decoder finds the
codeword in the coset indexed by Ui which is closest to the side information
Kn

i in Hamming distance. This codeword is denoted by Ŷ n
i . The decoder then

computes its estimate of the original source Xi, which is X̂n
i = Ŷ n

i ⊕ Kn
i .

Unfortunately, the complexity of the decoder is not as easily quantified as
the encoder, and is highly dependent on the particular code used. We don’t
know the best achievable time for decoding in Csiszar’s result, but we suspect
that it may be exponential in n. For instance, we could find the Ŷ n

i which is
the maximum likelihood estimate of Y n

i by exhaustive search through all of the
codewords in the coset indexed by Ui, but the complexity of such a search would
be exponential in n.

Also, the super-polynomial complexity of the decoder raises a correctness
issue for compressing encrypted data: There is, in general, no guarantee that
the decoder’s error probability remains bounded by about pe in Figure 3, since
the PRG is not guaranteed to remain pseudorandom against distinguishers with

2 This can be readily generalized to non-binary sources. The elements of U and H are
then from the same field as X.
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super-polynomial running time. However, it seems reasonable3 to assume we
can find a PRG whose security when used with κ-bit keys is exp{Ω(κδ)}, for
some constant δ > 0. In this case, we can choose parameters so that the PRG
provides security against all distinguishers running in time |X |n, say, and then
we will obtain a polynomial-time encoder and a decoder whose error probability
is bounded by not much more than pe.

In summary: Csiszar’s result assures us of the existence of linear codes that
provably meet the Slepian-Wolf rate, if our sources are memoryless. The en-
coder runs in polynomial time, but the decoder is suspected to require exponen-
tial time. (Note that our security results do not make any assumptions about
the running time of the decoder; thus, our security claims for stream cipher
encryption followed by Csiszar-style encoding are fully proven, not heuristic.)
Also, Csiszar’s result is non-constructive. Consequently, though Csiszar’s results
suffice to show (in principle) that compression can be securely and efficiently
performed after encryption, the scheme thus obtained is, in several respects, not
very attractive in practice.

3.2 Efficient Code Constructions

For practical uses, we have candidate compression schemes that seem to behave
much better. We outline next several such codes that seem to have reasonable
encoding and decoding complexity (in particular, with polynomial running time)
and that seem to come very close to the Slepian-Wolf bound. In each case,
we have extensive empirical evidence that these schemes behave well, but no
theoretically proven guarantees. In practice, one would probably use one of these
schemes.

The topic of linear codes (without side information) has been heavily studied
in the coding literature, and several schemes are known that have computation-
ally efficient, sub-optimal decoding algorithms. Turbo codes [8] and low density
parity check (LDPC) codes [9] are two well-known examples. A class of LDPC
codes known as expander codes were presented in [10] that were proven to have
a polynomial-time decoding and to remove a constant fraction of the errors in a
received codeword. Empirical results have consistently shown that LDPC codes
have even better decoding performance than the proven bounds.

Recently, a significant amount of work has focused on applying both LDPC
codes [11,12] and turbo codes [13,14] to the problem of source coding with side
information. The authors of [12] consider a problem where the Slepian-Wolf the-
orem gives a bound of 0.466 bits/sample on the rate of the encoder. They used
an LDPC code with block length 105 to compress the binary source to a rate of
0.5 bits/sample and had a probability of error at the decoder that was less than
10−6. These schemes are constructive, and they have computationally efficient
encoding and decoding routines. Since we have shown that the problem of com-
pressing encrypted data is an example of source coding with side information,
3 The existence of such a PRG is not guaranteed by the existence of one-way functions

with super-polynomial security, but the usual candidate constructions of PRG’s all
seem to achieve this security level.
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we could obtain the same compression gains in our problem by using the same
code. Thus, in practice, one would probably use one of these schemes.

Using these constructions, we can efficiently compress any i.i.d. binary source
that has been encrypted with a binary stream cipher. In theory, the encrypted
source can be compressed to the entropy rate of the original source. In practice,
by using LDPC or turbo codes, we can compress the encrypted source to a rate
very close to the theoretical limit with a low probability of error. Obviously, if
X is a Bernoulli(0.5) binary source, then it has an entropy rate of 1 bit/sample
and we cannot compress the encrypted source. For any i.i.d. binary source with
redundancy, however, we can compress Y to a rate close to H(X). The gap
between the rate of the encoded data and H(X) is limited only by the code used
in the encoder and decoder. In theory, a non-binary i.i.d. source could also be
compressed to H(X). Constructing codes for non-binary sources is a problem
that has not been studied thoroughly, but if such codes were constructed then
they could be used in this problem.

