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Abstract

We present two results for computational models that al-
low error probabilities close to 1/2.

First, most computational complexity classes have an
analogous class in communication complexity. The class
PP in fact hastwo, a version with weakly restricted bias
called PPcc, and a version with unrestricted bias called
UPPcc. Ever since their introduction by Babai, Frankl, and
Simon in 1986, it has been open whether these classes are
the same. We show that PPcc ( UPPcc. Our proof com-
bines a query complexity separation due to Beigel with a
technique of Razborov that translates the acceptance prob-
ability of quantumprotocols to polynomials.

Second, we study how small the bias of minimal-degree
polynomials that sign-represent Boolean functions needs to
be. We show that the worst-case bias is at worst double-
exponentially small in the sign-degree (which was very re-
cently shown to be optimal by Podolski), while the average-
case bias can be made single-exponentially small in the
sign-degree (which we show to be close to optimal).

1 Introduction

Many models in theoretical computer science allow for
computations or representations where the answer is only
slightly biased in the right direction. The best-known of
these is the complexity class PP, for “probabilistic polyno-
mial time”. A language is in PP if there is a randomized
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polynomial-time Turing machine whose acceptance proba-
bility is greater than 1/2 if, and only if, its input is in the lan-
guage. Thebiasof such a computation is how far from the
crossover value of 1/2 the actual probability is. This classis
quite powerful. For instance, it can compute NP-complete
problems, albeit with exponentially small bias. Many ana-
logues of this class exist, for instance for decision trees,
communication protocols, polynomial representations, etc.
Though not corresponding to “effective” computation (for
that we need small error probability), this is still a funda-
mental mode of computation, giving rise to many interest-
ing questions. Clearly the larger the bias the better, for in-
stance because it is much cheaper to amplify the success
probability of an algorithm with large bias than one with
small bias. Hence it makes sense to ask how large we can
make this bias. In this paper we study this issue in two
contexts: communication protocols and sign-representing
polynomials over the reals.

1.1 Communication complexity

Communication complexity has been one of the most
fruitful areas of theoretical computer science since its in-
troduction by Yao [33]. The model has appeal in its own
right as a simple model of distributed computing, and also
has found numerous applications, in particular for proving
lower bounds on circuits, data structures, etc. [19]. Already
20 years ago, Babai, Frankl, and Simon [6] defined the
communication complexity analogues of standard computa-
tional complexity classes such as P, BPP, NP, PH, PSPACE,
etc. Here “polylog communication” replaces “polynomial-
time” as the formalization of “efficient” computation of
some functionf : {0, 1}n × {0, 1}n → {0, 1}.1 The com-
munication complexity classes are distinguished from their
computational cousins by a superscript ‘cc’. This frame-
work enables a notion of efficiency-preserving “rectangular

1For upper and lower bounds depending on the input lengthn to make
sense, we should really be talking aboutfamilies of functions{fn}, one
for eachn, instead of functionsf for specificn. We will ignore this tech-
nicality here.



reduction” between communication problems, analogous to
efficient many-one reductions in computational complexity.

Some relations between complexity classes that are no-
toriously hard to settle in the computational setting, can be
solved in the communication case. For instance, Pcc 6=
NPcc, NPcc 6= coNPcc, NPcc 6⊆ BPPcc (example for these
three cases: set intersection [6]), and Pcc 6= BPPcc and
BPPcc 6⊆ NPcc (example: equality [33]). On the other hand,
there are also some collapses that we do not expect to hold
true in the computational setting, in particular Pcc = NPcc ∩
coNPcc [2]. Other properties of communication complexity
classes may be found in [6, 13, 14, 16, 23, 9, 21, 31].

In some cases the communication framework is richer
than the computational framework. For example, Babai et
al. introduced two different communication complexity ver-
sions of the complexity class PP. The first communication
version, called UPPcc for “unrestricted-error probabilistic
protocols”, just considers all functions computable by pro-
tocols with polylogarithmic communication and acceptance
probabilities that are above 1/2 iff(x, y) = 1, and below
1/2 if f(x, y) = 0. Such protocols were first studied in [26].
The second version realizes that efficiency should also in-
volve the number of random bits used. Here we meanpri-
vatecoins, notpubliccoins. Note that if the number of coin
flips is upper bounded byc, then any bias will be lower
bounded by2−c, just because the probability of any event
will be a multiple of 2−c. Accordingly, the second kind
of communication complexity is defined as the sum of the
communication and the log of the reciprocal of the worst-
case bias. PPcc is the class of communication problems for
which this PP-complexity is polylogarithmic. Note that we
allow bias as small as2−polylog(n) here.

