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ABSTRACT
Motivated by structural properties of the Web graph that support
efficient data structures for in memory adjacency queries, we study
the extent to which a large network can be compressed. Boldi and
Vigna (WWW 2004), showed that Web graphs can be compressed
down to three bits of storage per edge; we study the compressibility
of social networks where again adjacency queries are a fundamen-
tal primitive. To this end, we propose simple combinatorial for-
mulations that encapsulate efficient compressibility of graphs. We
show that some of the problems are NP-hard yet admit effective
heuristics, some of which can exploit properties of social networks
such as link reciprocity. Our extensive experiments show that social
networks and the Web graph exhibit vastly different compressibil-
ity characteristics.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—Data Min-
ing; G.2.2 [Mathematics of Computing]: Graph Theory—Graph
algorithms

General Terms
Algorithms, Experimentation, Measurement, Theory

Keywords
Compression, Social networks, Linear arrangement, Reciprocity

1. INTRODUCTION
We study the extent to which social networks can be compressed.

There are two distinct motivations for such studies. First, Web
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properties require high-speed indexes for serving adjacencies in the
social network: thus, a typical query seeks the neighbors of a node
(member) of a social network. Maintaining these indexes in mem-
ory demands that the underlying graph be stored in a compressed
form that facilitates efficient adjacency queries. Secondly, there is
a wealth of evidence (e.g., [17]) that social networks are not ran-
dom graphs in the usual sense: they exhibit certain distinctive local
characteristics (such as degree sequences). Studying the compress-
ibility of a social network is akin to studying the degree of “ran-
domness” in the social network. The Web graph (Web pages are
nodes, hyperlinks are directed edges) is a special variant of a social
network, in that we have a network of pages rather than of peo-
ple. It is known that the Web graph is highly compressible [6, 11].
Particularly impressive results have been obtained by Boldi and Vi-
gna [6], who exploit lexicographic locality in the Web graph: when
pages are ordered lexicographically by URL, proximal pages have
similar neighborhoods. More precisely, two properties of the or-
dering by URL are experimentally observed to hold:

• Similarity: pages that are proximal in the lexicographic or-
dering tend to have similar sets of neighbors.

• Locality: many links are intra-domain, and therefore likely
to point to pages nearby in the lexicographic ordering.

These two empirical observations are exploited in the BV-algorithm
to compress the Web graph down to an amortized storage of a few
bits per link, leading to efficient in-memory data structures for Web
page adjacency queries (a basic primitive in link analysis). Do these
properties of locality and similarity extend to social networks in
general? Whereas the Web graph has a natural lexicographic order
(by URL) under which this locality holds, there is no such obvi-
ous ordering for social networks. Can we find such an ordering
for social networks, leading to compression through lexicographic
locality?

Our main contributions in the paper are the following. We pro-
pose a new compression method that exploits link reciprocity in
social networks (Section 3). Motivated by this and BV, we formu-
late a genre of graph node ordering problems that distill the essence
of locality in BV-style algorithms (Section 4.1). We develop a sim-
ple and practical heuristic based on shingles for obtaining an effec-
tive node ordering; this ordering can be used in BV-style compres-
sion algorithms (Section 4.3). We then perform an extensive set of
experiments on large real-world graphs, including two social net-
works (Section 5). Our main findings are: social networks appear
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far less compressible than Web graphs yet closer to host graphs
and exploiting link reciprocity in social networks can vastly help
its compression.

2. RELATED WORK
Prior related work falls into three major categories, namely, com-

pressing Web graphs, compressing indexes, and graph ordering prob-
lems.

Adler and Mitzenmacher introduced the idea of finding pages
with similar sets of neighbors in the context of compressing Web
graphs, and obtained some hardness results for compression in this
context [1]. Randall et al. [22] suggested lexicographic ordering as
a way to obtain good Web graph compression, utilizing both sim-
ilarity and locality. Raghavan and Garcia-Molina [21] considered
a hierarchical view of the Web graph to achieve compression; see
also Suel and Yuan [27] for a structural approach to compressing
Web graphs. A major step was taken by Boldi and Vigna [6], who
both developed a generic Web graph compression framework that
takes into account the locality and similarity of Web pages and ob-
tained very strong compression performance; our work is based on
this framework. Boldi and Vigna [7] also developed ζ-codes, to
exploit power law distributed integer gaps. Buehrer and Chellapilla
[11] used the frequent pattern mining approach to compress Web
graphs; using this, they were able to achieve a compression of un-
der two bits per link. Recently, Boldi, Santini, and Vigna [5] stud-
ied the effectiveness of various orderings, including Gray ordering,
in compressing the transpose of the Web graph.

The problem of assigning or reassigning document identifiers
in order to compress text indexes has a long history. Blandford
and Blelloch [4] considered the problem of compressing text in-
dexes by permuting the document identifiers to create locality in
an inverted index. Silvestri, Perego, and Orlando [26] proposed a
clustering approach for reassigning document identifiers. Shieh et
al. [24] proposed a document identifier reassignment method based
on a heuristic for the traveling salesman problem. Recently, Sil-
vestri [25] showed that assigning document identifiers to Web doc-
uments based on URL lexicographic ordering improves compres-
sion.

There are many classical node ordering problems on graphs. The
minimum bandwidth problem, where the goal is to order the nodes
to minimize the maximum stretch of edges, and the minimum lin-
ear arrangement problem, where the goal is to order the nodes to
minimize the sum of stretch of edges, have a rich history. We re-
fer to [13] and the online compendium at www.nada.kth.se/
˜viggo/wwwcompendium/node52.html.

