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polynomial-time Turing machine whose acceptance proba-
bility is greater than 1/2 if, and only if, its input is in than-
guage. Théiasof such a computation is how far from the
crossover value of 1/2 the actual probability is. This ciass

First, most computational complexity classes have an quite powerful. For instance, it can compute NP-complete
analogous class in communication complexity. The classproblems, albeit with exponentially small bias. Many ana-

PP in fact hastwo, a version with weakly restricted bias
called PP*, and a version with unrestricted bias called
UPPe<c. Ever since their introduction by Babai, Frankl, and

logues of this class exist, for instance for decision trees,
communication protocols, polynomial representations, et
Though not corresponding to “effective” computation (for

Simon in 1986, it has been open whether these classes aréhat we need small error probability), this is still a funda-

the same. We show that PRC UPP¢. Our proof com-

mental mode of computation, giving rise to many interest-

bines a query complexity separation due to Beigel with a ing questions. Clearly the larger the bias the better, for in
technique of Razborov that translates the acceptance prob-stance because it is much cheaper to amplify the success

ability of quantunprotocols to polynomials.

probability of an algorithm with large bias than one with

Second, we study how small the bias of minimal-degreesmall bias. Hence it makes sense to ask how large we can

polynomials that sign-represent Boolean functions needs t

make this bias. In this paper we study this issue in two

be. We show that the worst-case bias is at worst double-contexts: communication protocols and sign-representing

exponentially small in the sign-degree (which was very re-
cently shown to be optimal by Podolski), while the average-

polynomials over the reals.

case bias can be made single-exponentially small in the1.1 Communication complexity

sign-degree (which we show to be close to optimal).

1 Introduction

Many models in theoretical computer science allow for

computations or representations where the answer is onl

slightly biased in the right direction. The best-known of
these is the complexity class PP, for “probabilistic polyno
mial time”. A language is in PP if there is a randomized
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Communication complexity has been one of the most
fruitful areas of theoretical computer science since its in
troduction by Yao [33]. The model has appeal in its own
right as a simple model of distributed computing, and also
has found numerous applications, in particular for proving

>)ower bounds on circuits, data structures, etc. [19]. Adsea
2

0 years ago, Babai, Frankl, and Simon [6] defined the
communication complexity analogues of standard computa-
tional complexity classes such as P, BPP, NP, PH, PSPACE,
etc. Here “polylog communication” replaces “polynomial-
time” as the formalization of “efficient” computation of
some functionf : {0,1}" x {0,1}" — {0,1}.r The com-
munication complexity classes are distinguished fromrthei
computational cousins by a superscript ‘cc’. This frame-
work enables a notion of efficiency-preserving “rectangula

1For upper and lower bounds depending on the input lengthmake
sense, we should really be talking abéarnilies of functions{ f,. }, one
for eachn, instead of functiong for specificrn. We will ignore this tech-
nicality here.



reduction” between communication problems, analogous tothe communication complexity. It should be noted that this
efficient many-one reductions in computational complexity connection with quantum is not essential: the special chse o
Some relations between complexity classes that are no-Razborov’s result that applies to classical protocols woul
toriously hard to settle in the computational setting, can b already suffice for our purposes. However, the classical ver
solved in the communication case. For instancg, sion of Razborov’s lemma was not known prior to [28], and
NP<e, NP¢ # coNP*, NP¢ ¢ BPP¢ (example for these  arguably would not have been discovered if it weren't for
three cases: set intersection [6]), antf 2 BPP< and the more general quantum version.
BPP*< Z NP°¢ (example: equality [33]). On the other hand, Our separation between UPPand PP¢ also separates
there are also some collapses that we do not expect to holdwo well-known lower bound techniques in randomized

true in the computational setting, in particul&f P- NP*“ N communication complexity. As mentioned in the next sec-
coNP* [2]. Other properties of communication complexity tion, the UPP-communication complexity of a functign
classes may be found in [6, 13, 14, 16, 23, 9, 21, 31]. is determined by the minimal rank among all matrices that