Obviously PPcc ⊆ UPPcc. Ever since the introduction
of these two classes by Babai et al., it has been an open
question whether this inclusion is strict. In this paper we
answer this question in the affirmative. We exhibit a to-
tal Boolean function, inspired by a function used earlier by
Beigel [7] in the setting of oracle-computations, which can
be solved by UPP-protocols withO(log n) communication,
but whose PP-communication complexity isnΩ(1). In other
words, this function can be efficiently computed with some
small positive bias, but not with relatively large bias.2

Interestingly, our lower bound relies on a result of
Razborov [28] which roughly says that the acceptance prob-
ability of quantumcommunication protocols can be well-
approximated by a polynomial of degree roughly equal to

2As an aside, the same function can be used to separate the communica-
tion complexity class PNP,cc from PPcc (similar to [7]), and also PNP,cc

from PNP
‖

,cc. It is not hard to see that our function sits in PNP,cc. On the
other hand, using techniques from [8, 12, 1] one can show thatPNP

‖
,cc ⊆

PPcc. As we show here, the latter class does not contain our function.
We omit the rather technical definitions and proofs. One can also define
the communication analogue of Aaronson’s class PostBQP [1], and show
PPcc ( PostBQPcc ⊆ UPPcc.

the communication complexity. It should be noted that this
connection with quantum is not essential: the special case of
Razborov’s result that applies to classical protocols would
already suffice for our purposes. However, the classical ver-
sion of Razborov’s lemma was not known prior to [28], and
arguably would not have been discovered if it weren’t for
the more general quantum version.

Our separation between UPPcc and PPcc also separates
two well-known lower bound techniques in randomized
communication complexity. As mentioned in the next sec-
tion, the UPP-communication complexity of a functionf
is determined by the minimal rank among all matrices that
sign-representf , while the PP-complexity is determined by
the discrepancyof f under the hardest input distribution.
It follows that the second technique can be exponentially
stronger than the first. By the recent work of Linial and
Shraibman [21, 22] (following up on [20]), discrepancy is
equivalent tomargin complexity, which is an important no-
tion from learning theory (we will not spell out the conse-
quences of our bounds for learning theory here). Hence our
result also exponentially separates sign-rank from margin
complexity.

Sherstov’s results. As we learned recently, an exponen-
tial separation between sign-rank and margin complexity
has also been obtained independently by Sherstov [31] (in
these proceedings), for a different function and with quite
different techniques.

In another development, Sherstov [32] recently exhibited
a function with exponentially small discrepancy that has
depth-3 circuits of polynomially many AND, OR, and NOT-
gates. He shows that exponentially small discrepancy im-
plies that depth-2 circuits with majority-gates for the func-
tion need exponential size. In other words, he separates
AC0 fromMAJ◦MAJ circuits. This contrasts with a clas-
sic result by Allender [3], who showed that all languages in
AC0 have quasipolynomial-sized majority-circuits ofdepth
3. As Sherstov noticed, the function we analyze in Section 3
has the same property: the discrepancy bound follows from
our communication lower bound, while the depth-3 circuit
is easy to construct.

1.2 Polynomials and decision trees

For the setting of polynomials it will be convenient to
switch from 0/1-variables to±1-variables. Ann-variate
polynomial p (over the reals)sign-representsa function
f : {±1}n → {±1} if it has the same sign for all inputs
x: p(x) > 0 if f(x) = 1 andp(x) < 0 if f(x) = −1.
Such polynomials are also known as “threshold functions”.
Sincex2

i = 1 for xi ∈ {±1}, we can without loss of gen-
erality restrict attention tomultilinear polynomials. Proba-
bly the most important complexity measure for such a poly-
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nomial is itsdegree, which is the size of its largest mono-
mial. Define thesign-degreeof f as the minimal degree
sdeg(f) among all polynomialsp that sign-representf .3

Functions with low sign-degree have found various appli-
cations in complexity theory, for instance in the proof by
Beigel et al. [8] that PP is closed under intersection, and
in a number of oracle results [7, 5]. They are also closely
related to threshold circuits and neural networks.

Once the degree ofp has been fixed tosdeg(f), one may
askhow wellp approximatesf . We formalize this as fol-
lows. Supposep sign-representsf andp is normalizedin
the sense that|p(x)| ≤ 1 for all x ∈ {±1}n. Then define
the (worst-case)bias of p asminx |p(x)|. This measures
how far away from the crossover point 0 the polynomial
is. Note that the normalization condition is needed to avoid
increasing the bias by just multiplying the polynomial by
a large number. Now we ask: what is the best-achievable
(i.e. maximal) bias among such polynomials?4

Another question is to ask how large the weights (coef-
ficients) need to be ininteger-coefficientsign-representing
polynomials forf . Clearly, these two questions are closely
related: if we need large integer weights then the maximal
bias will be small, and vice versa. We state this relation
between bias and weights more precisely in Section 2.2;
for the purposes of this introduction we will treat these two
problems as basically equivalent.

