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Abstract

We initiate a study of computable online (c-online) learning, which we analyze under varying re-

quirements for “optimality” in terms of the mistake bound. Our main contribution is to give a

necessary and sufficient condition for optimal c-online learning and show that the Littlestone di-

mension no longer characterizes the optimal mistake bound of c-online learning. Furthermore, we

introduce anytime optimal (a-optimal) online learning, a more natural conceptualization of “opti-

mality” and a generalization of Littlestone’s Standard Optimal Algorithm. We show the existence of

a computational separation between a-optimal and optimal online learning, proving that a-optimal

online learning is computationally more difficult. Finally, we consider online learning with no re-

quirements for optimality, and show, under a weaker notion of computability, that the finiteness of

the Littlestone dimension no longer characterizes whether a class is c-online learnable with finite

mistake bound. A potential avenue for strengthening this result is suggested by exploring the rela-

tionship between c-online and CPAC learning, where we show that c-online learning is as difficult

as improper CPAC learning.

Keywords: computability, online learning, Littlestone dimension

1. Introduction

Motivated by recent work on computable PAC (CPAC) learning (Agarwal et al., 2020, 2021; Sterken-

burg, 2022), we initiate a study of computable online (c-online) learning, where learners and their

output hypotheses are required to be computable. As stated in Littlestone’s seminal paper (1988, p.

289), the original definition of online learning was limited to finite domains and hypothesis classes

to avoid “computability issues.” Although Littlestone’s results are easily extendable to the infi-

nite setting (see Shalev-Shwartz and Ben-David, 2014, Chapter 21), an implicit assumption is that

learners are functions, not necessarily computable, that map input samples to output hypotheses.

Indeed, this assumption is implicit in many recent advances in online learning—for example, the

equivalence between online learning and differentially private PAC learning (Alon et al., 2022) and

the characterizations of proper online learning (Chase and Freitag, 2020; Hanneke et al., 2021) and

agnostic online learning (Ben-David et al., 2009). A further motivation for the study of computable

learning stems from recent work on the undecidability of learning, where the authors state that “the

source of the problem is in defining learnability as the existence of a learning function rather than

the existence of a learning algorithm” (Ben-David et al., 2019, p. 48).

A key result in online learning is that the Littlestone dimension characterizes the mistake bound

of optimal online learners (Littlestone, 1988, Theorem 3). It is therefore natural to ask whether this

fundamental result still holds in the computable setting. In this work, we formalize and investigate

computable online learning under different notions of “optimality” in terms of the mistake bound.
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Our main contribution is to give a necessary and sufficient condition for optimal c-online learn-

ing (Section 5.2), the proof of which relies on expanding the concept of significant points intro-

duced by Frances and Litman (1998). Using this condition, we show that the Littlestone dimension

no longer characterizes the optimal mistake bound of c-online learning (Section 5.3). In particular,

we construct a class with finite Littlestone dimension for which no optimal online learner is com-

putable. We also provide a positive result for the learnability of Littlestone dimension 1 classes in

the computable setting (Section 5.2).

Additionally, we introduce a notion of anytime optimal (a-optimal) online learning which cap-

tures the optimality property displayed by Littlestone’s Standard Optimal Algorithm (Sections 3.1,

4.1). Although optimal and a-optimal online learning are equivalent in the standard online learning

model, we prove a computational separation between the two, showing that a-optimal online learn-

ing is computationally more difficult than optimal online learning. Specifically, we construct a class

that is optimally but not a-optimally c-online learnable (Section 4.2).

A corollary of Theorem 3 from Littlestone (1988) is that the finiteness of the Littlestone dimen-

sion characterizes whether a class is online learnable at all—that is, whether it is online learnable

with finite mistake bound. However, we show the existence of a “weakly computable” class with

finite Littlestone dimension for which no computable online learner achieves finite mistake bound

(Section 6.1). A potential avenue for strengthening this result is suggested in Section 6.2, where we

explore the relationship between c-online and improper CPAC learning.

The paper is structured as follows. Section 2 provides the general background and notation

needed from online learning and computability theory. Section 3 introduces our main definitions of

a-optimal online learning, optimally significant inputs, and c-online learning. The last three sections

analyze c-online learning under increasingly looser notions of “optimality”—Section 4 considers a-

optimal c-online learning, Section 5 optimal c-online learning, and Section 6 c-online learning.

2. General Background

This section provides the required background from online learning (Section 2.1) and computability

theory (Section 2.2).

2.1. Online Learning

We first give an informal description of the online learning model and then introduce the formal

notation that will be used throughout the paper. The definitions in this section are based on those

given in Shalev-Shwartz and Ben-David (2014, Chapter 21).

Introduced in Littlestone (1988)’s seminal work, online learning takes place in rounds. Infor-

mally, at each round t, an adversary presents the learner with some point xt, the learner makes a

prediction pt, and the adversary reveals the true label yt. The goal of the learner is to minimize the

number of mistakes it makes. Clearly, with no further restrictions, the adversary could contradict

the learner at each time step and cause an unbounded number of mistakes. It is therefore assumed

that the learner has access to a class of hypotheses and that the sequence of examples presented by

the adversary is consistent with some hypothesis from this class.

Formally, let X be the domain set and Y = {0, 1} be the label set. A hypothesis is a function

h : X → Y and a hypothesis class is a set of hypotheses H ⊆ YX . The support of a hypothesis h is

h−1(1) = {x : h(x) = 1}. Given a set E ⊆ X , the characteristic function of E is χ
E
: x 7→ 1[x∈E].

A sample S ∈ S = ∪T∈N(X×Y)
T is a finite sequence of labeled domain instances, where the empty

2



ON COMPUTABLE ONLINE LEARNING

sample is denoted by ε. Given a sample S = ((xi, yi))
T
i=1, let Sn = ((xi, yi))

n
i=1 be the length-n

prefix of S, where 0 ≤ n ≤ T . Denote by S⌢S′ the concatenation of two samples S, S′ ∈ S. The

empirical loss of a hypothesis h with respect to a sample S is defined as LS(h) =
∑T

t=1 1[h(xt)6=yt].

The empirical loss of a hypothesis class H is LS(H) = infh∈H LS(h). The set of all samples

that are H-realizable is denoted by SH = {S ∈ S : LS(H) = 0}. Given a sample S, define

HS = {h ∈ H : LS(h) = 0} as the set of all hypotheses from H that are consistent with S. For

some labeled instance (x, y) ∈ X × Y , let H(x,y) = {h ∈ H : h(x) = y}. Furthermore, define

[n] = {x ∈ N : 1 ≤ x ≤ n}, where n ∈ N.

Definition 1 (online learner) An online learner is a function A ∈ YS×X that takes an input history

S ∈ S and a domain instance x ∈ X as input and predicts A(S, x) ∈ {0, 1}. Given a sample

S = ((xt, yt))
T
t=1, representing one run of the online learning process, at time step t ∈ [T ], A’s

prediction is A(St−1, xt), its output hypothesis is A(St−1, ·) ∈ Y
X , and its version space isHSt−1 .

Definition 2 (mistake bound) The number of mistakes made by an online learner A on a sample

S = ((x1, y1), . . . , (xT , yT )) is MA(S) =
∑T

t=1 1[A(St−1,xt)6=yt]. The mistake bound of A with

respect to a hypothesis classH is MA(H) = supS∈SH MA(S)—that is, the most that A errs on any

H-realizable sample. The optimal mistake bound of H is M(H) = infA∈YS×X MA(H).

Definition 3 (online learnable class) A hypothesis class H is online learnable if M(H) <∞.

Definition 4 (optimal online learner) An online learner A is an optimal online learner for a hy-

pothesis class H if MA(H) = M(H).