In some cases the communication framework is richer sign-represenf, while the PP-complexity is determined by
than the computational framework. For example, Babai et the discrepancyof f under the hardest input distribution.
al. introduced two different communication complexityver It follows that the second technique can be exponentially
sions of the complexity class PP. The first communication stronger than the first. By the recent work of Linial and
version, called UPP for “unrestricted-error probabilistic ~ Shraibman [21, 22] (following up on [20]), discrepancy is
protocols”, just considers all functions computable by-pro equivalent tanargin complexitywhich is an important no-
tocols with polylogarithmic communication and acceptance tion from learning theory (we will not spell out the conse-
probabilities that are above 1/2 jf(x,y) = 1, and below guences of our bounds for learning theory here). Hence our
1/2if f(z,y) = 0. Such protocols were first studied in [26]. result also exponentially separates sign-rank from margin
The second version realizes that efficiency should also in-complexity.
volve the number of random bits used. Here we mgan

vatecoins, nofpubliccoins. Note that if the number of coin  sherstov'sresults.  As we learned recently, an exponen-
flips is upper_bolunded by, then any b'a§_W'|| be lower  jg separation between sign-rank and margin complexity
bounded by2~¢, just b?cause the probability of any event has also been obtained independently by Sherstov [31] (in
will be a multiple of27. Accordingly, the second kind  these proceedings), for a different function and with quite
of communication complexity is defined as the sum of the gifferent techniques.
communication and the log of the reciprocal of the worst- |, another development, Sherstov [32] recently exhibited
case bias. PPis the class of communication problems for 5 function with exponentially small discrepancy that has
which t_h|s PP—compIexn)g |;5 polylogarithmic. Note that we depth-3 circuits of polynomially many AND, OR, and NOT-
allow bias as small a& 7" os(r) here. _ _ gates. He shows that exponentially small discrepancy im-
Obviously PP C UPP*. Ever since the introduction  plies that depth-2 circuits with majority-gates for the ¢un
of these two classes by Babai et al, it has been an openjon need exponential size. In other words, he separates
question whether this inclusion is strict. In this paper we 40 from M A.Jo M A.J circuits. This contrasts with a clas-
answer this question in the affirmative. We exhibit a to- sjc result by Allender [3], who showed that all languages in
tal Boolean function, inspired by a function used earlier by A have quasipolynomial-sized majority-circuitsaepth
Beigel [7] in the setting of oracle-computations, which can 3. As Sherstov noticed, the function we analyze in Section 3
be solved by UPP-protocols with(log n) communication,  has the same property: the discrepancy bound follows from

but whose PP-communication complexityiS"). In other  our communication lower bound, while the depth-3 circuit
words, this function can be efficiently computed with some s easy to construct.

small positive bias, but not with relatively large bfas.
Interestingly, our lower bound relies on a result of { o Polynomials and decision trees

Razborov [28] which roughly says that the acceptance prob-

ability of quantumcommunication protocols can be well-

X . For th tti f pol ials it will b i
approximated by a polynomial of degree roughly equal to or the setfing of polynomials It will be convenient to

switch from0/1-variables tot1-variables. Ann-variate
polynomial p (over the reals)sign-representa function

2As an aside, the same function can be used to separate theurtcam

tion complexity class BP:c¢ from PP (similar to [7]), and also BPce f+ {£1}™ — {£1}if it has the same sign for all inputs
from PNP.e¢_ Itis not hard to see that our function sits iVB<¢. On the z: p(z) > 0if f(z) = 1 andp(z) < 0if f(z) = —1.
other hand, using techniques from [8, 12, 1] one can showP&t - C Such polynomials are also known as “threshold functions”.