It has been known for a long time that forlinear thresh-
old functions (those of sign-degree at most 1), weights of
size2O(n log n) suffice [24]. Håstad [15] exhibited a func-
tion where weights of that size are also necessary. Equiva-
lently, the best bias among normalized degree-1 polynomi-
als for Håstad’s function is2−Θ(n log n).5

Very little seems to be known about the best bias obtain-
able for functions havingsdeg(f) > 1. We present two re-
sults about this. First, we show that the best-achievable bias
is at least double-exponentiallysmall: every total functionf
has a sign-representing polynomial of degreesdeg(f) with
worst-case bias at least1/N ·N !, whereN =

∑sdeg(f)
i=0

(

n
i

)

.

This lower bound on the bias is roughlyn−nsdeg(f)

. That
does not look very impressive, but Håstad’s example shows
that this is actually essentially tight forsdeg(f) = 1. Af-
ter a first version of this paper appeared, Podolski [27]
showed our bound is in fact essentially tight for all values

3Note that we do not allowp(x) = 0 for any x. The literature, for
instance [5, 25], also contains a notion of “weakly sign-represents”, which
requires thatp’s sign equalsf(x) wheneverp(x) 6= 0, and thatp(x) 6= 0
for at least one inputx. We will not consider this alternative definition
here.

4The restriction to polynomials of degreesdeg(f) is natural but also
somewhat limiting: it could be that polynomials of degree slightly larger
thansdeg(f) can achieve much better bias.

5If one only wants the sign of the degree-1 polynomialp to equalf for
mostinstead of all inputs, then the situation changes dramatically: weights
of size roughly

√
n already suffice [30]. We will not study such “low-

weight approximators” here.

of sdeg(f): for eachd he exhibits a family ofn-bit Boolean
functionsf with sdeg(f) = d, such that any degree-d nor-
malized polynomial that sign-representsf has worst-case
bias at mostn−Ω(nd) (the constant in theΩ depends ond).

Second, we also study theaveragebias obtainable,
where the average is taken under the uniform distribution on
all inputs. We show that every total functionf has a sign-
representing polynomial of degreesdeg(f) with average-
case bias at least1/

∑sdeg(f)
i=0

(

n
i

)

≈ 1/nsdeg(f). Hence
there is an exponential gap between worst-case and average-
case bias. In addition, we exhibit a family of functions
where our lower bound on the achievable average-case bias
is close to optimal.

Finally, to further motivate the study of sign-representing
polynomials and bias, let us mention the close relation be-
tween sign-representing polynomials forf and randomized
decision trees. On the one hand, the acceptance probabil-
ity of a depth-d randomized decision tree can be written
as a polynomialp of degree at mostd. If the decision
tree computes some functionf with success probability at
least1/2 + β on all inputs, then the polynomialp − 1/2
will sign-representf with bias β. On the other hand, if
we have a degree-d polynomial that sign-representsf , we
can obtain from this a randomized decision tree of depth at
mostd that computesf with bias roughlyβ/

√
nd (see Sec-

tion 4.2.1). Accordingly, up to relatively moderate changes
in the bias, degree of sign-representing polynomial is equiv-
alent to depth of decision trees.

2 Preliminaries

2.1 Communication complexity

Let f : {0, 1}n × {0, 1}n → {0, 1}. Alice gets input
x, Bob gets inputy, and together they want to compute
f(x, y) with minimal communication between them. We
assume familiarity with deterministic and probabilistic two-
party communication protocols [19].

A protocol P computesf with bias β ≥ 0 if its ac-
ceptance probability is at least1/2 + β for every input
(x, y) ∈ f−1(1) and at most1/2 − β for (x, y) ∈ f−1(0).
We useβ(P ) for P ’s bias. ThecostC(P ) of a protocolP
is its worst-case communication. Let UPP(f) denote the
minimal costC(P ) among all protocolsP that compute
f with positive bias. Let PP(f) denote the minimum of
C(P ) + log(1/β(P )) among all protocolsP that compute
f with positive bias. Note that the bias is lower bounded
by 2−PP(f) ≥ 2−n−1 for such protocols. In contrast, for
UPP-protocols the bias is unrestricted (whence the ‘U’).

Obviously UPP(f) ≤ PP(f) for all f . We list some
of the main results that are known about these complexity
measures:

3



• Almost allf have UPP(f) ≥ n − O(1) [4].

• The inner product function f(x, y) =
∑n

i=1 xiyi mod2 has UPP(f) ≥ n/2 [11].

• Let srank(f) be thesign-rank of f (minimal rank
among all2n × 2n matricesM havingMxy > 0 if
f(x, y) = 1, andMxy < 0 if f(x, y) = 0). Then
UPP(f) equalslog srank(f) up to a bit [4].