Definition 5 (H-shattered tree) Let H ⊆ {0, 1}X and d ∈ N. We say that (x1, . . . , x2d−1) ∈

X 2d−1 is anH-shattered tree of depth d if, for every (y1, . . . , yd) ∈ {0, 1}
d, there exists h ∈ H such

that for all j ∈ [d] we have that h(xij ) = yj , where ij = 2j−1 +
∑j−1

k=1 yk2
j−1−k. Let T d

H denote

the set of all H-shattered trees of depth d.

Remark 6 Intuitively, in the definition above, (x1, . . . , x2d−1) ∈ T
d
H represents a labeling of the

nodes of a complete binary tree of depth d, with xi labeling ith node. Each (y1, . . . , yd) represents

a different path through the tree starting from the root node i1 = 1. If ij is the current node in the

path, we go to the left child of ij if yj = 0 and go to the right child if yj = 1.

Definition 7 (Littlestone dimension) The Littlestone dimension of a hypothesis class H is the

depth of the largest H-shattered tree. Formally, if H 6= ∅, Ldim(H) = sup{d ∈ N : T d
H 6= ∅}

and Ldim(∅) = −1.

Remark 8 Note that, for any hypothesis class H, if Ldim(H(x,r)) = Ldim(H) for some x ∈ X and

r ∈ {0, 1}, we must have that Ldim(H(x,1−r)) < Ldim(H).

Definition 9 (Standard Optimal Learner) The Standard Optimal Learner for a hypothesis class

H is defined as SOLH : (S, x) 7→ 1[

Ldim
(

H
(x,1)
S

)

≥ Ldim
(

H
(x,0)
S

)].

Theorem 10 (Littlestone, 1988, Theorem 3) Given any hypothesis class H, M(H) = Ldim(H).
In particular, for every online learner A, MA(H) ≥ Ldim(H) and MSOLH

(H) = Ldim(H).1

1. Although Littlestone (1988, Theorem 3) only considers finite classes, the result is easily extendable to infinite classes

if the learners are not required to be computable (see Shalev-Shwartz and Ben-David, 2014, Corollary 21.8)
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2.2. Computability

We use notation given by Soare (2016). Let {Pe}e∈N and {ϕe}e∈N be effective numberings of all

Turing machines and all partial computable (p.c.) functions, respectively. If Pe halts on input x

and outputs y, we write ϕe(x) = y and say that ϕe(x) converges (denoted ϕe(x) ↓). Otherwise,

ϕe(x) diverges (denoted ϕe(x) ↑). The domain of ϕe is dom(ϕe) = {x : ϕe(x) ↓} and its range

is rng(ϕe) = {ϕe(x) : ϕe(x) ↓}. If dom(ϕe) = N, ϕe is a total computable (t.c.) function

(abbreviated computable function). We also extend this notation to n-place p.c. functions, where

ϕ
(n)
e is the p.c. function of n variables computed by Pe and ϕe denotes ϕ

(1)
e . A set E is recursively

enumerable (r.e.) if it can be effectively enumerated—that is, if it is the domain of some p.c.

function. E is decidable if its characteristic function, χ
E

: x 7→ 1[x∈E], is computable. The

restriction of ϕe to an r.e. set X is the p.c. function ϕe|X , where ϕe|X(x) equals ϕe(x) if x ∈ X ∩
dom(ϕe) and is undefined otherwise. We say ϕe2 is a p.c. extension of ϕe1 if ϕe2 |dom(ϕe1 )

= ϕe1 .

The canonical index of a finite set F ⊂ N is an integer y that explicitly specifies all elements

of F , and Dy denotes the finite set with canonical index y.2 Furthermore, given a sequence Z ∈
∪n∈NN

n, we let 〈Z〉 denote the encoding of Z by a standard 1:1 computable function from ∪n∈NN
n

to N. In a slight abuse of notation, we extend this notation to apply when Z ∈ S.3 Additionally, for

a set X of such integer sequences, we define 〈X〉 = {〈Z〉 : Z ∈ X}.

3. Setup and definitions

This section introduces our main definitions of anytime optimal online learning (Section 3.1), opti-

mally significant inputs (Section 3.2), and c-online learning (Section 3.3).

3.1. Anytime optimal online learning

We present a notion of anytime optimal online learning, which we claim is a more natural concep-

tualization of “optimality” when referring to online learning.

As a motivating example, consider the class Hd = {χ
[n]
}2

d

n=1 over the domain X = N, where

2 < d <∞ (recall that [n] = {1, 2, . . . , n} and χ
A

is the characteristic function of the set A ⊆ N).

Further define E = {2d+ i}d−1
i=1 and letH′

d = Hd∪{χE
}. That is,Hd is a set of 2d thresholds over

the natural numbers and E is a set of d − 1 distinct domain instances that are not given the label 1

by any h ∈ Hd. It is easy to verify that Ldim(H′
d) = Ldim(Hd) = d. Now, let A be the learner that

behaves as follows: for all inputs (S, x) ∈ S × X , A(S, x) = SOLH′
d
(S, x) if S is Hd-realizable

and A(S, x) = 0 otherwise. Note that A is still an optimal online learner for H′
d as it errs no more

than d times on any H′
d-realizable sample; however, on the H′

d-realizable sample ((x, 1))x∈E , A

errs d− 1 times while SOLH′
d

only errs at time step 1. It is clear that anyH′
d-realizable sample that

contains some x ∈ E with the label 1 can only be realized by χ
E

; hence, a “truly optimal” learner

should incur no mistakes after seeing any x ∈ E with the label 1.

2. Specifically, the canonical index of a finite set F ⊂ N is the integer y =
∑

x∈F
2x. The elements of the finite set

with canonical index y, Dy, are the positions of the “on” bits in y’s binary expansion.

3. To be explicit, given an n-tuple of integers Z = (z1, . . . , zn), we have that 〈Z〉 = Πn
i=1p

zi+1
i , where pi is the ith

prime number. Similarly, given a sample S = ((x1, y1), . . . , (xn, yn)), we define 〈S〉 = 〈(x1, y1, . . . , xn, yn)〉.
Note that any 1:1 partially computable function is computably invertible on its range, so Z and S are computably

recoverable given 〈Z〉 and 〈S〉 respectively.
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The above example illustrates a gap between the commonly accepted definition of optimal on-

line learning and the stricter optimality displayed by the Standard Optimal Learner. We define our

notion of anytime optimal online learning below, where the learner makes the optimal number of

mistakes even after conditioning on a given input sample. The properties of anytime optimal online

learning are further explored in Section 4.1.

Definition 11 (post-S mistake bound) Given a hypothesis class H, an online learner A, and an

H-realizable sample S ∈ SH, we define the post-S mistake bound of A with respect toH as

MS
A(H) = sup

S′ ∈ S:
S⌢S′ ∈ SH

MA(S
⌢S′)−MA(S).

That is, MS
A(H) is the most that A can be made to err after witnessing S. The optimal post-S

mistake bound ofH is defined as MS(H) = infA∈YS×X MS
A(H).

Definition 12 (anytime optimal (a-optimal) online learner) An online learner A is anytime opti-

mal (a-optimal) for a hypothesis class H if MS
A(H) = MS(H) for all S ∈ SH.

3.2. Significant inputs for optimal and a-optimal online learning

Frances and Litman (1998) introduced the concept of significant points, points on which all optimal

online learners agree on in the first time step of online learning. Formally, we say that x ∈ X is an

optimally significant point for online learning a class H if A(ε, x) = A′(ε, x) for any two optimal

online learners A and A′. Furthermore, Lemma 3 from Frances and Litman (1998) characterizes

all optimally significant points as follows: x is an optimally significant point for H iff there exists

r ∈ {0, 1} such that Ldim(H(x,r)) = Ldim(H). Moreover, A(ε, x) = r for all online learners A

that are optimal w.r.t. H. Below, we extend this definition to apply beyond the first time step.

Definition 13 (optimally significant input) Let H be any hypothesis class. We say that (S, x) ∈
SH × X is an optimally significant input for online learning H if A(S, x) = A′(S, x) for any two

optimal online learners A and A′ forH. Let IH be the set of all optimally significant inputs for H.