3. COMPRESSION SCHEMES
In this section we outline the compression framework used in

the rest of the paper. The framework is based on the algorithm
of Boldi and Vigna for compressing Web graphs [6]; their algo-
rithm achieved a compression down to about three bits per link on
a snapshot of the Web graph. We henceforth refer to this as the BV
compression scheme, which we first describe. Next, we describe
what we call the backlinks compression (BL) scheme, which tar-
gets directed graphs that are highly reciprocal.

Notation. Let G = (V, E) be a directed graph and let |V | =
n. The nodes in V are bijectively identified with the set [n] =
{1, . . . , n} of integers. For a node u ∈ V , let out(u) ⊆ V de-
note the set of out-neighbors of u, i.e., out(u) = {v | (u, v) ∈
E}. Likewise, let in(u) denote the set of in-neighbors of u. Let
outdeg(u) = |out(u)| and indeg(u) = |in(u)|. If both (u, v) ∈

E and (v, u) ∈ E and u < v, then we call the edge (v, u) to be re-
ciprocal. For a node u ∈ V , let rec(u) be {v | (v, u) is reciprocal }.
Let lg denote log2.

We will encode all integers using one of three different encod-
ing schemes, namely, Elias’s γ-code, δ-code, and Boldi–Vigna ζ-
code with parameter 4 (which we found to be the best in our ex-
periments) [7]. These integer encoding schemes encode an inte-
ger x ∈ Z+ using close to the informatic-theoretic minimum of
1 + blg(x)c bits. For example, the number of bits used by the
γ-code to represent x is 1 + 2blg xc. We refer to [28] for more
background on these codes.

3.1 BV compression scheme
BV incorporates three main ideas. First, if the graph has many

nodes whose neighborhoods are similar, then the neighborhood of
a node can be expressed in terms of other nodes with similar neigh-
borhoods. Second, if the destinations of edges exhibit locality,
then small integers can be used to encode them (relative to their
sources). Third, rather than store the destination of each edge sep-
arately, one can use gap encodings to store a sequence of edge des-
tinations. Given a sorted list of positive integers (say, the destina-
tions of edges from a node), we write down the sequence of gaps
between subsequent integers on the list, rather than the integers
themselves. The idea is that even if the integers are big (requiring
many bits to record), the gaps between integers on the list could be
recorded with fewer bits.

We now detail the BV scheme for compressing Web graphs. The
nodes are Web pages and the directed edges are the hyperlinks.
First, order Web pages lexicographically by URL. This assigns to
each Web page a unique integer identifier (ID), which is its position
in this ordering. Let w be a window parameter; for the Web, BV
recommend w = 8.

Let v be a Web page. Its encoding will be as follows.
1. Copying. Check if the list out(v) of v’s out-neighbors is a

small variation on the list of one of the w− 1 preceding Web pages
in the lexicographic ordering. Let u be such a prototype page, if it
exists.

2. Encoding. Encode v’s out-neighbors as follows. If the copy-
ing step found a prototype u, then use lg w bits to encode the (back-
ward) offset from v to u, followed by the changes from u’s list to
v’s. If none of the lg w preceding pages in the lexicographic or-
dering offers a good prototype, set the first lg w bits to all 0’s, then
explicitly write down v’s out-neighbors. (BV also optimize further
by storing a list i, i + 1, . . . , j − 1, j of consecutive out-neighbors
by storing the interval [i, j] instead.)

Note that locality and similarity are captured by the copying step.
By using clever gap encoding schemes (using the integer codes
mentioned earlier) on top of the basic method above, BV obtain
their best results. Note that the availability of a natural ordering on
the Web pages facilitates exploitation of locality. For more details,
we refer to the original paper [6] and [19, Chapter 20].

This general method of compression has two nice properties.
First, it is dependent only on locality in some canonical ordering.
Second, adjacency queries (fetch all the out-neighbors of a given
node) can be served fairly efficiently. Given a Web page whose out-
neighbors are sought, we enumerate these out-neighbors by decod-
ing backwards through the chain of prototypes, until we arrive at a
list whose encoding begins with at least lg w 0’s. While in princi-
ple this chain could be arbitrarily long, in practice most chains are
short. For instance, few chains would go backwards across URL
domains.
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3.2 Backlinks (BL) compression scheme
We now describe a slightly different compression scheme that

is motivated by the observed properties of social networks. This
scheme, called BL, incorporates an additional idea on top of BV,
namely, link reciprocity. In the BL scheme, reciprocal links are
encoded in a special way. Since social networks are known to be
mostly reciprocal (if Alice is Bob’s friend, then Bob is very likely
to be Alice’s friend), this will turn out to be advantageous.

Suppose we obtain an ordering of the nodes in the graph through
some process to be discussed later. We will identify each node in
the graph with its position in this ordering. Let v be a node. Its
encoding will consist of the following.

1. Base information. The outdegree |out(v)|, minus 1 if v has a
self-loop, and minus the number of reciprocal edges from v. Also,
include a bit specifying if v has a self-loop.

2. Copying. The node u that v uses as a prototype to copy from:
as u ≤ v in the ordering, u is encoded as the difference between u
and v. If u = v, then no copying is performed. Otherwise, a bit is
added for each out-neighbor of u, representing whether or not that
out-neighbor of u is also an out-neighbor of v.

3. Residual edges. Let v1, . . . , vk be the out-neighbors of v that
are yet to be encoded after the above step. Let v1 ≤ · · · ≤ vk. We
write one bit stating if v > v1 or v < v1. Then we encode the gaps
|v1 − v| , |v2 − v1| , . . . , |vk − vk−1|.

4. Reciprocal edges. Finally, we encode the reciprocal out-
neighbors of v. For each v′ ∈ out(v) such that v′ > v, we en-
code whether v′ ∈ rec(v) or not using one bit per link and discard
(v′, v).