• PP-complexity is essentially determined bydiscrep-
ancy. Let µ : {0, 1}n × {0, 1}n → [0, 1] be an input
distribution. Then thediscrepancyof f w.r.t. µ is

discµ(f) = max
R

|µ(R ∩ f−1(1)) − µ(R ∩ f−1(0))|,

where the maximum is taken over all rectanglesR =
S × T ⊆ {0, 1}n × {0, 1}n. We have PP(f) =
Θ(log(1/ minµ discµ(f)) + log n) [17].

• Two-way UPP-protocols are not more powerful than
one-way UPP-protocols [26], and the same holds for
PP-protocols [17].

2.2 Sign-representing polynomials

Our polynomials will always be over the real numbers.
When talking about sign-representing polynomials, it is
convenient to switch from0/1-variables to±1-variables.

Let [n] = {1, . . . , n}. An n-variate multilinear polyno-
mial (often just called a polynomial) is a function

p(x) =
∑

S

p̂(S)xS ,

wherex = (x1, . . . , xn) ∈ {±1}n, the sum goes over all
setsS ⊆ [n] of indices of variables, thêp(S) are reals
(known as the Fourier coefficients ofp), and themonomial
xS is a function ofx given byxS =

∏

i∈S xi (i.e. the parity
of the variables inS). If S = ∅, thenxS is the constant-1
function. Thedegreeof p is deg(p) = max{|S| | p̂(S) 6=
0}.

We define an inner product between functionsf, g :
{±1}n → R by

〈f, g〉 =
1

2n

∑

x∈{±1}n

f(x)g(x).

It easy to see that the set of all monomialsxS forms an
orthonormal set with respect to this inner product, and
the Fourier coefficients ofp can be expressed aŝp(S) =
〈p, xS〉. Parseval’s identity says

1

2n

∑

x

p(x)2 =
∑

S

p̂(S)2.

We say thatp sign-representsa functionf : {±1}n →
{±1} if it has the same signs:p(x) > 0 wheneverf(x) = 1
and p(x) < 0 wheneverf(x) = −1. The sign-degree
of f is sdeg(f) = min{deg(p) | p sign-representsf}.
O’Donnell and Servedio [25] have shown that almost allf
havesdeg(f) ≈ n/2.

In order to be able to define the bias ofp, we assume
|p(x)| ≤ 1 for all inputsx. We call suchp normalized. The
worst-casebias ofp is

β = min
x

|p(x)|

and theaverage-casebias is

β =
1

2n

∑

x

|p(x)|.

Much of the literature on sign-representations considers
sign-representing polynomialsq with integer coefficients
(a.k.a.weights) and focuses on the magnitude of the largest
weight, while our work considers sign-representing polyno-
mialsp satisfyingmaxx |p(x)| ≤ 1 and focuses on the bias
of p away from 0. Here we will relate these two approaches
to each other: roughly, small bias forp corresponds to large
weight forq.

Let N =
∑d

i=0

(

n
i

)

. First, suppose we have a degree-
d polynomial q with integer coefficients. Letqmax =
maxS |q̂(S)| be its largest weight. Note thatmaxx |q(x)| ≤
∑

S |q̂(S)| ≤ Nqmax. Definep = q/ maxx |q(x)|, then
clearly |p(x)| ≤ 1 for all x. We have the following lower
bound on the worst-case biasβ of p:

β = min
x

|p(x)| =
minx |q(x)|
maxx |q(x)| ≥

1

Nqmax
.

Conversely, suppose we have a degree-d polynomialp sat-
isfying β ≤ |p(x)| ≤ 1 for all x. Now defineq̃ = p · N/β
and defineq by rounding positive coefficients of̃q down
and rounding negative coefficients up to obtain integer co-
efficients. We have|q̃(x)| ≥ N and|q(x) − q̃(x)| < N for
everyx. Accordingly, the polynomialsp, q̃, andq all have
the same sign for everyx. Moreover, the magnitude of the
largest coefficient ofq is

qmax ≤ q̃max ≤ max
x

|p(x)|N/β ≤ N/β.

Summarizing:

Corollary 1. Let N =
∑d

i=0

(

n
i

)

. For every integer-
coefficient polynomialq of degreed with maximal weight
qmax, there is a normalized polynomialp of degree at most
d with biasβ ≥ 1/(Nqmax) that sign-represents the same
function. For every normalized polynomialp of degreed
with biasβ, there is an integer-coefficient polynomialq of
degree at mostd with maximal weightqmax ≤ N/β that
sign-represents the same function.

4



3 Separating PPcc and UPPcc: The communi-
cation version of ODD-MAX-BIT

In this section we state our main result about commu-
nication complexity: a function that is in UPPcc but not
in PPcc. We use a distributed version of the ODD-MAX-
BIT function of Beigel [7]. Letx, y ∈ {0, 1}n, andk =
max{i ∈ [n] | xi = yi = 1} be the rightmost position
wherex andy both have a 1 (setk = 0 if there is no such
position). Definef(x, y) to be the least significant bit ofk,
i.e. whether thisk is odd or even. We will show here that
UPP(f) = O(log n) while PP(f) = Ω(n1/3).