Note that in real-time applications, the use of block codes could prove prob-
lematic. Because the compressor cannot produce any output until it obtains n
plaintext symbols, these approaches might add latency to the cryptosystem. The
amount of latency will depend on the block length required to achieve the desired
compression rate.

3.3 Other Encryption Algorithms

Up to this point, we have considered only a stream cipher encryption scheme. In
a more general case, we could imagine using any encryption method whatsoever.
For a general encryption method, it is still theoretically possible to compress the
encrypted source to the entropy rate of the original source. However, in this case
Y and K will have a very complex, non-linear correlation structure, whereas
with a stream cipher the correlation between Y and K was the linear relation-
ship Y = K ⊕ X. Because the correlation structure is now nonlinear, we can
no longer leverage existing channel code constructions to construct distributed
source codes. The source coding with side information problem becomes much
more difficult with a nonlinear correlation structure, and is not well studied in
the coding theory literature.

The anonymous reviewers have pointed out that, in some cases, it may be
possible to adapt our techniques to other encryption algorithms. If E is a secure
encryption algorithm, then E′(X) = (E(K ′), G(K ′) ⊕ X) is also secure (where
K ′ is a fresh session key, randomly chosen for each message to be encrypted),
and the second component of E′(X) could be compressed using our scheme.

4 Cryptographic Security

In this section, we provide an analysis of the cryptographic security of the en-
cryption step of our system, and we give a proof of security under plausible
assumptions. In brief, the intuition behind our analysis is as follows: First, no
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computationally bounded attacker who observes Y can learn anything interest-
ing about X, if the pseudorandom generator (PRG) is secure. Second, because U
is computable from Y in polynomial time, no computationally bounded attacker
who observes U can learn anything useful about X. Since U is what is actually
transmitted across the insecure link, this will demonstrate that the system is a
secure encryption scheme.

We will study the cryptographic security of the system in two steps. First,
we will look at the case where the keystream K has been replaced with a
Bernoulli(0.5) random variable. Then, we will extend this analysis to the case
where K is the output of a PRG. Our main results will be stated as two theorems.

We begin with the information-theoretic case, where K is truly random. If
the keystream K is truly random, then the stream cipher becomes a one-time
pad scheme, and security will follow easily. In particular, let K be a source
providing an unending stream of i.i.d. values uniformly distributed on {0, 1}k,
chosen anew for each message transmitted independently of everything else (and
assumed to be synchronized with the receiver). Let C : {0, 1}k → {0, 1}∗ be a
compression algorithm, and define the cryptosystem EK : {0, 1}k → {0, 1}∗ by
EK(X) = C(X ⊕ K) (more precisely, EKi(Xi) = C(Xi ⊕ Ki)).

Theorem 2. When K is uniformly distributed, EK(X) = C(X⊕K) is (∞, q, 0)-
LOR secure.

Proof. Fix any x, x′, and let K be uniform. The distribution x ⊕ K is identical
to the distribution x′ ⊕ K, hence C(x ⊕ K) has exactly the same distribution as
C(x′ ⊕K). This means that, no matter the distribution of the random variables
X, X ′, (EK ◦ §0)(X, X ′) will have the same distribution as (EK ◦ §1)(X, X ′).
Consequently,

| Pr[AEK◦§1 = 1] − Pr[AEK◦§0 = 1]| = 0

for all adversaries A that make at most one query to their oracle. So, when q = 1,
the scheme is (∞, 1, 0)-LOR secure. For q > 1, we can use a straightforward
hybrid argument. Consider the following hybrids, representing how each of the
q oracle queries will be answered:

hybrid 0: EK1 ◦ §0,EK2 ◦ §0,. . . ,EKn ◦ §0
hybrid 1: EK1 ◦ §1,EK2 ◦ §0,. . . ,EKn

◦ §0
...

hybrid q: EK1 ◦ §1,EK2 ◦ §1,. . . ,EKn ◦ §1

By the above argument, A’s output when run with hybrid i has the same distri-
bution as A’s output when run with hybrid i + 1 (here we use that the value of
K is chosen anew for each oracle query, independently of everything else). After
a simple induction on q, we see that EK is (∞, q, 0)-LOR secure. ��

Next, we consider the full scheme, where the keystream K is generated using a
PRG. More specifically, let the secret key K ′ be distributed uniformly on {0, 1}k′

,
let G : {0, 1}k′ → {0, 1}kq be a pseudorandom generator (PRG), and define
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K = G(K ′). As before, let C : {0, 1}k → {0, 1}∗ be a compression algorithm.
This time, we will need to assume that the compression algorithm C runs in
polynomial time. Finally, define the cryptosystem E′

K′ : {0, 1}k → {0, 1}∗ by
E′

K′(X) = EG(K′)(X) = C(X ⊕ G(K ′)); more precisely, E′
K′(Xi) = C(Xi ⊕

Ki), where K = G(K ′). When this cryptosystem is used to encrypt multiple
messages, we assume that we use consecutive outputs from the PRG, throwing
away keystream bits after they are used. Of course, the encryptor must remember
his place in the PRG output stream; hence, this is a stateful encryption scheme,
and the sender and receiver must be synchronized. We now analyze the security
of this cryptosystem.