Note that reciprocal edges are succinctly encoded by the last
step. Thus, this method potentially outperform BV in terms of com-
pression. However, it has a drawback: unlike in BV, adjacency
queries may be slower. This is because BV limits the “length”
of prototype chains but we do not impose such a limit in BL. If
the compressed representation of a network bottlenecks adjacency
query serving, then a limit on the length of copying chain can be
introduced in BL as well.

4. COMPRESSION-FRIENDLY ORDERINGS
In both the BV and BL schemes, the ordering of nodes plays a

crucial role in the performance of the compression scheme. The
performance of suggests that the lexicographic ordering of URL’s
for the Web graph is both natural and crucial, begging the question:
can we find such orderings for other graphs, in particular, social
networks? If we could, we would be able to apply either the BV or
the BL scheme. In this section we study ordering problems that are
directly motivated by the BV and BL compression schemes.

4.1 Formulation
We first formalize the problem of finding the best ordering of

nodes in a graph for the BV and BL schemes. As we saw earlier,
both algorithms benefit if locality and similarity are captured by
this ordering. This leads to the following natural combinatorial op-
timization problem, which we call minimum logarithmic arrange-
ment.

PROBLEM 1 (MLOGA). Find a permutation π : V → [n]
such that

P
(u,v)∈E lg |π(u)− π(v)| is minimized.

The motivation behind this definition is to minimize the sum of the
logarithms of the edge lengths according to the ordering (where the
length of the edge u → v is |π(u)− π(v)|). Notice this cost repre-
sents the compression size of the length of the edge in an encoding
that is information-theoretically optimal (or nearly so).

Also note that if the term inside the summation were just |π(u)−
π(v)|, then this is the well-known minimum linear arrangement
(MLINA) problem. MLINA is NP-hard [14]; little, however, is
known about its approximability. The best algorithm [23] approx-
imates MLINA to O(

√
log n log log n) and this algorithm is not

practical for large graphs. From the standpoint of the hardness of
approximation, only the existence of a PTAS has been ruled out
[3]. One cannot hope to use an approximate solution to MLINA
to solve MLOGA since we can show (see Appendix A) that these
problems are very different in their structure.

In actually compressing the graph, it is more efficient to com-
press the gaps induced by the neighbors of a node. Suppose u <
v1 < v2 and (u, v1), (u, v2) ∈ E. Then, compressing the gaps
v1 − u and v2 − v1 is always and could be far less expensive
than compressing the lengths of the edges, namely, v1 − u and
v2 − u. For this reason, we introduce a slightly modified problem,
called minimum logarithmic gap arrangement. Let fπ(u, out(u))
be the cost of compressing out(u) under the ordering π, i.e., if
u0 = u, out(u) = {u1, . . . , uk} with π(u1) ≤ · · · ≤ π(uk), then

fπ(u, out(u)) =

kX
i=1

lg |π(ui)− π(ui−1)|.

PROBLEM 2 (MLOGGAPA). Find a permutation π : V →
[n] such that

P
u∈V fπ(u, out(u)) is minimized.

Once again, as a problem, MLOGGAPA turns out to be very dif-
ferent from MLINA and MLOGA (see Appendix A).

Both formulations MLOGA and MLOGGAPA capture the essence
of obtaining an ordering that will benefit BV and BL compres-
sions. We believe a good approximation algorithm for either of
these problems will be of practical interest.

4.2 Hardness results
We show that MLOGA is hard in general. The proof is in Ap-

pendix B.

THEOREM 3. MLOGA is NP-hard on multi-graphs.

While we are currently unable to show that MLOGGAPA is NP-
hard, we can show that its “linear” version (i.e., without the log-
arithms), MLINGAPA, is indeed hard. The proof is in Appendix
C.

THEOREM 4. MLINGAPA is NP-hard.

We can also show a lower bound on the solution to MLOGA for
expander-like graphs, suggesting that they are not compressible
with constant number of bits per edge via BV/BL schemes. The
proof is in Appendix D.

LEMMA 5. If G has constant conductance, then the cost of MLOGA
on G = (V, E) is Ω(|E| log n). If, instead, G has constant node
or edge expansion, then the cost of MLOGA on G is Ω(n log n).

4.3 The shingle ordering heuristic
In this section we propose a simple and practical heuristic for

both MLOGA and MLOGGAPA problems. Our heuristic is based
on obtaining a fingerprint of the out-neighbors of a node and or-
dering the nodes according to this fingerprint. If the fingerprint can
succinctly capture the locality and similarity of nodes, then it can
be effective in BV/BL compression schemes.

To motivate our heuristic, we recall the Jaccard coefficient J(A, B) =
|A ∩ B|/|A ∪ B|, a natural notion of similarity of two sets. Let σ
be a random permutation of the elements in A ∪ B. For a set A,
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let Mσ(A) = σ−1(mina∈A{σ(a)}), the smallest element in A ac-
cording to σ; we call it the shingle. It can be shown [10] that the
probability that the shingles of A and B are identical is precisely
the Jaccard coefficient J(A, B), i.e.,

Pr[Mσ(A) = Mσ(B)] =
|A ∩B|
|A ∪B| = J(A, B).

Instead of using random permutations, it was shown that the so-
called min-wise independent family suffices [10]; in practice, even
pairwise independent hash functions work well. It is also easy
to boost the accuracy of this probabilistic estimator by combining
multiple shingles obtained from independent hash functions.