3.1 UPP-upper bound

For i ∈ [n] = {1, . . . , n}, define probabilitiespi = c2i,
wherec = 1/

∑n
i=1 2i is a normalizing constant. Consider

the following protocol. Alice picks a numberi ∈ [n] with
probability pi and sends overi, xi. If xi = yi = 1 then
Bob outputs the least significant bit ofi, otherwise he out-
puts a fair coin flip. This computesf with positive—though
exponentially small—bias. Hence

UPP(f) ≤ ⌈log n⌉ + 1.

3.2 Quantum lower bound

We will actually prove the lower bound forquantumpro-
tocols (without prior entanglement). Let

QPP(f) = min
P

(C(P ) + log(1/β(P )))

be the PP-typequantumcommunication complexity off ,
which is the minimum over allquantumprotocolsP that
computef with positive bias. It is known that QPP(f) =
Θ(PP(f)) [17], hence lower bounding PP(f) is equivalent
to lower bounding QPP(f). It won’t be necessary to pre-
cisely define quantum protocols here, since the only prop-
erty we use is the following result by Razborov. This was
first proved in [28], and made more explicit in [18, Sec-
tion 5]. It allows us to translate a quantum protocol to a
polynomial:

Lemma 1 (Razborov). Consider aq-qubit quantum com-
munication protocol onm-bit inputsx andy, with outputs
0 and 1, and acceptance probabilities denoted byP (x, y).
For i ∈ {0, . . . , m/4}, define

P (i) = Exp|x|=|y|=m/4,|x∧y|=i[P (x, y)],

where the expectation is taken uniformly over allx, y ∈
{0, 1}m that each have weightm/4 and that have inter-
section sizei. For everyd ≤ m/4 there exists a single-
variate degree-d polynomialp (over the reals) such that
|P (i) − p(i)| ≤ 2−d/4+2q for all i ∈ {0, . . . , m/8}.

Note that if we pickd = 8q +4 log(1/ε), thenp approx-
imatesP to within an additiveε for all i ∈ {0, . . . , m/8}.

We also use the following special case of a result due to
Ehlich and Zeller [10] and Rivlin and Cheney [29]:

Lemma 2 (Ehlich & Zeller; Rivlin & Cheney). Let r be
a single-variate degree-d polynomial such thatr(0) ≤ −1
andr(i) ∈ [0, 2] for all i ∈ [k]. Thend ≥

√

k/4.

Consider a quantum protocol withq qubits of commu-
nication that computesf with biasβ > 0. Let β(x, y) =
P (x, y) − 1/2. Thenβ(x, y) ≥ β if f(x, y) = 1, and
β(x, y) ≤ −β if f(x, y) = 0. Our goal is to lower bound
q + log(1/β).

Defined = ⌈8q + 4 log(2/β)⌉ andm = 32d2 + 1. As-
sume for simplicity that2m dividesn. We will partition
[n] into n/2m consecutive intervals, each of length2m. In
the first interval (from the left), fixxi andyi to 0 for even
i; in the second, fixxi andyi to 0 for oddi; in the third,
fix xi andyi to 0 for eveni, etc. In thejth interval there
arem unfixed positions left. Letx(j) andy(j) denote the
correspondingm-bit strings inx andy, respectively.

We will define successively, for allj = 1, 2, . . . , n/2m,
particular stringsx(j) andy(j) so that the following holds.
Let Xj andY j denoten-bit strings where the firstj blocks
are set tox(1), . . . , x(j) andy(1), . . . , y(j), respectively, and
all the other blocks are set to 0. In particular,X0 andY 0

are all zeros. We will definex(j) andy(j) so that

β(Xj , Y j) ≥ 2jβ or β(Xj , Y j) ≤ −2jβ

depending on whetherj is odd or even. Note that this holds
automatically forj = 0.

Assume thatx(1), . . . , x(j−1) and y(1), . . . , y(j−1) are
defined on previous steps. On the current step, we have
to definex(j) andy(j). Without loss of generality assume
that j is odd, thus we haveβ(Xj−1, Y j−1) ≤ −2j−1β.
Consider somei = 0, 1, . . . , m/4. Run the protocol on the
following distribution: x(j) andy(j) are chosen randomly
subject to each having weightm/4, and having intersection
sizei, the blocks with indexes smaller thanj are fixed (on
previous steps), the blocks with indexes larger thanj are
set to zero. LetP (i) denote the expected value ofβ(x, y)
as a function ofi. Note that fori = 0 we haveP (i) =
β(Xj−1, Y j−1) ≤ −2j−1β. On the other hand, for each
i > 0 the expectation is taken overx, y with f(x, y) = 1,
because the rightmost intersecting point is in thejth inter-
val and hence odd (the even indices in thejth interval have
all been fixed to 0). ThusP (i) ≥ β for thosei. Now
assume, by way of contradiction, thatβ(Xj , Y j) ≤ 2jβ
for all x(j), y(j) and henceP (i) ≤ 2jβ for all suchi. By
Lemma 1, for our choice ofd, we can approximateP (i) to
within additive difference ofβ/2 by a polynomialp of de-
greed. (We do this by applying Razborov’s lemma to the
protocol obtained from the original protocol by fixing all
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bits outside thejth block.) Letr be the degree-d polyno-
mial

p − β/2

2j−1β
.