PPc. As we show here, the latter class does not contain our fumcti ; 2 _ ) ; _
We omit the rather technical definitions and proofs. One dao define Smcezi = 1forz; € {il}’ we can without loss of gen

the communication analogue of Aaronson’s class PostBQRaftt] show erality restrigt attention th|ti|in_ear polynomials. Proba-
PP¢ C PostBQP® C UPP™, bly the most important complexity measure for such a poly-



nomial is itsdegree which is the size of its largest mono- of sdeg(f): for eachd he exhibits a family of.-bit Boolean
mial. Define thesign-degreeof f as the minimal degree functionsf with sdeg(f) = d, such that any degreénor-
sdeg(f) among all polynomialg that sign-represent.3 malized polynomial that sign-representshas worst-case
Functions with low sign-degree have found various appli- bias at mosh —2(n?) (the constant in th@ depends o).
cations in complexity theory, for instance in the proof by Second, we also study thaveragebias obtainable,
Beigel et al. [8] that PP is closed under intersection, and where the average is taken under the uniform distribution on
in a number of oracle results [7, 5]. They are also closely all inputs. We show that every total functighhas a sign-

related to threshold circuits and r_1eura| networks. representing polynomial of degredeg(f) with average-
Once the degree (p)f_has been fixed tedeg(f), onemay  case bias at least/ Zi%g(f) (") ~ 1/n®d°s(f). Hence

askhow wellp approximatesf. We formalize this as fol-  (hare is an exponential gap between worst-case and average-

lows. Supposg sign-representg andp is normalizedin case bias. In addition, we exhibit a family of functions

the sense thap(z)| < 1forall z € {+1}". Then define  \here our lower bound on the achievable average-case bias
the (worst-casebias of p asmin, [p(x)|. This measures g close to optimal.

_hOW far iwayhfrom thel_cro_ssovero||3_q|nt _0 the (;oo(;ynomlg:j Finally, to further motivate the study of sign-represegtin
is. Note that the normalization condition is needed to avoid v nomials and bias, let us mention the close relation be-

increasing the bias by just multiplying the polynomial by \0qn sign-representing polynomials foand randomized
a large number. Now we ask: what is the beSt'aCh'e'\""‘bledecision trees. On the one hand, the acceptance probabil-

(i.e. maximal) bia_s among such polynomidis? ) ity of a depthd randomized decision tree can be written
Another question is to ask how large the weights (coef- as a polynomiap of degree at mosd. If the decision

ficients) _need to be imteger-coeﬁiciensign_-representing tree computes some functighwith success probability at
polynomllals forf. Clearly,_ these twolquestlons are clos_ely least1/2 + 4 on all inputs, then the polynomial — 1/2
related: if we need large integer weights then the maximal will sign-representf with bias 3. On the other hand, if

Eias will t:)g smaI:i anq \r/]ice versa. W_e sltat_e this r_elation.We have a degreé-polynomial that sign-represenfs we
etween bias an Welg Is MOre precisely in Section 2.2 2 obtain from this a randomized decision tree of depth at
for the purposes of this introduction we will treat these two mostd that computeg with bias roughlyﬁ/\/ﬁ (see Sec-
problems as basically equivalent. tion 4.2.1). Accordingly, up to relatively moderate chasige

It has peen known for_a long time that fmear thre;h— in the bias, degree of sign-representing polynomial is\equi
old functions (those of sign-degree at most 1), weights of alent to depth of decision trees.

size20(nlogn) gyffice [24]. Hastad [15] exhibited a func-
tion where weights of that size are also necessary. Equiva- o
lently, the best bias among normalized degree-1 polynomi-2 Preliminaries
als for Hastad’s function ig—©(mlogn) 5

Very little seems to be known about the best bias obtain-2,1  Communication complexity
able for functions havingdeg(f) > 1. We present two re-
sults about this. First, we show that the best-achievahblg bi
is at least double-exponentially small: every total fuoietf
has a sign-representing polynomial of degsdeg( f) with