Definition 14 (anytime optimally (a-optimally) significant input) LetH be any hypothesis class.

We say that (S, x) ∈ SH × X is an anytime optimally (a-optimally) significant input for online

learning H if A(S, x) = A′(S, x) for any two a-optimal online learners A and A′ for H.

3.3. Computable online learning

When defining a computably online learnable hypothesis class, we require both the class and the

learner to conform to some notion of “computability.”4 Following the computable PAC (CPAC)

setting (Agarwal et al., 2020), we let X = N, and assume, as a minimum, that the class consists of

computable hypotheses. It is also desirable to assume an effective enumeration of (the encodings

of) the hypotheses. A class H ⊂ {0, 1}N of computable hypotheses is recursively enumerably

representable (RER) if there exists an r.e. set E ⊂ N such that H = {ϕe : e ∈ E}. A class H is

decidably representable (DR) if each h ∈ H has finite support and {y : ∃h ∈ H (Dy = h−1(1))} is

a decidable set. Next, we define what it means for the learner itself to be computable.

4. The reader is referred to Section 2.2 for the relevant notation from computability theory.
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Definition 15 (computable online (c-online) learner) LetH ⊂ {0, 1}N be any class of computable

hypotheses. A two-place p.c. function A : N2 → N is a computable online (c-online) learner for H,

if, for every H-realizable sample S ∈ SH and every domain instance x ∈ X , A(〈S〉, x) ↓= y for

some y ∈ {0, 1}. That is, dom(A) ⊇ 〈SH〉 × X and rng(A|〈SH〉×X ) ⊆ {0, 1}.

Definition 16 (computable optimal online learner) A computable optimal online learner A for a

class H ⊂ {0, 1}N of computable hypotheses is a c-online learner for H with MA(H) = M(H).5

Definition 17 (computable a-optimal online learner) A computable anytime optimal (a-optimal)

online learner A for a classH ⊂ {0, 1}N of computable hypotheses is a c-online learner forH with

MS
A(H) = MS(H) for all S ∈ SH.

Definition 18 (computably online (c-online) learnable class) A classH ⊂ {0, 1}N of computable

hypotheses is computably online (c-online) learnable if there exists a c-online learner A for H with

MA(H) <∞.

Definition 19 (optimally c-online learnable class) A class H ⊂ {0, 1}N of computable hypothe-

ses is optimally c-online learnable if there exists a computable optimal online learner for H.

Definition 20 (a-optimally c-online learnable class) A classH ⊂ {0, 1}N of computable hypothe-

ses is anytime optimally (a-optimally) c-online learnable if there exists a computable a-optimal

online learner for H.

4. Anytime optimal c-online learnability

We start our analysis by considering the computability of a-optimal online learners. In Section

4.2, we show the existence of a computational separation between a-optimal and optimal online

learning, proving that a-optimal online learning is computationally more difficult. Our proof relies

on properties of a-optimal online learners presented in section 4.1 below.

4.1. Properties of anytime optimal online learners

The following lemma gives a characterization of the optimal post-S mistake bound of anytime

optimal online learning in terms of the Littlestone dimension of the version space. The proof is

implicit in the proof of Theorem 3 from Littlestone (1988).

Lemma 21 (characterizing the mistake bound of a-optimal online learning) Let H be any hy-

pothesis class. Then, for any H-realizable sample S ∈ SH, we have that MS(H) = Ldim(HS). In

particular, for every online learner A, MS
A(H) ≥ Ldim(HS) and MS

SOLH
(H) = Ldim(HS).

Informally, the next lemma states that an input is a-optimally significant iff it causes an “im-

balance” in the Littlestone tree of the version space. Again, the proof is implicit in the proof of

Theorem 3 from Littlestone (1988).

Lemma 22 (characterizing a-optimally significant inputs) LetH be any hypothesis class. Then,

an input (S, x) ∈ S×X is a-optimally significant forH iff Ldim(H
(x,1)
S ) 6= Ldim(H

(x,0)
S ). Further-

more, A(S, x) = argmaxr∈{0,1} Ldim(H
(x,r)
S ) for all a-optimal online learners A for H.

5. Note that when A is a c-online learner for a class H of computable hypotheses, MA(S) =
∑T

t=1 1[A(〈St−1〉,xt) 6=yt] is

well-defined for any H-realizable S = ((xt, yt))
T
t=1. We can extend the notation for MA(H) and MS

A(H) similarly.

6
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4.2. Computational gap between optimal and a-optimal online learning

In this section, we show that a-optimal online learning is computationally more difficult than optimal

online learning. In particular, we construct an RER class that is optimally but not a-optimally c-

online learnable. This result is extended to the DR case in Appendix C.

Theorem 23 There exists an RER class H ⊂ {0, 1}N of computable hypotheses with finite Little-

stone dimension such thatH is optimally c-online learnable but not a-optimally c-online learnable.

Proof Consider the following class:

HRER
halt =

⋃

e∈N

{

χ
{3e}

}

∪
⋃

e∈N:
ϕe(e)↓

{

χ
{3e, 3e+1}

, χ
{3e, 3e+1, 3e+2}

}

.

For simplicity, letH = HRER
halt . Note thatH is RER, each h ∈ H is computable, and Ldim(H) <∞.

Assume, by way of contradiction, that there exists a computable a-optimal online learner A for

H. For each e ∈ N, let Se = ((3e, 1)) and xe = 3e + 1. Further define f : e 7→ A(〈Se〉, xe). First,

note that f is computable, since for each e ∈ N the sample Se is H-realizable and A(〈Se〉, xe) ↓.
Next, we show by Lemma 22 that each (Se, xe) is an a-optimally significant input. Note that for

any e ∈ N,

H
(xe,0)
Se = {χ

{3e}
} and H

(xe,1)
Se =

{

{χ
{3e, 3e+1}

, χ
{3e, 3e+1, 3e+2}

} if ϕe(e) ↓

∅ otherwise.

Therefore, if ϕe(e) ↓, Ldim(H
(xe,1)
Se ) = 1 > Ldim(H

(xe,0)
Se ) = 0 and A(〈Se〉, xe) = 1. On the

other hand, if ϕe(e) ↑, Ldim(H
(xe,0)
Se ) = 0 > Ldim(H

(xe,1)
Se ) = −1 and A(〈Se〉, xe) = 0. Hence, f

is computable and equals χ
{e∈N: ϕe(e)↓}

, contradicting the undecidability of the halting problem.

Although H is not a-optimally c-online learnable, we show the existence of a computable opti-

mal online learner B for H. It is easy to verify that Ldim(H) ≥ 2; hence, it suffices to show that

MB(H) = 2. B predicts 0 until, for some e ∈ N, a mistake is made on x1 ∈ {3e, 3e+ 1, 3e+ 2},
at which point it matches χ

{3e, 3e+1, x1}
. If x1 = 3e + 2, B will not err again. Otherwise, it could

possibly err on x2 ∈ {3e+1, 3e+2}. If x2 = 3e+2, the target function must be χ
{3e, 3e+1, 3e+2}

;

otherwise, if x2 = 3e + 1, the target function must be χ
{3e}

. In either case, B errs no more than

Ldim(H) = 2 times on any H-realizable sample.

5. Optimal c-online learnability

In this section, we loosen the requirement of a-optimality, turning our focus to all optimal online

learners instead. We give a necessary and sufficient condition for when optimal c-online learning is

possible (Section 5.2) and show that the Littlestone dimension no longer characterizes the mistake

bound of optimal c-online learning (Section 5.3). We also give a complete characterization of all

optimally significant inputs (Section 5.1), a result which is used in our main proofs.
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5.1. Characterizing optimally significant inputs

The following lemma gives a complete characterization of all optimally significant inputs.