From the properties ofP and the fact thatp approximates
P up toβ/2, we see thatr(0) ≤ −1 andr(i) ∈ [0, 2] for
all i ∈ [m/8]. But then by Lemma 2, the degree ofr is at
least

√

(m/8)/4 =
√

d2 + 1/32 > d, which is a contra-
diction. Hence there exists an intersection sizei ∈ [m/8]
whereP (i) ≥ 2jβ. Thus there are particularx(j), y(j) with
β(Xj , Y j) ≥ 2jβ.

For j = n/2m we obtain|β(Xj , Y j)| ≥ 2n/2mβ. But
for everyx, y we have|β(x, y)| ≤ 1/2, hence

1/2 ≥ 2n/2mβ.

This implies
2m log(1/β) ≥ n,

hence

(q + log(1/β))3 ≥ (q + log(1/β))2 log(1/β)

= Ω(m log(1/β))

= Ω(n).

Since this holds for every quantum protocol computingf
with q qubits of communication and biasβ > 0, we have

QPP(f) = Ω(n1/3).

4 The bias of sign-representing polynomials

In this section we study the bias of polynomials that sign-
represent Boolean functions.

4.1 Lower bound on the worst-case bias

First we give a lower bound on theworst-casebias.

Theorem 1. Let N =
∑d

i=0

(

n
i

)

. If there is a degree-
d polynomial that sign-representsf : {±1}n → {±1},
then there is a normalized degree-d polynomial that sign-
representsf with worst-case biasβ ≥ 1

N ·N ! .

Proof. Let m1, . . . , mN be all the monomials of degree at
mostd in then variablesx1, . . . , xn. Any degree-d polyno-
mial p(x1, . . . , xn) is a linear combinationp = ΣN

j=1pjmj

of those monomials. Leta be an assignment of±1-values
to the variablesx1, . . . , xn and letmi(a) ∈ {±1} stand for
the value of monomialmi on a. We are given that the fol-
lowing system of2n linear inequalities (inN variablespj)
is consistent:

{ f(a)

N
∑

j=1

mj(a)pj > 0 | a ∈ {±1}n}. (1)

We can multiply any solution of (1) by a large number, so
the following system is also consistent:

{ f(a)

N
∑

j=1

mj(a)pj ≥ 1 | a ∈ {±1}n}. (2)

We claim that system (2) has a solution where
f(a)

∑N
j=1 mj(a)pj ≤ N · N ! for all a. To show

this, pick a solution p̃1, . . . , p̃N to (2) and for each
j = 1, . . . , N add to the system (2) the inequalitypj ≥ 0 if
p̃j ≥ 0, and the inequalitypj ≤ 0 otherwise. Let

{
N
∑

j=1

bijpj ≥ ci | i = 1, . . . , N + 2n } (3)

be the resulting system.
We need to introduce some terminology about linear pro-

gramming. The set of all solutions to a system of linear
inequalities is called apolyhedron. A point A of a polyhe-
dron is called itsvertex if there is no line segment that is
entirely included in the polyhedron and that hasA as inner
point. Let a polyhedronP be defined by a system of lin-
ear inequalities

∑N
j=1 uijpj ≥ vi. Let p̃ be a point inP .

Consider all the inequalities from the system that hold with
equality forp = p̃. Let Sp̃ stand for the system consisting
of such equalities

∑N
j=1 uijpj = vi. Then one can prove

the following: p̃ is a vertex ofP iff the rank ofSp̃ (that is,
the rank of its matrix) is equal toN .

An (affine) line is a subset ofRN of the form r + L
wherer ∈ RN andL is a one-dimensional linear subspace
of RN . System (3) has the following property: no affine line
is entirely included in the polyhedronP of solutions to (3)
(every line crosses a hyperplanepj = 0 for somej). This
implies thatP has a vertex. Indeed, start at any pointp̃ in P .
If the rank ofSp̃ is equal toN , we are done. Otherwise, the
set of solutions toSp̃ contains an affine line passing through
p̃. As this line is not entirely included inP , there is a point̂p
on the line where the line first gets out ofP . In other words,
there is an inequality

∑N
j=1 uijpj ≥ vi that is an equality

for p = p̂ and that is false for points of the line lying further
from p̃ thanp̂. This equality cannot be a linear combination
of those inSp̃ (that would mean that all the points on the
line satisfy that equality). Thus replacing̃p by p̂ we can
increase the rank ofSp̃ and repeat the argument.