Let f : {0,1}" x {0,1}™ — {0,1}. Alice gets input
x, Bob gets inputy, and together they want to compute
i | sdeg(f) (n f(z,y) with minimal communication between them. We
worst-case bias at leastN - N'!, whereN = Z;J;?f) () assume familiarity with deterministic and probabilistiet
This lower bound on the bias is roughly »"**"". That party communication protocols [19].
does not look very impressive, but Hastad’s example shows a protocol P computesf with bias 3 > 0 if its ac-
that this is actually essentially tight fatieg(f) = 1. Af- ceptance probability is at leasy/2 + 3 for every input
ter a first version of this paper appeared, Podolski [27] (z,y) € f~1(1) and at most /2 — 3 for (z,y) € f~1(0).
showed our bound is in fact essentially tight for all values \we used(P) for P’'s bias. ThecostC(P) of a protocolP
3Note that we do not allowp(z) = 0 for any z. The literature, for iS.it_S worst-case communication. Let UG denote the
instance [5, 25], also contains a notion of “weakly signresgnts”, which minimal costC'(P) among all protocolsP that compute
requires thap's sign equalsf (x) wheneverp(z) # 0, and thaip(x) # 0 f with positive bias. Let P§) denote the minimum of
Loerr:t least one input. We will not consider this alternative definition C(P) + log(1/3(P)) among all protocols® that compute
4The restriction to polynomials of degregeg(f) is natural but also f WIthPPF))OSItlve bIaS.l Note that the bias is lower bounded
somewhat limiting: it could be that polynomials of degreiglsly larger by 2~-FP(/) > 2="—1 for such protocols. In contrast, for
thagsdeg(f) can achieve much better bias. UPP-protocols the bias is unrestricted (whence the ‘U’).
If one only wants the sign of the degree-1 polynomiab equalf for : :
mostinstead of all inputs, then the situation changes dranipticaeights ObVIOu.SIy UPI?f) < PP(f) for all f. We list some .
of size roughly,/n already suffice [30]. We will not study such “low- of the main results that are known about these complexity
weight approximators” here. measures:




e Almostall f have UPRf) > n — O(1) [4].

e The inner product function f(x,y)
Yo, x;y; mod2 has UPRS) > n/2 [11].

e Let srank(f) be thesign-rankof f (minimal rank
among all2™ x 2™ matricesM having M, > 0 if
flz,y) = 1, andM,, < 0if f(z,y) = 0). Then
UPRf) equaldog srank(f) up to a bit [4].

e PP-complexity is essentially determined bigscrep-
ancy Lety : {0,1}™ x {0,1}™ — [0,1] be an input
distribution. Then theliscrepancyof f w.r.t. i is

discy,(f) = max|p(RN F7HL) = w(RO fHO),

where the maximum is taken over all rectangles=
S xT C {0,1}™ x {0,1}". We have PPf) =
©(log(1/ miny, disc,(f)) +logn) [17].

e Two-way UPP-protocols are not more powerful than

We say thatp sign-represents functionf : {+1}" —
{£1} ifit has the same signgi(z) > 0 wheneverf(z) = 1
andp(z) < 0 wheneverf(z) = —1. The sign-degree
of f is sdeg(f) min{deg(p) | p sign-representg}.
O’Donnell and Servedio [25] have shown that almostfall
havesdeg(f) ~ n/2.

In order to be able to define the bias mfwe assume
Ip(z)| < 1 forall inputsz. We call suchp normalized The
worst-casebias ofp is

§ = minp()

and theaverage-casbias is

5= 5 3 b))

Much of the literature on sign-representations considers
sign-representing polynomialgs with integer coefficients
(a.k.a.weightg and focuses on the magnitude of the largest
weight, while our work considers sign-representing pokyno

one-way UPP-protocols [26], and the same holds for mialsp satisfyingmax, [p(x)| < 1 and focuses on the bias

PP-protocols [17].
2.2 Sign-representing polynomials

Our polynomials will always be over the real numbers.
When talking about sign-representing polynomials, it is
convenient to switch frori/1-variables tot-1-variables.

Let [n] = {1,...,n}. An n-variate multilinear polyno-
mial (often just called a polynomial) is a function

pla) = 37 p(S)as,
S

wherez = (z1,...,z,) € {£1}", the sum goes over all
setsS C [n] of indices of variables, th¢(S) are reals
(known as the Fourier coefficients pf, and themonomial
zg is afunction ofz given byzs = [ [, ¢ z: (i.e. the parity
of the variables inS). If S = (), thenzg is the constant-1
function. Thedegreeof p is deg(p) = max{|S| | p(S) #
0}.