The intuition behind our heuristic is to treat the out-neighbors
out(u) of a node u as a set and compute the shingle Mσ(out(u))
of this set for a suitably chosen permutation (or hash function) σ.
The nodes in V can then be ordered by the shingles. By the prop-
erty stated above, if two nodes have significantly overlapping out-
neighbors, i.e., share a lot of common neighbors, then with high
probability they will have the same shingle and hence be close to
each other in a shingle-based ordering. Thus, the properties of lo-
cality and similarity are captured by the shingle ordering heuristic.
(Gibson, Kumar, and Tomkins [15] used a similar heuristic, but for
identifying dense subgraphs of large graphs.)

4.4 Properties of shingle ordering
In this section we show some theoretical justification for the

shingle ordering heuristic: using shingle ordering, it is possible
to copy a constant fraction of the edges in a large class of ran-
dom graphs with certain properties. The well-known preferential
attachment (PA) model [2, 8], for instance, generates graphs in this
class. Our analysis thus shows that it is indeed possible to obtain
provable performance guarantees on shingle ordering with respect
to copying (hence compression) in stylized models.

We first prove the following general statement about the suffi-
cient conditions under which using shingle ordering can copy a
constant fraction of edges. The proof is given in Appendix E.

THEOREM 6. Let G = (V, E) be such that |E| = Θ(n) and
∃S ⊆ V such that

(i) |S| = Θ(n),
(ii) ∀v ∈ S,∃v′ ∈ S, v 6= v′, s.t. |out(v) ∩ out(v′)| ≥ 1,
(iii) there exists a constant k, s.t. ∀v ∈ S, outdeg(v) ≤ k,
(iv) ∀v ∈ S,∀w ∈ out(v), indeg(w) ≤ n

1
2−ε.

Then, with probability 1−o(1) (over the space of permutations),
at least a constant fraction of the edges will be “copied” (even with
a window of size 1) when using the shingle ordering.

It is trivial to note that this holds even for undirected graphs;
indeed, each undirected edge {u, v} can be substituted by two di-
rected edges (u, v), (v, u). Then, for each node, its original set of
neighbors will be the same as its new sets of in- and out-neighbors.

We now show the main result of the section: using shingle order-
ing it is possible to copy a constant fraction of the edges of graphs
generated by the PA model.

THEOREM 7. With high probability, the graphs generated by
the PA model satisfies the properties of Theorem 6.

PROOF. We start by removing the nodes incident to multi-edges
or self-loops — there are o(n) such nodes and their incident edges1.
1This can be easily shown by noting that the expected number of
multiple edges and self-loops added by the nth inserted node is
O(m3/n1/2−ε), conditioned on the fact that the highest degree at
that point is O(n1/2+ε) whp [12]. Then, by Markov’s inequality
the claim follows.

Also, we remove all nodes of degree > k, for some constant k —
by [9] only εkn edges and nodes will be removed this way.

The resulting graph will thus have at most n nodes and at least
(1 − 2εk)mn ≥ (1 − 2εk)n edges. Also its maximum degree
will be k. By averaging, a graph having these three properties will
contain at least (1− 2εk) n

2k
nodes of degree at least 2.

Now take all the nodes v in this graph incident to a neighbor of
degree ≥ 2. There are ≥ (1− 2εk) n

2k
such neighbors and each of

them will be connected to at most k such v’s. Thus, the number of
these v’s is at least Ω(n/(2k2)) = Ω(n). The set of these v’s is the
set S of Theorem 6.

As our experiments show, shingle ordering allows both BL and
BV schemes to take significant advantage of copying.

5. EXPERIMENTAL RESULTS
In this section we describe the experimental results. The goal of

our experiments is two-fold: (1) study the performance of BV/BL
schemes using the shingle ordering on social networks; (2) obtain
insights into the differences between the Web and social networks
in terms of their compressibility. First we begin with the descrip-
tion of the data sets we use for our experiments. Next we discuss
the baselines we use (to compare against shingle ordering). Finally
we present and discuss our experimental results.

5.1 Data
For our experiments, we chose four large directed graphs: (i) a

2008 snapshot of LiveJournal (a social network site, livejournal.
com) and an induced subgraph of users, called LiveJournal (zip),
for whom we know their zip codes; (ii) monthly snapshots of Flickr
(a photosharing site, flickr.com) from March 2004 until April
2008; (iii) the host graph2 of a 2005 snapshot of the .uk Web
graph; and (iv) the host graph of a 2004 snapshot of the IndoChina
(.in,.cn) Web graph.

Graph n |E| % reciprocal
edges

LiveJournal 5,363,260 79,023,142 72.0
LiveJournal (zip) 1,314,288 8,040,562 79.0

Flickr 25,158,667 69,702,479 64.4
UK-host 587,205 12,825,465 18.6

IndoChina-host 19,123 233,380 10.6
IndoChina 7,414,866 194,109,311 20.9

Table 1: Basic properties of our graphs.

In Table 1, we summarize the properties of the graphs we have
considered. Notice the magnitude of the reciprocity of the social
networks (LiveJournal and Flickr); the BL scheme will critically
leverage this property.

5.2 Baselines
We use the following orderings as our baselines to compare against

the shingle ordering.
(1) Random order. We use a random permutation of all the nodes

in the graph.
(2) Natural order. This is the most basic order that can be de-

fined for a graph. For Web and host graphs, a natural order is the
URL lexicographic ordering (used by BV). For a snapshot of Live-
Journal, a natural order is the order in which the user profiles were
2Host graph refers to a directed graph whose nodes are the hosts
and an edge exists from host a to host b if there is a Web page on
host a that points to a Web page on host b.
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crawled. For Flickr, since we know the exact time at which each
node and edge was created, a natural order is the order in which
users joined the network.