Lemma 24 (characterizing optimally significant inputs) Let H be any hypothesis class satis-

fying Ldim(H) = d < ∞. Let S = ((x1, y1), . . . , (xT , yT )) be any H-realizable sample and

xT+1 ∈ X be any domain instance, where T ∈ N. Then, (S, xT+1) is a significant input w.r.t.

optimal online learning H iff the following conditions both hold:

1. for each t ∈ [T + 1], Ldim(HSt−1) = maxr∈{0,1} Ldim(H
(xt,r)
St−1

), and

2. for each t ∈ [T ], Ldim(H
(xt,yt)
St−1

) ≥ Ldim(HSt−1)− 1.

Furthermore, A(St−1, xt) = argmaxr∈{0,1} Ldim(H
(xt,r)
St−1

) for all t ∈ [T + 1] and all optimal

online learners A.

Proof It follows from Lemma 35 (Appendix A) that conditions 1 and 2 above are equivalent to the

following two conditions:

I. Ldim(HS) = maxr∈{0,1} Ldim(H
(xT+1,r)
S ), and

II. MA(S) = Ldim(H)− Ldim(HS) for every online learner A that is optimal forH.

It remains to show that (S, xT+1) is optimally significant iff conditions I and II hold. First,

assume for the sake of contradiction that the two conditions hold but there exists an optimal online

learner A that predicts A(S, xT+1) = 1− r∗, where r∗ = argmaxr∈{0,1} Ldim(H
(xT+1,r)
S ). Then,

on the sample S∗ = S⌢((xT+1, r
∗)), A makes Ldim(H)−Ldim(HS)+1 mistakes and, by Lemma

21, can be made to err at least Ldim(H
(xT+1,r

∗)
S ) = Ldim(HS) times after witnessing S∗, a contra-

diction. Furthermore, it follows from Lemma 35 that A(St−1, xt) = argmaxr∈{0,1} Ldim(H
(xt,r)
St−1

)

for all t ∈ [T + 1] and all optimal online learners A.

Conversely, if (S, xT+1) is optimally significant, there exists r∗ ∈ {0, 1} such that for all online

learners A, if A is optimal then A(S, xT+1) = r∗. For an a-optimal online learner A∗, let A′

be the learner that agrees with A∗ on all inputs except (S, xT+1). Since this single change in

prediction causes A′ to no longer be optimal, we must have that MA′(S∗) + MS∗

A′ (H) ≥ d + 1,

where S∗ = S⌢((xT+1, r
∗)). Note that MA′(S∗) +MS∗

A′ (H) = MA∗(S) + 1 +MS∗

A∗ (H), so we

must have that MA∗(S) +MS∗

A∗ (H) ≥ d. However, since A∗ is a-optimal, the maximum values for

MA∗(S) and MS∗

A∗ (H) are d−Ldim(HS) and Ldim(HS) respectively. Hence, the inequality is only

satisfied when both conditions I and II hold.

Corollary 25 (version space of optimally significant inputs) Let H be a hypothesis class with

Ldim(H) = d <∞ and let (S, x) ∈ IH be any optimally significant input forH. Then, there exists

m ∈ N such that MA(S) = m for all optimal online learners A and Ldim(HS) = d−m.

8
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5.2. Characterizing optimal c-online learning

In this section, we give a necessary and sufficient condition for optimal c-online learning in the RER

setting (Corollary 27). The condition follows from Theorem 26, which shows that the predictions

of all optimal online learners are computable on inputs that are optimally significant. Corollary 28

shows that any infinite RER class of Littlestone dimension 1 is optimally c-online learnable.

Theorem 26 (computability of optimally significant predictions) Let H ⊂ {0, 1}N be any RER

class of computable hypotheses with finite Littlestone dimension. Then, there exists a partial com-

putable function p
sig
H such that p

sig
H (〈S〉, x) = A(S, x) for any optimally significant input (S, x) ∈

IH and any optimal online learner A for H.

Proof Let X = N andH ⊂ {0, 1}X be any RER class of computable hypotheses with Ldim(H) =
d < ∞. First, we show the existence of a Turing machine MH that behaves as follows: for

any S ∈ S, x ∈ X , and d′ ∈ N, if there exists r ∈ {0, 1} for which Ldim(H
(x,r)
S ) = d′ and

Ldim(H
(x,1−r)
S ) < d′, MH halts on input (〈S〉, x, d′) and outputs r. Note that for any RER classH′

of computable hypotheses, the set 〈T d′

H′〉 of (the encodings of) all H′-shattered trees of depth d′ is

r.e.. Therefore, since bothH
(x,1)
S andH

(x,0)
S are RER, MH simultaneously runs the enumerators for

T d′

H
(x,1)
S

and T d′

H
(x,0)
S

until one yields an output. If the enumerator for T d′

H
(x,y)
S

yields an output first, MH

halts and outputs y. Now, if there exists r for which Ldim(H
(x,r)
S ) = d′ and Ldim(H

(x,1−r)
S ) < d′,

we must have that T d′

H
(x,r)
S

6= ∅ and T d′

H
(x,1−r)
S

= ∅; hence, MH will eventually halt and output r.

Now, consider the Turing machine P
sig
H that behaves as follows on any input (〈S〉, xT+1), where

S = ((x1, y1), . . . , (xT , yT )) for some T ∈ N: 1) initialize m = 0; 2) for each t ∈ [T +1], let pt be

the result of running MH on input (〈St−1〉, xt, d−m) and increment m if pt 6= yt; 3) output pT+1.

We will show that if (S, xT+1) ∈ IH, pt = argmaxr∈{0,1} Ldim(H
(xt,r)
St−1

) for each t ∈ [T + 1];

hence, by Lemma 24, p
sig
H is computed by P

sig
H . We proceed by induction on t ∈ [T + 1]. If t = 1,

by lemma 24, there exists r1 ∈ {0, 1} such that Ldim(H
(x1,r1)
S0

) = d and Ldim(H
(x1,1−r1)
S0

) < d.

Therefore, MH halts on input (〈S0〉, x1, d) and outputs r1. Now, consider any τ ∈ [T +1] such that

the condition holds for all t < τ . Then, mτ−1 =
∑τ−1

t=1 1[pt 6=yt] is the number of mistakes that all

optimal online learners make on Sτ−1. Hence, by Corollary 25, Ldim(HSτ−1) = d−mτ−1 and, by

Lemma 24, there exists rτ ∈ {0, 1} such that Ldim(H
(xτ ,rτ )
Sτ−1

) = d−mτ−1 and Ldim(H
(xτ ,1−rτ )
Sτ−1

) <

d−mτ−1. Therefore, MH halts on (〈Sτ−1〉, xτ , d−mτ−1) and outputs pτ = rτ , as required.

Corollary 27 (characterizing optimal c-online learning) Let H ⊂ {0, 1}N be any RER class

of computable hypotheses with finite Littlestone dimension and let p
sig
H be the partial computable

function defined in Theorem 26. Then, H is optimally c-online learnable iff there exists a p.c.

extension prealH of p
sig
H such that dom(prealH ) ⊇ 〈SH〉 × X and rng(prealH |〈SH〉×X ) ⊆ {0, 1}.

Corollary 28 (optimal c-online learnability of classes with Littlestone dimension 1) Let H ⊂
{0, 1}N be any infinite RER class of computable hypotheses with Ldim(H) = 1. Then, H is opti-

mally c-online learnable.

Proof By Corollary 27, it suffices to show that SH × X ⊆ IH. Let T ∈ N and consider any

H-realizable sample S = ((x1, y1), . . . , (xT , yT )) ∈ SH and any xT+1 ∈ X . We will show that

9
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(S, xT+1) satisfies Lemma 24 and is hence an optimally significant input for H. Let τ ∈ [T ] be

the earliest time step such that Ldim(HSτ−1) 6= Ldim(H
(xτ ,yτ )
Sτ−1

). If no such time step exists, let

τ = T + 1. Then, Ldim(HSt−1) = 1 for all t ≤ τ and, since S is H-realizable, Ldim(HSt−1) = 0
for all τ < t ≤ T +1. Therefore, condition 2 of Lemma 24 is satisfied for all t ∈ [T ] and condition

1 is satisfied for all t 6= τ . Now, since H is infinite and at most one hypothesis is removed from the

version space at each time step before τ ,HSτ−1 is also infinite and there exists r ∈ {0, 1} such that

H
(xτ ,r)
Sτ−1

is infinite. Hence, Ldim(HSτ−1) = Ldim(H
(xτ ,r)
Sτ−1

) = 1 and condition 1 holds for t = τ .