We define an inner product between functiohg :
{+1}" = R by

o) =g > @)

ze{£1}"

It easy to see that the set of all monomials forms an
orthonormal set with respect to this inner product, and
the Fourier coefficients of can be expressed #@S) =
(p,zg). Parseval's identity says

o S pey = S a(s)
T S

of p away from 0. Here we will relate these two approaches
to each other: roughly, small bias fpicorresponds to large
weight forgq.

Let N = 3¢, (). First, suppose we have a degree-
d polynomial ¢ with integer coefficients. Let,q. =
maxg |G(S)| be its largest weight. Note thatax, |¢(z)| <
Y5 1d(S)| < Ngmaz. Definep = ¢/ max, |q(z)|, then
clearly [p(z)| < 1 for all z. We have the following lower
bound on the worst-case bigof p:

min, [g(z)| 1
maxXy |q(f£)| h NQme.

8 = min |p(a)| =

Conversely, suppose we have a degigmlynomialp sat-
isfying 8 < |p(z)| < 1 for all z. Now defineg = p- N/j3

and defineg by rounding positive coefficients af down
and rounding negative coefficients up to obtain integer co-
efficients. We havéj(z)| > N and|q(z) — ¢(x)| < N for
everyz. Accordingly, the polynomialg, g, andq all have
the same sign for every. Moreover, the magnitude of the
largest coefficient of is

Gmaz < Gmaz < max Ip(z)|N/B < N/B.

Summarizing:

Corollary 1. Let N = ¢ (). For every integer-
coefficient polynomiad of degreed with maximal weight
Gmaz, there is a normalized polynomialof degree at most
d with bias > 1/(Ngma.) that sign-represents the same
function. For every normalized polynomialof degreed
with bias g, there is an integer-coefficient polynomiabf
degree at most with maximal weighty,,,... < N/j that

sign-represents the same function.



3 Separating PP*c and UPP“¢: The communi-
cation version of ODD-MAX-BIT

In this section we state our main result about commu-
nication complexity: a function that is in UPPbut not
in PP<. We use a distributed version of the ODD-MAX-
BIT function of Beigel [7]. Letz,y € {0,1}", andk =
max{i € [n] | z; = y; = 1} be the rightmost position
wherez andy both have a 1 (set = 0 if there is no such
position). Definef(x, y) to be the least significant bit @f,
i.e. whether thig: is odd or even. We will show here that
UPRf) = O(logn) while PR f) = Q(n'/3).

3.1 UPP-upper bound

Fori € [n] = {1,...,n}, define probabilitiep; = 2,
wherec = 1/ 3" | 2% is a normalizing constant. Consider
the following protocol. Alice picks a numbeére [n] with
probability p; and sends over, z;. If x; = y; = 1 then
Bob outputs the least significant bit 4fotherwise he out-
puts a fair coin flip. This computewith positive—though
exponentially small—bias. Hence

UPRf) < [logn] + 1.
3.2 Quantum lower bound

We will actually prove the lower bound fguantunpro-
tocols (without prior entanglement). Let

QPR f) = min (C(P) +log(1/A(P))

be the PP-typguantumcommunication complexity of,
which is the minimum over aljuantumprotocolsP that
computef with positive bias. It is known that QRP) =
O(PR(f)) [17], hence lower bounding FP) is equivalent
to lower bounding QP§). It won’t be necessary to pre-

cisely define quantum protocols here, since the only prop-

erty we use is the following result by Razborov. This was
first proved in [28], and made more explicit in [18, Sec-
tion 5]. It allows us to translate a quantum protocol to a
polynomial:

Lemma 1 (Razborov) Consider ag-qubit quantum com-
munication protocol onn-bit inputsx and y, with outputs
0 and 1, and acceptance probabilities denotediy:, y).
Fori € {0,...,m/4}, define

P(i) = EXPy =y =m/a,|zny =il P (@ )]s

where the expectation is taken uniformly over ally €
{0,1}™ that each have weight:/4 and that have inter-
section size. For everyd < m/4 there exists a single-
variate degree? polynomialp (over the reals) such that
|P(i) — p(i)| < 2-¥** 2 forall i € {0,...,m/8}.