(3) Gray order. Consider the binary adjacency matrix induced by,
say, the natural order. Now, a node v precedes node w in the Gray
ordering if the row of v precedes the row of w (both interpreted as
binary strings) in the canonical Gray code [5, 22].

(4) Geographic order. In a social network, if geographic infor-
mation is available in the form of a zip code, then this defines a
geography-based order. Liben-Nowell et al. [18] showed that
about the 70% of social network links arise from geographical prox-
imity, suggesting that friends can be grouped together using geo-
graphical information. Notice that this only defines a partial order
(i.e., with ties).

(5) DFS and BFS order. Here, the orderings are given by these
common graph traversal algorithms. We also try the undirected
versions of these traversals, where the edge direction is discarded.

To test the robustness of shingle ordering, we also use an order-
ing obtained by two shingles instead of just one, where the second
shingle is used to break ties produced by the first. We call this
the double shingle ordering. When only one shingle was used, ties
were broken using the natural order or if specified, the Gray order.

Our performance numbers are always measured in bits/link.

5.3 Compression performance
In Table 2, we present the results of the different compression/orderings

on our graphs. This table shows that double shingle ordering pro-
duces the best or the near-best compression, for both BV and BL.
In some cases, it cuts almost half the number of bits used by the
natural order. Also we note that the improvement of BL over BV is
significant for networks that are highly reciprocal, i.e., social net-
works. Finally, the numbers show interesting similarities between
social networks and host graphs. In both cases, their compressibil-
ity using the best compression (BL with double shingle order) is on
par with each another.

It is interesting to note that the best compression rates for the host
graphs are similar to that of the social networks, even though the
former are much smaller in size than the latter. For comparison, we
note how the snapshot of the UK domain (IndoChina domains) that
we used to obtain the host graph, was found to be compressible to
1.701 (1.472) bits/link (see [6] and http://law.dsi.unimi.
it/). This seems to indicate that the host graphs are very hard to
compress.

Graph BV BL
Shingle Double Shingle Double

Shingle Shingle
LiveJournal 15.977 15.838 10.421 (ζ4) 10.415 (ζ4)

Flickr 13.602 13.503 10.938 (δ) 10.891 (δ)
UK-host 8.318 8.097 8.197 (ζ4) 8.094 (ζ4)

IndoChina-host 7.328 7.260 7.082 (δ) 7.080 (δ)

Table 3: Performances of the compression techniques using
Gray orderings to break ties.

Next we present the effect of breaking ties in shingle and dou-
ble shingle orderings using the Gray ordering (Table 3). Modest
improvements are obtained by this method for some graphs. Once
again, LiveJournal does not appear to be amenable to the shingle
approach.

We also note how (Table 4) the BFS/DFS orderings are always
suboptimal, almost as bad as a random order. In Table 5, we show
the performance of geographical ordering on the induced subgraph

of LiveJournal, restricted to users in US with a known zip code.
We see how ordering by zip code (i.e., in such a way that people at
small geographic distance are close to each other in the ordering) is
much worse than ordering by shingle, suggesting that geographic
ordering is perhaps not useful for compression.

5.4 Temporal analysis
In Figure 1, we see how the different ordering and compression

techniques achieve different results on the monthly snapshots of the
Flickr social network. The upper half of the figure shows how the
Flickr network grew over time. Here, we see that BL with shingle
ordering beats the competition uniformly over all the snapshots.
We also see an interesting pattern: BL obtains a better compression
rate, with each of the orderings. It is remarkable to note that even
though the number of edges in Flickr grew by an enormous number
between March 2005 and April 2008, the compressibility of the
network (under a variety of schemes and orderings) has remained
robust.
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Figure 1: Performance on the temporal Flickr graph.

5.5 Why does shingle ordering work best?
Figures 2 and 3 show one reason why the shingle ordering helps

compression: in the LiveJournal, IndoChina-host and UK-host graphs
the number of small gaps is higher with shingle ordering than with
any other ordering. The notable exception is the LiveJournal graph,
where the natural ordering is marginally better.

In Figure 2, the upper panel represents the number of gaps (y-
axis) of a certain length (x-axis) for the LiveJournal graph. The
lower panel represents a sub-sampled version of the same data:
for each length i we deleted the length = i point with probabil-
ity Θ(1/i). This way, in expectation, the number of points in each
interval 10k, . . . , 10k+1 is the same. The bottom panel is more
readable. Recall that in LiveJournal, the natural (crawl) ordering
beats the shingle ordering by a small amount.

In Figure 3, the upper (lower) panel represents the number of
gaps (y-axis) of a certain length (x-axis) for (top to bottom) for
the UK-host and the IndoChina-host. These are the sub-sampled
versions of the actual data. Note that in both cases, shingle ordering
is the best, i.e, the shingle ordering creates many more gaps of small
length than the other orderings — the smaller the length of a gap,
the fewer bits it takes for encoding.

From these, we see that shingle ordering reduces the lengths of
gaps. As we argued earlier, shingle ordering also helps the BV and
BL schemes exploit copying. These two benefits together appear
to be the main reasons why shingle ordering almost always outper-
forms many other orderings.
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Graph BV BL
Natural Random Gray Shingle Double Natural Random Gray Shingle Double

Shingle Shingle
LiveJournal 14.435 23.566 14.308 15.956 15.828 9.564 (ζ4) 15.169 (ζ4) 9.559 (ζ4) 10.461 (ζ4) 10.435 (ζ4)

Flickr 21.865 23.958 13.830 13.549 13.496 16.382 (ζ4) 17.785 (ζ4) 11.316 (δ) 10.952 (ζ4) 10.915 (ζ4)
UK-host 10.826 15.543 8.117 8.218 8.138 10.574 (δ) 14.528 (δ) 7.982 (ζ4) 8.243 (δ) 8.133 (δ)

IndoChina-host 9.224 10.543 7.340 7.367 7.120 9.753 (ζ4) 10.823 (ζ4) 7.262 (ζ4) 7.310 (δ) 7.126 (δ)
IndoChina 2.025 21.449 - 2.719 2.721 2.349 (δ) 17.603 (ζ4) - 2.779 (δ) 2.780 (δ)

Table 2: Performances of the compression techniques under different orderings.