Theorem 3. Let G : {0, 1}k′ → {0, 1}kq be a (t1, ε)-secure pseudorandom gen-
erator, and assume that the running time of C is at most t2. Then E′

K′(X) =
C(X ⊕ G(K ′)) is (t1 − (t2 + c)q, q, 2ε)-LOR secure, for some small constant c.

Proof. Let EK denote the encryption scheme when used with truly random K,
and EG(K′) denote the scheme where the keystream K is generated as the output
of the PRG, K = G(K ′). By Theorem 2,

Pr[AEK◦§1 = 1] = Pr[AEK◦§0 = 1].

Next, we apply the triangle inequality:

| Pr[AEG(K′)◦§1 = 1] − Pr[AEG(K′)◦§0 = 1]|
≤ | Pr[AEG(K′)◦§1 = 1] − Pr[AEK◦§1 = 1] + Pr[AEK◦§0 = 1] − Pr[AEG(K′)◦§0 = 1]|
≤ | Pr[AEG(K′)◦§1 = 1] − Pr[AEK◦§1 = 1]| + | Pr[AEG(K′)◦§0 = 1] − Pr[AEK◦§0 = 1]|.

We will show that both terms on the right-hand side are small.
We can define an adversary Bi that attempts to distinguish between K and

G(K ′) as follows:

Bi(z) = AEz◦§i .

Bi can be thought of as a program that mimics the behavior of the attacker
A and responds to A’s oracle queries by executing the basic cryptosystem with
keystream z. If A runs in time t1 − t2q − cq, and if C runs in time t2, then Bi

will run in time t1, since the extra overhead (beyond that of C) for answering
each of A’s oracle queries is a small constant. Now, because the pseudorandom
generator G is assumed to be (t1, ε)-secure and because Bi runs in time at most
t1, it follows that Bi’s advantage at breaking G is minimal:

| Pr[Bi(G(K ′)) = 1] − Pr[Bi(K) = 1]| ≤ ε.

Substituting the definition of Bi into the previous equation, we see that

| Pr[AEG(K′)◦§i = 1] − Pr[AEK◦§i = 1]| ≤ ε.

This completes the proof. ��
We see that the security of our encryption scheme is directly dependent on

the security of the pseudo-random generator. If we believe that we are using a
strong PRG, then the stream cipher encryption scheme will also be secure.
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5 Related Work

A problem closely related to source coding with side information has been stud-
ied in the communication complexity literature (cf., [15, Exercise 4.55, p.64]).
Suppose Alice holds a n-bit binary string X, and Bob holds S, chosen so that
the Hamming distance between X and S is at most d. How many bits does it
take for Alice to communicate X to Bob?

This problem has a well-known solution [16,17,18] [19, §6] [20, Example 4]
[21, Remark 5.1]: Pick any linear error correcting code E ⊆ {0, 1}n that corrects
up to d errors; write X = C⊕U , where C ∈ E is a codeword and U is a syndrome,
and send U to Bob; Bob can apply the decoding algorithm to U⊕S = C⊕(X⊕S)
to obtain C, and then Bob can compute X = C ⊕U . Also, if X and S are drawn
from correlated i.i.d. binary sources, then for all ε > 0, the Hamming distance
between X and S is at most n · (Pr[X �= S]+ ε), except with exponentially small
probability, so this yields a source coding algorithm with exponentially small
decoding error for the special case of i.i.d. binary sources.

As a result, one can build protocols for source coding with side information
out of any high-rate linear error-correcting code. The best provable rates for
explicit constructions can be found in [10,22].

6 Conclusions

In this work, we have examined the possibility of first encrypting a data stream
and then compressing it, where the compressor does not have knowledge of the
encryption key. The encrypted data can be compressed using distributed source
coding principles, because the key will be available at the decoder. Our principal
contribution is in the observation that the problem of compressing encrypted
data is a special case of the source coding with side information problem. We
have studied both the compression efficiency and the cryptographic security
aspects of this problem. It is an interesting open problem to extend our work to
encryption schemes beyond the stream cipher.
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