Note that if we picki = 8¢+ 41og(1/¢), thenp approx-
imatesP to within an additives for all i € {0,...,m/8}.

We also use the following special case of a result due to
Ehlich and Zeller [10] and Rivlin and Cheney [29]:

Lemma 2 (Ehlich & Zeller; Rivlin & Cheney) Letr be
a single-variate degred-polynomial such that(0) < —1
andr(i) € [0,2] for all i € [k]. Thend > \/k/4.

Consider a quantum protocol withqubits of commu-
nication that computeg with biass > 0. Let 8(z,y) =
P(z,y) — 1/2. Thenf(z,y) > g if f(z,y) = 1, and
Blx,y) < =g if f(z,y) = 0. Our goal is to lower bound
q +log(1/B).

Defined = [8¢ + 4log(2/3)] andm = 32d* + 1. As-
sume for simplicity tham dividesn. We will partition
[n] into n/2m consecutive intervals, each of len@n. In
the first interval (from the left), fixc; andy; to O for even
1; in the second, fixe; andy; to O for odds; in the third,
fix x; andy; to O for eveni, etc. In thejth interval there
arem unfixed positions left. Let:() andy) denote the
correspondingn-bit strings inxz andy, respectively.

We will define successively, forafl = 1,2,...,n/2m,
particular stringse?) andy/) so that the following holds.
Let X7 andY7 denoten-bit strings where the first blocks
aresettac ... 20 andy®, ... y¥), respectively, and
all the other blocks are set to 0. In particulaf® andY™®
are all zeros. We will define?) andy’) so that

BXTY)Z28  or BXT, YY) <278
depending on whethgris odd or even. Note that this holds
automatically forj = 0.

Assume thatz™, ... 20D andy®, ... ,y0~1 are
defined on previous steps. On the current step, we have
to definez() andy ). Without loss of generality assume
that j is odd, thus we havg(X/~1 Yy/—1) < —2i-1p
Consider someé = 0, 1,...,m/4. Run the protocol on the
following distribution: (/) andy(?) are chosen randomly
subject to each having weight/4, and having intersection
sizei, the blocks with indexes smaller tharare fixed (on
previous steps), the blocks with indexes larger thaare
set to zero. LefP (i) denote the expected value 6z, y)
as a function ofi. Note that fori = 0 we haveP(i) =
B(XI71Yi=1)y < —2i=13. On the other hand, for each
1 > 0 the expectation is taken overy with f(z,y) = 1,
because the rightmost intersecting point is in jhieinter-
val and hence odd (the even indices in jiteinterval have
all been fixed to 0). Thug’(i) > [ for thosei. Now
assume, by way of contradiction, thatX?, Y7) < 273
for all z(9), () and henceP(i) < 27 for all suchi. By
Lemma 1, for our choice of, we can approximat®(i) to
within additive difference of3/2 by a polynomiab of de-
greed. (We do this by applying Razborov’s lemma to the
protocol obtained from the original protocol by fixing all



bits outside thegith block.) Letr be the degred-polyno-

mial
p—pB/2
20-13 -
From the properties oP and the fact thap approximates
P up to3/2, we see that(0) < —1 andr(i) € [0,2] for
all i € [m/8]. But then by Lemma 2, the degreesofs at
least./(m/8)/4 = /d?® +1/32 > d, which is a contra-
diction. Hence there exists an intersection size [m/8]
whereP(i) > 273. Thus there are particulat’), y/) with
B(XT,Y7) > 2B,
Forj = n/2m we obtain|3(X7,Y7)| > 27/2m3. But
for everyz, y we havel8(x, y)| < 1/2, hence

1/2 > 2n/2mg,

This implies
2mlog(1/8) > n,
hence
(¢ +1log(1/8))* > (g+1log(1/8))*log(1/p)

Q(mlog(1/5))

Since this holds for every quantum protocol computjfig
with ¢ qubits of communication and bigs> 0, we have

QPRf) = Q(n'/?).
4 Thebiasof sign-representing polynomials

In this section we study the bias of polynomials that sign-
represent Boolean functions.