Graph BV BL
DFS Undir. DFS BFS Undir. BFS DFS Undir. DFS BFS Undir. BFS

LiveJournal 19.992 20.253 20.763 21.376 12.924 (ζ4) 13.096 (ζ4) 13.401 (ζ4) 13.778 (ζ4)
UK-host 14.630 14.474 14.903 14.634 13.774 (ζ4) 13.607 (ζ4) 13.978 (ζ4) 13.731 (ζ4)

IndoChina-host 10.172 10.210 10.231 9.810 10.561 (ζ4) 10.317 (ζ4) 10.558 (ζ4) 10.105 (ζ4)

Table 4: Performance of the BFS/DFS orderings.

Figure 2: Gap distribution in LiveJournal graph.

5.6 A cause of incompressibility
We investigate what causes social networks to be far less com-

pressible than Web graphs. We ask the question: is the densest
portion of a social network far more compressible than the rest of
the graph? To study this, we analyze k-cores of the LiveJournal so-
cial network. Recall that a k-core of a graph is the largest induced
subgraph whose minimum degree is at least k. For each k, the k-
core of LiveJournal was extracted and compressed by itself. Then,
the k-core edges were were removed from the original LiveJour-
nal, which was also compressed by itself. The results are shown
in Figure 4. It is clear that as k increases, the k-core gets easier
to compress but at the same time the remaining graph gets harder
and harder to compress. This suggests that the low-degree nodes in
social networks are primarily responsible for its incompressibility.

On a separate note, k-cores can also be used to compress the so-

Figure 3: Gap distribution in UK-host and IndoChina-host
graphs.

cial network. This is done by representing all the nodes in a k-core
by a single virtual node, and compressing the k-core graph and the
remainder graph (with the virtual node) separately. For the Live-
Journal graph, for k = 50, we obtain 9.435 bits/link compression.
This is a mild improvement over the best numbers in Table 2.

6. CONCLUSIONS
We have considered the compression of social networks, and

have found both key similarities and differences between this prob-
lem and the related, previously well-studied problem of compress-
ing Web graphs. As with Web graphs, it appears desirable to take
advantage of lexicographic locality and similar neighborhoods for
compression of social networks. However, it is less clear that there
is a natural ordering for social networks comparable to the URL
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Graph BV BL
Geographic Shingle Double Shingle Geographic Shingle Double Shingle

LiveJournal (zip) 17.258 17.042 16.975 11.396 (ζ4) 10.964 (δ) 10.950 (δ)

Table 5: Performance of geographic ordering on LiveJournal (zip).
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Figure 4: Compressibility of k-cores.

ordering of Web pages. Instead, we have shown that shingle order-
ing, which is based only on the local linkage of the graph, performs
better than other seemingly natural orderings. We also highlight the
critical role of reciprocal edges in social network graphs.

We have shown how the optimization of locality-based compres-
sion schemes can be formulated as variations of the well-known
minimum linear arrangement problem. These variations have their
own subtle properties; approximation algorithms (or proving the
hardness of approximation) remain interesting open questions. We
have also considered lower bounds on compression for general classes
of graphs, which suggest that the amazing compression ratios ob-
tainable on the Web may be due to its particular structure, and may
not be available for social graphs even given an optimal lexico-
graphic ordering.
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APPENDIX
A. MLOGA VS. MLINA VS. MLOGGAPA

0

1

2

3

4 5 6

Figure 5: An example showing the difference between MLOGA
and MLINA.

The graph in Figure 5 is an example showing that the MLINA
and the MLOGA problems can have different optimal solutions:
there is no ordering that minimizes both the objective functions si-
multaneously. The best solutions for MLINA have cost 19 whereas
the best solutions for MLOGA have cost lg 180. It can be checked
that among the optimal MLINA orderings (with cost 19), the best
for MLOGA has cost lg 192 (e.g, the ordering 4, 5, 3, 2, 6, 1, 0).
Among the optimal MLOGA ordering (with cost lg 180), the best
for MLINA has cost 20 (obtained by swapping 3 and 5 in the pre-
vious ordering).

It is easy to similarly show that MLOGGAPA can have different
solutions from both MLINA and MLOGA. For instance, consider
a star with three leaves. The optimum ordering for MLOGGAPA
will place the center of the star as the first (or the last) node of the
ordering, yielding a total cost of 0. On the other hand this solution
is suboptimal for both MLINA and MLOGA, either of which would
place the center of the star as the second (or the third) node in the
ordering.

B. HARDNESS OF MLOGA
We prove the hardness of MLOGA using the inapproximability

of MAXCUT. Our starting point is that MAXCUT cannot be ap-
proximated to a factor greater than 16

17
+ ε unless P = NP [16]. In

the reduction below we have not attempted to optimize parameters.
We start from a MAXCUT instance (G(V, E), k), where the ques-

tion is if there is a cut of size at least k in G. Let |V | = n and
|E| = m. We build the graph G′ composed by a clique of size
n100 and a disjoint copy of the complement of G denoted Ḡ. Fur-
ther, we add an edge between each node of the clique and each node
of Ḡ. Each edge of the clique will have multiplicity n500 + 1 and
all other edges will have unit multiplicity.