Now pick any solutionp̃1, . . . , p̃N to (3) such that the
rank of the systemSp̃ is N . Write this system in matrix
form: Mp = c. Without loss of generality we may assume
that the size of matrixM is N×N . By Cramer’s rule, every
p̃k has the formAk/B, whereB is the determinant ofM
andAk is the determinant of the matrix obtained fromM
by replacing itskth column by column vectorc. Note that
mj(a) ∈ {±1} for all j, a, therefore allbij , ci are equal to
0, 1 or−1. Hence|B| ≥ 1 and|Ak| ≤ N !.
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Thus we obtain the bound|p̃k| ≤ N ! and

1 ≤ f(a)

N
∑

j=1

mj(a)p̃j ≤ N · N !,

for all a ∈ {±1}n, so the normalized degree-d polynomial

N
∑

j=1

p̃jmj/(N · N !)

sign-representsf with bias at least1/(N · N !).

As mentioned in the introduction, Håstad [15] showed
that this bound is essentially tight ford = 1, and Podol-
ski [27] recently showed this for alld.

4.2 Bounds on the average-case bias

In this section we analyze the average-case bias.

4.2.1 Lower bound

We first show that a sign-representing polynomial can be
converted into a probability distribution on parities (and
their negations).

Lemma 3. Let N =
∑d

i=0

(

n
i

)

. Suppose degree-d nor-
malized polynomialp sign-representsf : {±1}n → {±1}
with biasβ. Then there exists a degree-d normalized poly-
nomial q that sign-representsf with bias at leastβ/

√
N ,

and whose coefficients (in absolute value) form a probabil-
ity distribution.

Proof. Let p(x) =
∑

S p̂(S)xS be the Fourier representa-
tion of p. Define

P =
∑

S

|p̂(S)|

≤
√

N

√

∑

S

|p̂(S)|2

=
√

N

√

∑

x

p(x)2/2n

≤
√

N.

Here the first inequality is Cauchy-Schwarz, the last equal-
ity is Parseval’s identity, and the last inequality is because
p is normalized. We just defineq = p/P. Then q sign-
representsf with biasβ/P , and it is normalized because
p(x) ≤ P for all x. Clearly

∑

S

|q̂(S)| =
∑

S

|p̂(S)|/P = 1,

so the|q̂(S)| form a probability distribution.

Note that the polynomialq constructed in the above
lemma can be viewed as a randomized decision tree of depth
d: pick setS with probability |q̂(S)|, query its variables,
and outputsign(q̂(S))xS . This will computef with suc-
cess probability at least1/2 + 1/2

√
N .

The worst-case biasminx |q(x)| of q could be as low
as β/

√
N . However, itsaverage-casebias can be lower

bounded as follows:

β =
1

2n

∑

x

|q(x)|

≥ 1

2n

∑

x

q(x)2

=
∑

S

|q̂(S)|2

≥ (
∑

S |q̂(S)|)2
N

=
1

N
.

Here the first inequality is becauseq is normalized, the sec-
ond equality is Parseval’s identity, and the last inequality is
Cauchy-Schwarz. Note that the lower bound is independent
of the worst-case biasβ of the initial polynomialp. For in-
stance, even if the initialβ is double-exponentially small,
we can construct from this a polynomial (and randomized
decision tree) whose average-case bias is at worst exponen-
tially small insdeg(f).

Corollary 2. Every f : {±1}n → {±1} can be
sign-represented by a normalized polynomialq of degree
sdeg(f) with average-case bias at least1/

∑sdeg(f)
i=0

(

n
i

)

.

4.2.2 Tightness

We now show that this general lower bound is at most about
quadratically far from optimal. We will need them-bit ma-
jority function MAJm : {±1}m → {±1}, defined as the
sign of the sum of itsm inputs.

Theorem 2. Let n = dm for oddm, and consider a func-
tion f : {±1}n → {±1} that is the parity ofd indepen-
dentm-bit majorities. Thensdeg(f) = d, and there is a
degree-d normalized polynomial sign-representingf with
average-case bias1/Θ(m)d/2. Conversely, every degree-d
normalized polynomial that sign-representsf , has average-
case bias at most1/Θ(m)d/2.

Before we prove this, note that1/Θ(m)d/2 is roughly

1/
√

(

n
d

)

, matching our general lower bound up to a square.
In fact, reformulated as a bound on the averagesquared
bias, our results are essentially tight.