5.3. Littlestone dimension fails to characterize optimal mistake bound of online learning

In this section, we show that the Littlestone dimension no longer characterizes the mistake bound of

optimal c-online learning. Specifically, we construct a DR class of computable hypotheses that has

finite Littlestone dimension but is not optimally c-online learnable. Without the RER requirement,

constructing such a class is not too difficult. In fact, the classHhalting =
⋃

e∈N:ϕe(e)↓
{χ

{2e, 2e+1}
}∪

⋃

e∈N:ϕe(e)↑
{χ

{2e}
}, presented by Agarwal et al. (2020, Theorem 9), has Littlestone dimension 1

but any computable optimal online learner for this class would decide the halting problem.

Theorem 29 There exists a DR classH ⊂ {0, 1}N of computable hypotheses such that Ldim(H) <
∞ but H is not optimally c-online learnable.

Proof For each x ∈ N, let {C
(x)
i }i∈N:i>0 be an effective enumeration of all halting computations

starting from input x (see Soare, 2016, Section 1.5.2). Further define, for each x ∈ N, the p.c.

function cx such that if Pe halts on input x, C
(x)
cx(e)

is the halting certificate. That is, for each e ∈ N,

cx(e) =

{

i if there exists i s.t. C
(x)
i is a halting computation for Pe on input x

undefined otherwise.

Now, consider the following class:

HDR
ext =

⋃

e∈N: ϕe(0)↓

{

χ{2e, 2e3c0(e)}

}

∪
⋃

e∈N: ϕe(0)↓ and ϕe(e)↓=1

{

χ{2e, 2e5c0(e), 2e7ce(e)}, χ{2e, 2e5c0(e), 2e11ce(e)}

}

∪
⋃

e∈N: ϕe(0)↓ and ϕe(e)↓=0

{

χ{2e, 2e5c0(e), 2e13ce(e)}, χ{2e, 2e3c0(e), 2e13ce(e)}

}

.

For simplicity, letH = HDR
ext . Note that each h ∈ H is computable since cx(e) is evaluated only

if ϕe(x) ↓. Furthermore, Ldim(H) = 2 (Appendix B.1) and H is DR (Appendix B.2).

By Theorem 26, since H is RER, there exists a p.c. function p
sig
H such that p

sig
H (〈S〉, x) =

A(S, x) for any optimally significant input (S, x) ∈ IH and any optimal online learner A for H.

For each e ∈ N, let Se = ((2e, 1)) and define the p.c. functions x : e 7→ 2e3c0(e) and f :
e 7→ p

sig
H (〈Se〉, x(e)). In Appendix B.3, we show using Lemma 24 that (Se, x(e)) is an optimally

10
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significant input for H iff ϕe(0) ↓ and ϕe(e) ↓∈ {0, 1}. Furthermore, for any e ∈ N such that

ϕe(0) ↓ and ϕe(e) ↓∈ {0, 1}, we have that

f(e) = p
sig
H (〈Se〉, x(e)) =

{

1 if ϕe(0) ↓ and ϕe(e) ↓= 0

0 if ϕe(0) ↓ and ϕe(e) ↓= 1.

Now, assume for the sake of contradiction that H is optimally c-online learnable. Then, by

Corollary 27, there exists a p.c. extension prealH of p
sig
H such that dom(prealH ) ⊇ 〈SH〉 × X and

rng(prealH |〈SH〉×X ) = {0, 1}. It follows that the following function is also partial computable:

g(e) =

{

0 if e = 0

prealH (〈Se〉, x(e)) otherwise.

We will show that for any e > 0 such that ϕe(0) ↓, we have that g(e) 6= ϕe(e). First, if

ϕe(e) ↓∈ {0, 1}, (S
e, x(e)) is optimally significant forH and g(e) = f(e) = 1−ϕe(e). Otherwise,

if ϕe(e) ↑ or ϕe(e) ↓6∈ {0, 1}, we must have that g(e) ↓∈ {0, 1} since Se is H-realizable for any

e satisfying ϕe(0) ↓. Now, since g is p.c. and each p.c. function has infinitely many indices, there

exists e′ > 0 such that g = ϕe′ . However, since g(0) ↓, this would imply the existence of some

e′ > 0 such that ϕe′(0) ↓ and g(e′) = ϕe′(e
′), a contradiction.

6. C-online learnability

A corollary of Theorem 10 is that the finiteness of the Littlestone dimension characterizes whether

a class is online learnable at all—that is, whether it is online learnable with finite mistake bound.

Although the class HDR
ext presented in Theorem 29 is not optimally c-online learnable, it is still

c-online learnable by the learner that predicts 0 except on instances it has seen labeled 1. In this

section, we analyze c-online learning when there is no requirement for optimality. As a first step,

we construct a non-RER class of computable hypotheses that has finite Littlestone dimension but is

not c-online learnable (Section 6.1). Next, we explore the connection between c-online and CPAC

learning and suggest a potential avenue for strengthening the result to the RER setting (Section 6.2).

6.1. Finite Littlestone dimension fails to characterize c-online learning

The following theorem shows that, in the non-RER setting, the finiteness of the Littlestone dimen-

sion no longer characterizes c-online learnability.

Theorem 30 There exists a classH ⊂ {0, 1}N of computable hypotheses such that Ldim(H) <∞
but H is not c-online learnable.

Proof Recall that any c-online learner is a two-place partial computable function. The idea is to

construct a class H such that for any two-place p.c. function A and for any input length T there

exists a hypothesis h ∈ H and T consecutive domain instances x1, . . . , xT ∈ N such that, on the

sample S = ((xt, h(xt)))
T
t=1, we have that A(〈St−1〉, xt) 6= h(xt) for all time steps t ∈ [T ]. Hence,

any c-online learner for H will have an infinite mistake bound.

Formally, define the functions s1 : n 7→
∑n

i=0 i and s2 : n 7→
∑n

i=0 s1(i). For each i ∈ N and

j ≤ i, let Ni = {n : s2(i) ≤ n < s2(i+1)} and Ni,j = {n : s2(i)+s1(j) ≤ n < s2(i)+s1(j+1)}.

11
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Note that the natural numbers can be partitioned into disjoint sets N = ⊔i∈NNi and each Ni can be

further partitioned as Ni = ⊔
i
j=0Ni,j . Let I1, I2, I , and m be functions defined as follows: for each

i ∈ N, j ≤ i, and n ∈ Ni,j , I1(n) = i, I2(n) = j, I(n) = I1(n)− I2(n), and m(n) = minNi,j .

Let {Ae}e∈N be an effective numbering of all two-place p.c. functions and define the function

L : n 7→ 1[AI(n)(〈Sn〉, n)↓=0], where Sn = ((n′, L(n′)))n−1
n′=m(n). Now, letHsplit = {hi}i∈N, where

hi(n) =

{

L(n) if I1(n) = i

0 otherwise.

For simplicity, letH = Hsplit. Note that each hi is computable since |h−1
i (1)| ≤ s2(i) <∞. How-

ever, H is not RER, since otherwise a Turing machine for computing L would exist. Furthermore,

Ldim(H) = 1 since each domain instance is given the label 1 by at most one h ∈ H.