Now we would like to answer the following question Q: is it
possible to find an ordering of G′ with an MLOGA cost smaller
than a given Z? We show that answering questions of the form
Q would allow us to approximate the corresponding MAXCUT
instance. Let C =

P
1≤i<j≤n100+n+1 lg(j − i) and let X =

n500 P
1≤i<j≤n100 lg(j − i).

First, note that in any ordering of G′ for which the answer for Q
is yes when Z = C+X−k lg n100, the nodes in the clique must be
adjacent. Otherwise, at least one edge of the clique will be enlarged
by at least 1. In this case, the overall cost of the clique edges will
be at least X − (n500 + 1)(lg n100) + (n500 + 1) lg(n100 + 1),
which is X + Ω(n400). This is larger than the cost allowed by the
question Q.

We show that if the answer to Q when Z = C + X − k lg n100

is positive, then there is a cut in G of size at least k(1 − 1
50

), and
otherwise there is no cut of size k. As this allows approximations
of MAXCUT to a factor better than 16/17, this shows that we can
have an algorithm to answer questions of the form Q only if P = NP,
proving the hardness of MLOGA. From our previous argument, we
now need only consider ordering of G′ where the clique nodes are
laid out consecutively. Each such ordering naturally gives a cut of
the original graph, and the cost of the MLOGA objective function
is equal to C + X −

P
{u,v}∈E(G) lg |π(u)− π(v)|. Consider the

edges in G (corresponding to the missing edges in G′) that pass
over the clique. Each of these edges will have length at least n100,
and hence the cost of the MLOGA objective function is smaller
than C + X − k lg n100 = Z. Hence if the there is a cut of size at
least k in G, then the answer to Q is yes.

On the other hand, each of the other missing edges will have
length at most n, (the order of G), and hence have cost at most
lg n. As the MAXCUT cost k is at least m

2
, if G does not have a

cut of size at least k(1 − 1
50

), then the smallest that the MLOGA
objective function can be is

C + X − k

„
1− 1

50

«
lg(n100 + n)− k lg n > Z,

for n sufficiently large. This proves the claim.

C. HARDNESS OF MLINGAPA
We start from the (directed) MLINA problem, which is known to

be NP-hard [14]. Let (G(V, E), k) be an MLINA instance where
the question is if there is a linear arrangement whose sum of edge
lengths is ≤ k. Let n = |V | and m = |E|. We create the instance
of the (directed) MLINGAPA problem as follows.

The graph G′ will be composed of n′ = nc+1 + 2m nodes, for
a large enough constant c. For each node v ∈ V (G), two directed
cliques Kv,1 and Kv,2 of equal sizes nc will be created. Also, a
clique of n nodes dv,1, . . . , dv,2n (the “peer nodes” of v) will be
created for each v ∈ V (G). Each node in Kv,1 and each node in
Kv,2 will point to node dv,i for all i = 1, . . . , deg(v) and vice
versa.

The set E(G′) will contain 2m other edges, that we call the
“original” edges. In particular, for each edge (v, u) ∈ E(G) the
edges (dv,∗,du,∗) and (du,∗,dv,∗) will be added in such a way that
each node dv,∗ will have outdegree ≤ n.

Given an arbitrary node v, consider the following ordering of its
two cliques and of its peer nodes: the first clique laid out on nc

consecutive nodes, followed by its 2n peers, and finally the second
clique (using a total of nc + n nodes); we call this ordering good.
Let F be the cost of the edges of the cliques, and the edges from the
cliques to the peers, in this ordering. Note that F can be trivially
computed in polynomial time. Now we ask: is there an ordering
with MLINGAPA cost at most nF + 3K(2nc) + 3mn2 = T ?

If there is an MLINA ordering π of cost at most K, then it is
easy to find an MLINGAPA ordering of cost at most T . If v is the
first node of π, place the first clique of v followed by the peers of v
and the second clique of v at the beginning. Then do the same for
the second node of π, and so on, until all nodes have been placed.
Now we compute the total MLOGGAPA cost. We have a fixed cost
of nF (the ordering of the “nodes structures”) for the non-original
edges. As for the original edges, note that each node from which
an original edge starts has out-degree 1, thus encoding the “gap”
induced by that edge has the same cost of encoding its length. Note
that the number of cliques that an edge (that had length ` in π)
passes over in the new ordering is 2` and each such clique has size
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nc. Thus, the cost in the new ordering of the edge will be at most
`2nc + ξ, where ξ is an error term that equals n2 (the total number
of peer nodes). Now for any edge of length in the MLINA, there
are three gaps of cost at most `2nc + n2. The total cost will thus
be at most nF + 3K(2nc) + 3mn2 = T .

Now suppose we have an MLINGAPA ordering with cost at most
T . We then show that there is an MLINA ordering of cost at most
K. To show this, we first prove that for each v, the ordering will
be such that (i) the distance between any two nodes of Kv,1 (resp.,
Kv,2) will be at most nc + n4, i.e., the cliques will not be spread
out, (ii) the distance between each single peer of v and its nearest
node of Kv,1 (Kv,2) will be at most n4.

Suppose this statement is true. We show by contradiction that
there must exist an MLINA ordering of cost at most K. First, notice
that the minimum cost that we have to pay for the edge between
nodes in V (G′) that are generated from one node v is at least F ,
since in any ordering the gaps are of length at least 1 and for any
ordering, the sum of the cost of the backward edges is at least that
of in the good ordering. Furthermore, it follows from (i) and (ii)
that in all valid solutions, for each v ∈ V (G), each peer node of
v must be placed at distance at most nc + 2n4 from each clique
node of v. Now, the number of nodes of the cliques generated by
v is 2nc so it is necessary that each peer node has to be placed
after at least nc − 2n4 nodes of one of its two cliques and before
nc − 2n4 nodes of its other (as each peer node has to be at distance
≤ nc + 2n4 from each node of its cliques). Hence, the total cost
for any ordering of cost K + 1 for the MLINA problem is at least
nF + 3(K + 1)(2nc − 4n4) > T , a contradiction.