4.1 Lower bound on the worst-case bias

First we give a lower bound on theorst-casebias.

Theorem 1. Let N = Y7 (7). If there is a degree-
d polynomial that sign-represents : {+1}" — {+1},
then there is a normalized degrdepolynomial that sign-

represents’ with worst-case biag > ﬁ

Proof. Letmy,...,my be all the monomials of degree at
mostd in then variablest, . . ., x,. Any degreed polyno-
mial p(z1, ..., z,) is a linear combinatiop = £, p;m;

of those monomials. Let be an assignment af1-values
to the variables;, . .., z, and letm;(a) € {£1} stand for
the value of monomialn; ona. We are given that the fol-
lowing system oR™ linear inequalities (inV variablesp;)

is consistent:

N

{ f@)d mj(a)p; >0 |

J=1

ac {£1})"). (1)

We can multiply any solution of (1) by a large number, so
the following system is also consistent:

N
{ f(a)ij(a)pjzl | ac{£1}"}. (2

We claim that system (2) has a solution where
fla)> ) mj(a)p; < N - N!for all a. To show
this, pick a solutionpy,...,py to (2) and for each
j=1,..., N add to the system (2) the inequaljty > 0 if

p; > 0, and the inequality; < 0 otherwise. Let

| i=1,...,N+2" } (3)

N
{ D byp; > e
i=1

be the resulting system.

We need to introduce some terminology about linear pro-
gramming. The set of all solutions to a system of linear
inequalities is called polyhedron A point A of a polyhe-
dron is called itsvertexif there is no line segment that is
entirely included in the polyhedron and that héss inner
point. Let a polyhedror® be defined by a system of lin-
ear inequalitieiji.\;1 uijp; > v;. Letp be a pointinP.
Consider all the inequalities from the system that hold with
equality forp = p. Let.S; stand for the system consisting
of such equalitiei;y:1 u;jp; = v;. Then one can prove
the following: 5 is a vertex ofP iff the rank of .S; (that is,
the rank of its matrix) is equal t&v/.

An (affine) line is a subset dR™ of the formr + L
wherer € RV andL is a one-dimensional linear subspace
of RY. System (3) has the following property: no affine line
is entirely included in the polyhedrah of solutions to (3)
(every line crosses a hyperplapg = 0 for somey). This
implies thatP has a vertex. Indeed, start at any pgiim P.

If the rank ofS; is equal talV, we are done. Otherwise, the
set of solutions t&; contains an affine line passing through
p. As thisline is not entirely included iR, there is a poinp

on the line where the line first gets outBf In other words,
there is an inequalit)zj‘\[:1 u;jp; > v; that is an equality
for p = p and that is false for points of the line lying further
from p thanp. This equality cannot be a linear combination
of those inS; (that would mean that all the points on the
line satisfy that equality). Thus replacifigby p we can
increase the rank &§; and repeat the argument.

Now pick any solutionpy, ..., py to (3) such that the
rank of the systent is N. Write this system in matrix
form: Mp = ¢. Without loss of generality we may assume
that the size of matrid/ is N x N. By Cramer’s rule, every
pr. has the formA, /B, whereB is the determinant o/
and 4, is the determinant of the matrix obtained fram
by replacing itskth column by column vectat. Note that
m;j(a) € {£1} for all j, a, therefore alb;;, ¢; are equal to
0,1or—1. HencelB| > 1 and|A| < N



Thus we obtain the bound;| < N!and Note that the polynomiay constructed in the above
lemma can be viewed as a randomized decision tree of depth
d: pick setS with probability |G(S)|, query its variables,
and outputsign(§(S))zs. This will computef with suc-
cess probability at leagt/2 + 1/2v/N.

forall a € {#+1}", so the normalized degregpolynomial The worst-case biasin, |¢(z)| of ¢ could be as low

as 3/v/N. However, itsaverage-caséias can be lower
bounded as follows:

N
1< f(a)) mj(a)p; < N - N,

Jj=1

N
> pymi/(N-NY)