Now, assume for the sake of contradiction that H is c-online learnable and let Ae be a c-online

learner for H. Since Ae has finite mistake bound, there exists M ∈ N such that MAe(H) ≤
M . However, we will show the existence of an H-realizable sample on which Ae errs M + 1

times. Let i = M + e, j = M , and S = ((n, hi(n)))
maxNi,j

n=minNi,j
. We will show that for each

t ∈ [|S|] = [M + 1], we have that Ae(〈St−1〉, nt) = 1 − hi(nt), where nt = minNi,j + t − 1
is the tth domain instance in S. By definition, since nt ∈ Ni,j , we have that I1(nt) = i; hence,

hi(nt) = L(nt) = 1[AI(nt)
(〈Snt 〉, nt)↓=0], where Snt = ((n′, L(n′)))nt−1

n′=m(nt)
. Note that I(nt) = e

and Snt = St−1. Therefore, hi(t) = 1[Ae(〈St−1〉,nt)↓=0]. Now, since Ae is a c-online learner for H
and St−1 is anH-realizable sample, we will always have that Ae(〈St−1〉, nt) ↓∈ {0, 1}. Therefore,

hi(nt) = 1−Ae(〈St−1〉, nt) for each t ∈ [M + 1] and MAe(S) = M + 1, as required.

6.2. Connection between c-online and CPAC learning

It is natural to ask whether Theorem 30 can be extended to the RER setting. That is, does there exist

an RER class H of computable hypotheses such that Ldim(H) < ∞ but no c-online learner for H
achieves MA(H) <∞? In this section, we propose a potential avenue for addressing this question.

Recently, Sterkenburg (2022) proved a necessary condition for agnostic improper CPAC learn-

ability and constructed an RER class of finite VC-dimension not satisfying this condition. In Lemma

34, we show that this condition is also necessary for agnostic c-online learnability. In particular, we

show that any class that is agnostically c-online learnable is also agnostically improperly CPAC

learnable but by a probabilistic learner (Lemma 33).

Thus far, we have been concerned with realizable c-online learners—learners whose predictions

are only guaranteed to be computable on realizable samples. We therefore extend the definition of

agnostic online learning introduced by Ben-David et al. (2009) to the computable setting. Let X =
N andH ⊂ {0, 1}X be any class of computable hypotheses. An agnostic c-online learner A : N2 →
Q ∩ [0, 1] is a two-place total computable function, where for any sample S ∈ S and any domain

instance x ∈ X , A(〈S〉, x) is the probability of predicting the label 1 on the given input.6 The loss of

a hypothesis h : X → [0, 1] on a labeled instance (x, y) is ℓ(h, (x, y)) = Pp∼Bernoulli(h(x))[p 6= y] =
|h(x)−y|. The expected regret of an agnostic c-online learner A with respect toH and a sample size

T is E[RA(H, T )] = supS=((xt,yt))Tt=1

[

∑T
t=1 ℓ(At, (xt, yt))− infh∈H

∑T
t=1 ℓ(h, (xt, yt))

]

, where

6. Since there exists a computable bijection between N and Q ∩ [0, 1], we can assume, without loss of generality, that

A is a valid computable function.
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At = A(〈St−1〉, ·). The error of h : X → [0, 1] w.r.t. a distribution D over X × Y is LD(h) =
E(x,y)∼D ℓ(h, (x, y)) and the error of a hypothesis class H w.r.t. D is LD(H) = infh∈H LD(h).

Definition 31 (agnostic c-online learnable) A class H ⊂ {0, 1}N of computable hypotheses is ag-

nostically c-online learnable if there exists an agnostic c-online learner A whose expected regret

grows sublinearly in the length of the input sample. That is, limT→∞
E[RA(H,T )]

T
= 0.

Definition 32 ((agnostic) improper CPAC learnable by a probabilistic learner) A classH of co-

mputable hypotheses is improperly CPAC learnable by a probabilistic learner (in the realizable set-

ting) if there exists a partial computable function A : N2 → Q∩[0, 1] and a function mH : (0, 1)2 →
N such that dom(A) ⊇ 〈SH〉 × X and for all ǫ, δ ∈ (0, 1), all m ≥ mH(ǫ, δ), and all distributions

D over X × Y that satisfy LD(H) = 0, we have that with probability at least 1− δ over S ∼ Dm,

LD(AS) ≤ LD(H) + ǫ, where AS = A(〈S〉, ·). We say that H is agnostically improperly CPAC

learnable by a probabilistic learner if A is a total computable function and the above condition holds

for any distributions D over X × Y .

Lemma 33 (computable online-to-batch conversion) Let H ⊂ {0, 1}N be any class of com-

putable hypotheses that is (agnostically) c-online learnable. Then, H is (agnostically) improperly

CPAC learnable by a probabilistic learner.

Proof Let A be an agnostic c-online learner for H. We use A to construct an agnostic im-

proper CPAC learner B for H that is probabilistic. For any S = ((xt, yt))
T
t=1 and x ∈ X , define

B(〈S〉, x) = 1
T

∑T
t=1 A(〈St−1〉, x). We can think of B as representing an algorithm that uniformly

at random picks some t ∈ [T ] and outputs A(〈St−1〉, ·) as its hypothesis. As required, B is a com-

putable function from N2 into Q ∩ [0, 1]. The proof that B is a PAC learner for H follows from the

standard online-to-batch conversion argument (see Kakade and Tewari, 2008; Shalev-Shwartz and

Ben-David, 2014, Exercise 21.7.5). The proof can also be extended to the realizable setting.

Lemma 34 (necessary condition for agnostic c-online learnability) Let H ⊂ {0, 1}N be any

class of computable hypotheses that is agnostically c-online learnable. Then,H satisfies the follow-

ing two conditions: (1) Ldim(H) <∞ and (2) for sufficiently large n, there exists an algorithm Cn

that on any input X ⊂ X of size n, outputs a labeling g : X → {0, 1} for which ((x, g(x)))x∈X is

not H-realizable.

Proof The first condition follows from Ben-David et al. (2009), who showed thatH is agnostically

online learnable in the standard setting iff Ldim(H) < ∞. The second condition follows almost

directly form Sterkenburg (2022, Lemma 9), who showed that ifH is agnostically improperly CPAC

learnable, for sufficiently large n, there exists an algorithm Cn satisfying the stated property. Their

proof, which follows from the Computable No-Free-Lunch theorem (Agarwal et al., 2020, Lemma

19), can also be extended to probabilistic learners. Hence, the result follows from Lemma 33.

Open Question Is there an RER class of computable hypotheses with finite Littlestone dimen-

sion that is not c-online learnable? Lemma 33 suggests one approach to addressing this question:

constructing a class with finite Littlestone dimension that is not improperly CPAC learnable (by a

probabilistic learner). Similarly, Lemma 34 could be applied to construct a class that is not c-online

learnable in the agnostic setting.
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In Appendix D, we show that the classHinit presented by Sterkenburg (2022, Theorem 10)—the

only known RER class of finite VC-dimension that is not improperly CPAC learnable—has infinite

Littlestone dimension. Hence, this class cannot be used to address the question stated above. It

remains open whether there exists an RER class of computable functions that has finite Littlestone

dimension but is not improperly CPAC learnable.

7. Conclusion and Future Work

In this paper, we investigate computable online learning under three different settings. First, we

formalize anytime optimal (a-optimal) online learning, a natural conceptualization of “optimality,”

and show that it is computationally more difficult than optimal online learning. Second, we give

a necessary and sufficient condition for optimal c-online learning and prove that the Littlestone

dimension no longer characterizes the optimal mistake bound of c-online learning. Finally, we

demonstrate that, in the non-RER setting, the finiteness of the Littlestone dimension no longer

determines whether a class is c-online learnable with finite mistake bound. Although this last result

remains open in the RER setting, we show that it is equivalent to asking whether there exists an

RER class of computable functions that has finite Littlestone dimension but is not improperly CPAC

learnable.

As we have shown that some very fundamental results from online learning fail in the com-

putable setting, it would be interesting for future work to explore computable online learning in

various related settings—for example, agnostic online learning, proper online learning, and differ-

entially private PAC learning.