To finish the proof, we show (i): if the maximum distance be-
tween two nodes in any of the Kv cliques is > nc + n4, then the
total cost of the ordering is > T . Indeed if the distance between any
two nodes of Kv is more than nc + n4, then the cost for the edges
between the clique and peer nodes of v will be ≥ F + nc+4 − nc

where the first term of the sum follows since all the gaps are of
length at least one, and there are at least nc +n backlinks. The sec-
ond term of the sum is the added cost due to the spread of the clique,
which is≥ n4, and since, say, the rightmost node of the clique must
go across all the non-clique nodes between clique nodes, for a total
of at least nc − 1 links. Hence, the cost of the ordering would be
≥ nF + nc+4 − nc > T , contradicting the validity of the solution
since K = O(n2).

Finally we have to prove (ii): for each v ∈ V (G), no peer node
of v is at distance ≥ n4 from each of the cliques of v. Proceeding
as before, we lower bound the cost of the ordering for the edges
between the nodes of the peers and the cliques of v. The cost of
the ordering will be F plus the cost due to the enlargement of the
gaps between v and Kv . Thus, the total cost of the ordering is
≥ nF + nc+4 > T , again a contradiction.

D. LOWERBOUND: MLOGA FOR EXPANDERS
Let G = (V, E) be a simple graph with no isolated nodes and

let |E| = m. For the edge expansion case, note that for any S ⊆
V such that |S| = n/2, we have that Ω(n) edges are in the cut
(S, G \ S). If Ω(n) edges are in the cut then there are Ω(n) edges
of length at least

√
n because the graph is simple. Each such edge

will have cost Ω(log n). The edge expansion claim follows. The
node expansion case is analogous.

Now suppose that the conductance is Ω(1). First note that the
total degree of the graph is ≥ 2n − 2, since the graph has to be
connected. We claim that there is an [S, T ] cut with m− n + 1 <
|S| ≤ m. To see this, consider any line embedding of the graph.
Scan the nodes from the left and stop as soon as the total degree of
the nodes from the nodes seen so far to the unseen nodes is more

than m. Remove the current node, whose degree is ≤ n−1, letting
S be the set of nodes seen up until the current node. Then, |S| ≥
Ω(m), and at least Ω(m) edges are in the cut. Hence, at least Ω(m)
of those edges will have length Ω(

√
m). Thus their total cost will

be Ω(m log m) = Ω(m log n).

E. SHINGLE ORDERING IN PA MODEL
We need the following concentration inequality, proved in a stronger

form by McDiarmid [20].

THEOREM 8. Let X be a non-negative random variable not
identically 0, which is determined by an independent random per-
mutation σ, satisfying the following for some c, r > 0: interchang-
ing two elements in the permutation can affect X by at most c, and
for any s, if X ≥ s, then there is a set of at most rs coordinates of
σ whose values certify that X ≥ s. Then, for any 0 ≤ t ≤ E[X],

Pr[|X − E[X]| > t + 60c
p

rE[X]] ≤ 4 exp

„
− t2

8c2rE[X]

«
.

Using this, we prove Theorem 6. Given an ordering and an arbi-
trary node v, we say that the edge (v, w) is shingled if the position
of v is determined by w, i.e., if the minimum out-neighbor of v,
according to the random shingle permutation, is w. Also, we say
that a node v is shingled by w if w is the minimum out-neighbor
of v according to the random shingle permutation. A node v ∈ S
is good if there is a node v′ ∈ S, v 6= v′, such that v and v′ are
shingled by the same node.

Let X be the number of good nodes. By property (ii), each node
v in S has a common out-neighbor with at least another node in
S. As all nodes in S have outdegree bounded by k and hence
with probability 1/(2k − 1) ≥ 1/(2k), one of their common out-
neighbors will be the smallest of both their out-neighborhoods ac-
cording to the random shingle permutation, i.e., they will be shin-
gled together. Thus, E[X] ≥ |S| /(2k).

We will first assume X ≥ Ω(|S|) whp, and claim that at least
Ω(|S|) edges are copied. Indeed, partition the good nodes in S
according to their shingling node. Each part will contain at least
two nodes (by the definition of good nodes), and in each part all the
nodes, but the first, will copy their edge pointing to their shingling
node. Thus, the fraction of good nodes in a part copying at least
one of their edges is ≥ 1/2. The claim follows.

To obtain the high probability lower bound on X we use The-
orem 8. Note that here we only have the random shingle permu-
tation (i.e., no random trials). In order to use Theorem 8 we have
to choose suitable c, r. Using property (iv), we can upperbound
the effect on X of a swap of two elements with c = 2n

1
2−ε. To

see this, the only nodes that can change their good or bad statuses
are the in-neighbors of the two swapped nodes and these can be
upperbounded by 2n

1
2−ε. If a node v ∈ S is good, then there

exists a node v′ ∈ S with the same shingling node w. Thus, to
certify that v is good it suffices to reveal the positions of the nodes
in N+(v) ∪ N+(v′) — v is good iff w is the first of the nodes in
N+(v) ∪ N+(v′). As the degrees of v, v′ are bounded by k, we
can safely choose r = 2k. By plugging c, r into Theorem 8 we get
the high probability lower bound on X .
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