Proof. Write the input asx = x1 . . . xd with xi =

xi1 . . . xim ∈ {±1}m, so f(x) =
∏d

i=1 MAJm(xi).
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The degree-1 normalized polynomial
∑m

j=1 xij/m sign-
represents majority on theith input block (becausem is
odd, the polynomial is never 0). Hence the following is a
degree-d normalized polynomial that sign-representsf :

d
∏

i=1





m
∑

j=1

xij/m



 .

We can embed ad-bit parity in this function: in each block,
fix (m − 1)/2 input variables to 1 and(m − 1)/2 to −1,
leaving one variable to determine the majority value of that
block. Since parity needs maximal sign-degree, it follows
thatsdeg(f) ≥ d and hencesdeg(f) = d.

The worst-case bias of our polynomial is1/md, since
each of thed factors can be as small as1/m. It is
well known that the sum ofm uniformly distributed±1-
variables has expectationΘ(

√
m) (in fact, the theory of ran-

dom walks on the line says this expectation goes to
√

2m/π
for large m). Hence for a uniformly random input, each
|∑j xij/m| has expectation1/Θ(

√
m). Since the expecta-

tion of the product of independent random variables is the
product of the expectations, the average-case bias of our
polynomial is

d
∏

i=1

1

Θ(
√

m)
=

1

Θ(m)d/2
.

It remains to upper bound the average-case bias of degree-d
sign-representing polynomials forf . Let p =

∑

S p̂(S)xS

be such a polynomial, with average-case bias

β =
1

2n

∑

x

|p(x)| =
1

2n

∑

x

f(x)p(x) =
∑

S

p̂(S)〈f, xS〉.

(4)
Let U be the collection of allmd sets of variables contain-
ing exactly one variable from each of thed blocks. We
can partition any setS of variables asS = S1 ∪ · · · ∪ Sd,
whereSi are the variables from blocki. If |S| ≤ d and
S 6∈ U , then at least oneSi will be empty, and we have
〈MAJm, xSi

〉 = 1
2m

∑

xi∈{±1}m MAJm(xi) · 1 = 0 be-
cause majority on an odd number of bits has equally many
+1-inputs as−1-inputs. Hence for suchS we have:

〈f, xS〉 =

d
∏

i=1

〈MAJm, xSi
〉 = 0.

On the other hand, ifS ∈ U then |Si| = 1 for all i. The
inner product of MAJm with any one of its variables (say
the first one) is

〈MAJm, x{1}〉 =
1

2m

∑

z∈{0,1}m

MAJm(z)z1

=
1

2m

∑

z:|z2...zm|=(m−1)/2

MAJm(z)z1 +

1

2m

∑

z:|z2...zm|6=(m−1)/2

MAJm(z)z1

=
1

2m

∑

z:|z2...zm|=(m−1)/2

1

=
2

2m

(

m − 1

(m − 1)/2

)

= Θ(1/
√

m).

The third equality holds because if|z2 . . . zm| = (m−1)/2
then MAJm(z) = z1, while if |z2 . . . zm| 6= (m−1)/2 then
MAJm(z) is independent ofz1. Hence forS ∈ U we have

〈f, xS〉 =
d
∏

i=1

〈MAJm, xSi
〉 =

1

Θ(m)d/2
.

Equation (4) thus becomes

β =
1

Θ(m)d/2

∑

S∈U

p̂(S). (5)

It remains to bound
∑

S∈U p̂(S). To that end, define ad-
variate multilinear polynomialq by

q(y1, . . . , yd) = p(ym
1 , . . . , ym

d ).

That is, we substitute the variableyi for each of them vari-
ablesxij . Note that if a monomial inp contains somexij

and xij′ , then the degree of this monomial will decrease
under this substitution (both variables will be replaced by
yj , andy2

j = 1). Hence the only degree-d monomials of
p whose degree does not decrease under this substitution,
are the ones containing exactly one variable from each of
thed blocks, i.e. the monomialsxS with S ∈ U . The sub-
stitution maps all suchxS to the same degree-d monomial
y1 · · · yd. Accordingly, the coefficient̂q([d]) of that mono-
mial in q will be

∑

S∈U p̂(S). Becausep is normalized,q is
normalized as well, and we have

(

∑

S∈U

p̂(S)

)2

= q̂([d])2

≤
∑

T⊆[d]

q̂(T )2

=
1

2d

∑

y∈{±1}d

q(y)2

≤ 1,

where the last equality is Parseval’s identity. Combining
this with Eqn (5) proves the last part of the theorem.
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5 Future work

We mention the following open problems:

• Another communication complexity class question
that has been open since it was first stated by Babai
et al. [6], is to separateΣ2 andΠ2 (and other classes
in PH). Could our techniques help there?

• How does the tradeoff between degree and bias change
if one allows degrees higher thansdeg(f)?

Acknowledgments. We thank Hartmut Klauck for an-
swering a question about PPcc vs UPPcc, Adi Shraibman
for sending a version of [22], and Alexander Sherstov for
comments.
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