Furthermore, similar to Sterkenburg (2022)’s characterization of proper CPAC learning, our

characterization of optimal c-online learning relies on computability-theoretic concepts. A major

remaining open problem is to find purely combinatorial characterizations of computable learnability.
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Appendix A. Proof of Lemma 24

Lemma 35 Let H be a hypothesis class such that Ldim(H) = d < ∞. Let S = ((xt, yt))
T
t=1 be

anyH-realizable sample and xT+1 ∈ X be any domain instance, where T ∈ N. Then, the following

conditions are equivalent:

A. For each t ∈ [T ], Ldim(HSt−1) = max
r∈{0,1}

Ldim(H
(xt,r)
St−1

) and Ldim(HSt) ≥ Ldim(HSt−1)− 1

B. MA(S) = Ldim(H)− Ldim(HS) for every online learner A that is optimal for H.

Furthermore, for all t ∈ [T ] and all optimal online learners A, we have that A(St−1, xt) =

argmaxr∈{0,1} Ldim(H
(xt,r)
St−1

).
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Proof (A =⇒ B) Assume that condition A holds and let A∗ be an a-optimal online learner for

H. Note that, by Lemma 22, each (St−1, xt) is an a-optimally significant input and A∗(St−1, xt) =

r∗t = argmaxr∈{0,1} Ldim(H
(xt,r)
St−1

). Hence, it follows from condition A that the Littlestone di-

mension of the version space decreases iff A∗ errs and decreases by at most one at each time step.

Therefore, MA∗(St) = d− Ldim(HSt) for any t ∈ [T ].
We will show that condition B holds by showing that, for each t ∈ [T ], every optimal online

learner must agree with A∗ on (St−1, xt). Assume for the sake of contradiction that there exists an

optimal online learner A such that for some t ∈ [T ], A(St−1, xt) = 1 − r∗t . Let τ be the earliest

such time step. Then, on the sample Sτ−1
⌢((xτ , r

∗
τ )), A errs MA∗(Sτ−1) + 1 times. However, by

Lemma 21, A can be made to err at least Ldim(H
(xτ ,r

∗
τ )

Sτ−1
) = Ldim(HSτ−1) = d−MA∗(Sτ−1) more

times, a contradiction.

(B =⇒ A) Let A∗ be an a-optimal online learner such that A∗(St−1, xt) = yt for all (St−1, xt)

that are not a-optimally significant. That is, A∗ errs iff Ldim(H
(xt,yt)
St−1

) < Ldim(H
(xt,1−yt)
St−1

). Fur-

thermore, MA∗(S) ≤ d−Ldim(HS), as every time A∗ errs the Littlestone dimension of the version

space decreases by at least one. We will show that if condition A does not hold, this inequality is

strict.

First, if there exists t ∈ [T ] such that Ldim(H
(xt,yt)
St−1

) < Ldim(HSt−1) and Ldim(H
(xt,1−yt)
St−1

) <

Ldim(HSt−1), there are two cases. Either A∗ does not err at time step t and the Littlestone dimension

of the version space decreases by at least one, or A∗ errs and the Littlestone dimension of the

version space decreases by at least two. Similarly, if there exists t ∈ [T ] such that Ldim(HSt) ≤
Ldim(HSt−1) − 2, the Littlestone dimension of the version space goes down by at least one more

than the number of mistakes made. In either case, MA∗(S) < d− Ldim(HS).

Appendix B. Proof of Theorem 29

B.1. Littlestone dimension ofHDR
ext

Lemma 36 Ldim(HDR
ext ) = 2.

Proof For simplicity, let H = HDR
ext . First, we will show that Ldim(H) ≥ 2. Consider any

three distinct indices e1, e2, e3 ∈ N such that ϕei(0) ↓ for all i ∈ [3] and ϕe1(e1) ↓= 1. Then,

the N-labeled tree of depth 2 given by 2e2 ← 2e1 → 2e13c0(e1) is shattered by χ
{2e3 ,2e33c0(e3)}

,

χ
{2e2 ,2e23c0(e2)}

, χ
{2e1 ,2e15c0(e1),2e17ce1 (e1)}

, χ
{2e1 ,2e13c0(e1)}

∈ H.

Next, we will show that Ldim(H) ≤ 2 by showing the existence of a learner B (not necessarily

computable) which errs at most twice on any H-realizable sample. B predicts 0 until (possibly) a

mistake is made on x1. There are two cases for x1. If x1 = 2eyi for some e, i ∈ N s.t. i > 0 and

y ∈ {3, 5, 7, 11, 13}, B matches χ
{2e,2eyi}

until a mistake is potentially made on x2, at which point

it matches the target function χ
{2e,2eyi,x2}

and does not err again. If x1 = 2e for some e ∈ N, there

are three cases. If ϕe(e) ↓= 1, B matches χ
{2e,2e5c0(e)}

, if ϕe(e) ↓= 0, B matches χ
{2e,2e13ce(e)}

,

and otherwise B matches χ
{2e,2e3c0(e)}

. In either case, B can be made to err at most once more.
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B.2. Proof thatHDR
ext is DR

Lemma 37 HDR
ext is decidably representable.

Proof First, note that the set {(e, i, x) : C
(x)
i is a halting certificate for Pe on input x} is decidable

by the following Turing machine Pcert. On any input (e, i, x), after ensuring that i > 0, Pcert

simulates running Pe on input x and checks each configuration that Pe goes through against the

corresponding one in C
(x)
i . If at any point the configurations are not the same or if there are no

more configurations left to check from C
(x)
i , Pcert halts and outputs 0. Otherwise, if Pe halts on

input x and all the configurations match, Pcert halts and outputs 1. Pcert is guaranteed to halt since

C
(x)
i is a finite sequence of configurations.

Now, we will show that the set {y : ∃h ∈ H (Dy = h−1(1))} is decidable by the follow-

ing Turing machine P . Given the canonical index y of any finite set as input, P first decodes

y into its associated set Dy and checks if Dy equals any of the sets {2e, 2e3i}, {2e, 2e5i, 2e7j},
{2e, 2e5i, 2e11j}, {2e, 2e5i, 2e13j}, {2e, 2e3i, 2e13j} for some e, i, j ∈ N such that i, j > 0. If not,

P halts and outputs 0. Otherwise, if Dy = {2e, 2e3i}, P halts and outputs the result of running

Pcert on (e, i, 0). Otherwise, P evaluates Pcert on (e, i, 0) and (e, j, e) and, if either result is 0, halts

and outputs 0. If both invocations of Pcert yield 1, let r be the result of evaluating Pe on input e. P

outputs 1 if r = 0 and 2e13j ∈ Dy or if r = 1 and 2e13j 6∈ Dy. Otherwise, it outputs 0.

B.3. Optimally significant inputs forHDR
ext

Lemma 38 For each e ∈ N, let Se = ((2e, 1)) and define the p.c. function x : e 7→ 2e3c0(e).
(Se, x(e)) is a significant input w.r.t. optimal online learningHDR

ext iff ϕe(0) ↓ and ϕe(e) ↓∈ {0, 1}.
Furthermore, for any optimal online learner A for HDR

ext , if ϕe(0) ↓ and ϕe(e) ↓= r for some

r ∈ {0, 1}, A(Se, x(e)) = 1− r

Proof Let H = HDR
ext . First, consider any e ∈ N such that ϕe(0) ↓ and ϕe(e) ↓∈ {0, 1}. We will

show that (Se, x(e)) is an optimally significant input by showing that it satisfies Lemma 24. That

is, we need to show that Ldim(HSe) ≥ Ldim(H)− 1, Ldim(H) = maxr∈{0,1} Ldim(H(2e,r)), and

Ldim(HSe) = maxr∈{0,1} Ldim(H
(x(e),r)
Se ).

By Lemma 36, Ldim(H) = 2, and it is easy to verify that Ldim(H(2e,0)) = 2 and Ldim(HSe) =
1. Hence, the first two conditions are satisfied. For the third condition there are two cases. Note that

for r ∈ {0, 1},

Ldim(H
(x(e),r)
Se ) =

{

{χ
{2e,2e5c0(e),2e7ce(e)}

, χ
{2e,2e5c0(e),2e11ce(e)}

} if r = 0 and ϕe(e) ↓= 1

{χ
{2e,2e3c0(e)}

, χ
{2e,2e3c0(e),2e13ce(e)}

} if r = 1 and ϕe(e) ↓= 0.

Hence, Ldim(H
(x(e),1−ϕe(e))
Se ) = Ldim(HSe) = 1 and by Lemma 24, (Se, x(e)) is an optimally

significant input and A(Se, x(e)) = 1− ϕe(e) for any optimal online learner A, as required.

Conversely, for any e ∈ N such that ϕe(0) ↑, S
e is not H-realizable and (Se, x(e)) cannot

be an optimally significant input. Now, for any e ∈ N such that ϕe(0) ↓ but ϕe(e) 6∈ {0, 1},
HSe = {χ

{2e,2e3c0(e)}
} and Ldim(HSe) = 0 < Ldim(H) − 1. Hence, Lemma 24 is not satisfied

and (Se, x(e)) is not an optimally significant input.
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Appendix C. Extending Theorem 23 to the DR setting

In this section, we extend Theorem 23 to the DR setting. The technique is similar to that used in the

proof of Theorem 29.

Theorem 39 There exists a DR classH ⊂ {0, 1}N of computable hypotheses with finite Littlestone

dimension such that H is optimally c-online learnable but not a-optimally c-online learnable.

Proof For each x ∈ N, let the p.c. function cx be defined as in Theorem 29 and consider the

following class:

HDR
halt =

⋃

e∈N: ϕe(0)↓

{

χ{2e, 2e3c0(e)}

}

∪
⋃

e∈N: ϕe(0)↓ and ϕe(e)↓

{

χ{2e, 2e5c0(e), 2e7ce(e)}, χ{2e, 2e5c0(e), 2e11ce(e)}

}

.

For simplicity, letH = HDR
halt. Since |h−1(1)| ≤ 3 for each h ∈ H, we have that Ldim(H) <∞.

Furthermore, each h ∈ H is computable since cx(e) is evaluated only if ϕe(x) ↓. To show thatH is

DR, the same proof technique presented in Appendix B.2 can be applied.

Now, assume for the sake of contradiction that there exists a computable a-optimal online learner

A for H. For each e ∈ N, let Se = ((2e, 1)) and define the p.c. functions x : e 7→ 2e3c0(e) and

f : e 7→ A(〈Se〉, x(e)). We will show that

f(e) = A(〈Se〉, x(e)) =











1 if ϕe(0) ↓ and ϕe(e) ↑

0 if ϕe(0) ↓ and ϕe(e) ↓

undefined if ϕe(0) ↑ .

First, note that f(e) ↓ iff ϕe(0) ↓: if ϕe(0) ↓, S
e is H-realizable and c0(e) ↓; otherwise, Se

is not H-realizable and c0(e) ↑. Next, we show by Lemma 22 that if ϕe(0) ↓, we must have that

(Se, x(e)) is a-optimally significant forH. Note that for any e such that ϕe(0) ↓ we must have that

H
(x(e),1)
Se =

{

χ{2e,2e3c0(e)}

}

and

H
(x(e),0)
Se =







∅ if ϕe(e) ↑
{

χ{2e, 2e5c0(e), 2e7ce(e)}, χ{2e, 2e5c0(e), 2e11ce(e)}

}

if ϕe(e) ↓

Therefore, if ϕe(0) ↓ and ϕe(e) ↑, Ldim(H
(x(e),1)
Se ) = 0 > Ldim(H

(x(e),0)
Se ) = −1 and f(e) =

1. On the other hand, if ϕe(0) ↓ and ϕe(e) ↓, Ldim(H
(x(e),0)
Se ) = 1 > Ldim(H

(x(e),1)
Se ) = 0 and

f(e) = 0. Next, we can use f to construct the following p.c. function:

g(e) =











1 if e = 0

1 if e > 0 and f(e) = 1

undefined if e > 0 and f(e) = 0 or f(e) ↑ .
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Since g is a p.c. function, there exists e such that ϕe = g. Furthermore, since each p.c. function

has infinitely many indices, we can assume that e > 0. Now, by definition of g, since e > 0,

g(e) ↓ ⇐⇒ f(e) = 1 ⇐⇒ ϕe(0) ↓ ∧ ϕe(e) ↑ ⇐⇒ g(e) ↑,

contradicting the existence of an a-optimal c-online learner for H.

Although H is not a-optimally c-online learnable, we can show that there exists a computable

optimal online learner B forH. It is easy to verify that Ldim(H) ≥ 2; hence, it suffices to show that

MB(H) = 2 = Ldim(H). B predicts 0 until a mistake is made on (x1, 1). There are three cases for

x1. If x1 = 2eyi for some e, i ∈ N such that i > 0 and y ∈ {5, 7, 11}, B will match the function

χ
{2e,2e5c0(e),2eyi}

. Since (x1, 1) is realizable iff ϕe(0) ↓ and ϕe(e) ↓, B’s hypothesis is computable

and can be made to err at most once before the target function is determined. If x1 = 2e3i for some

e, i ∈ N such that i > 0, B will match the target function χ
{2e,2e3i}

and make no further mistakes.

Finally, if x1 = 2e for some e ∈ N, B matches χ
{2e,2e5c0(e)}

, which is computable since ϕe(0) ↓.

B can only be made to err on (2e3c0(e), 1), (2e5c0(e), 0), (2e7ce(e), 1), or (2e11ce(e), 1) (the last two

only if ϕe(e) ↓), after which it will match the target function and not err again.

Appendix D. Littlestone dimension ofHinit

In this section, we show that the class Hinit presented by Sterkenburg (2022, Theorem 10) has

infinite Littlestone dimension.

Proposition 40 Define Hinit = {hs}s∈N, where, for each s, x ∈ N,

hs(x) =

{

1 if ϕx,s(x) ↓

0 otherwise,

and ϕi,s(x) ↓ denotes that ϕi halts on input x within s computation steps. Then, Ldim(Hinit) =∞.

Proof We say that a hypothesis classH ⊆ {0, 1}X contains k thresholds if there are x1, . . . , xk ∈ X
and h1, . . . , hk ∈ H such that for all i, j ∈ [k], hi(xj) = 1[i≥j]. It is not difficult to show that if H
contains 2n thresholds, then Ldim(H) ≥ n (see Alon et al., 2022, Appendix A). We will show that

Ldim(Hinit) =∞ by showing that for each k ∈ N, H contains k thresholds.

Define H = {z ∈ N : ϕz(z) ↓} and for any z ∈ H , let sz = argmins∈N ϕz,s(z) ↓. That

is, sz is the earliest time step at which ϕz(z) ↓. First, we will show that for each z1 ∈ H , there

exists z2 ∈ H such that sz2 > sz1 . That is, ϕz2(z2) converges strictly after ϕz1(z1). Assume by

way of contradiction that there exists some z1 ∈ H such that for all z2 ∈ H , sz2 ≤ sz1 . Then,

H = {z ∈ N : ϕz,sz1
(z) ↓} and H = {z ∈ N : ϕz,sz1

(z) ↑}. However, this would imply that H is

recursively enumerable, which contradicts the undecidability of H .

Therefore, for any k ∈ N, there exist x1, . . . , xk ∈ H such that sx1 < . . . < sxk
. Note

that hsx1 , . . . , hsxk form k thresholds over these instances, since for each i, j ∈ [k], hsxi (xj) =
1[ϕxj,sxi

(xj)↓] = 1[sxi ≥ sxj ]
= 1[i ≥ j].
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