— — 1
J=1 g = on Z lq(z)]
sign-representg with bias at least /(IV - N!). O 1 i
il 2
As mentioned in the introduction, Hastad [15] showed = on ;q(x)
that this bound is essentially tight far = 1, and Podol- P
ski [27] recently showed this for adl. = > 149
s
4.2 Bounds on the average-case bias > (s las))?
- N
In this section we analyze the average-case bias. _ 1
N
421 Lower bound Here the first inequality is becaugés normalized, the sec-

ond equality is Parseval’s identity, and the last ineqyadit
Cauchy-Schwarz. Note that the lower bound is independent
of the worst-case bias of the initial polynomialp. For in-
stance, even if the initigh is double-exponentially small,

We first show that a sign-representing polynomial can be
converted into a probability distribution on parities (and
their negations).

Lemma 3. Let N — Z(‘i—o ("). Suppose degreé-nor- we can construct from this a polynomial (and randomized
malized polynomiap sigr:frepFesentg‘ {1} — {+1} decision tree) whose average-case bias is at worst exponen-

with bias3. Then there exists a degreerormalized poly-  tially small insdeg(f).
nomial ¢ that sign-representg with bias at least3/v/'N, Corollary 2. Every f : {+1}" — {+1} can be
and whose coefficients (in absolute value) form a probabil- sign-represented by a normalized polynomjadf degree

ity distribution. sdeg(f) with average-case bias at leaist Zfi%g(f) ™.
Proof. Letp(z) = >4 p(S)xs be the Fourier representa-
tion of p. Define 4.2.2 Tightness
P = Z 1p(S)] We now show that this general lower bound is at most about
B guadratically far from optimal. We will need the-bit ma-
jority function MAJ,,, : {£1}"™ — {41}, defined as the
< VN DS sign of the sum of itsn inputs.
> Theorem 2. Letn = dm for oddm, and consider a func-
= VN Zp(x)Q/Qn tion f : {£1}" — {£1} thatis the parity ofd indepen-
- dentm-bit majorities. Thernsdeg(f) = d, and there is a
degreed normalized polynomial sign-representirfgwith
< VN. 9 poly gn-rep g

average-case bias/©(m)?/2. Conversely, every degrek-
. normalized polynomial that sign-represerftshas average-

Here the first inequality is Cauchy-Schwarz, the last equal .
case bias at most/©(m)4/2,

ity is Parseval’s identity, and the last inequality is bessau
p is normalized. We just defing = p/P. Thenq sign- Before we prove this, note thay©(m)%? is roughly
represents’ with bias /P, and it is normalized because

p(z) < Pforall z. Clearly 1/4/ (d), matching our general lower bound up to a square.

In fact, reformulated as a bound on the averageared

Z 14(S)| = Z 1p(S)|/P =1, bias, our results are essentially tight.
S o Proof. Write the input asz = zi...zq With z; =
so the|G(.S)| form a probability distribution. O T .. Tim € {1}, so f(x) = Hle MAJ,, (z;).



The degree-1 normalized ponnom@;”:1 xij/m sign-
represents majority on thah input block (becausen is
odd, the polynomial is never 0). Hence the following is a
degreed normalized polynomial that sign-represeffits

We can embed d-bit parity in this function: in each block,
fix (m — 1)/2 input variables to 1 an@m — 1)/2 to —1,
leaving one variable to determine the majority value of that
block. Since parity needs maximal sign-degree, it follows
thatsdeg(f) > d and hencedeg(f) = d.

The worst-case bias of our polynomial igm?, since
each of thed factors can be as small asm. It is
well known that the sum ofn uniformly distributed+1-
variables has expectati@,/m) (in fact, the theory of ran-
dom walks on the line says this expectation goeg'ton /=«
for large m). Hence for a uniformly random input, each
| >_; zi;/m| has expectatioh/©(,/m). Since the expecta-
tion of the product of independent random variables is the
product of the expectations, the average-case bias of ou
polynomial is

d

[I

i=1

m

b

_ 1
B @(m)d/Q'

It remains to upper bound the average-case bias of degree-
sign-representing polynomials fgr Letp = >, p(S)zs
be such a polynomial, with average-case bias

B= 5 S l(e)l = 5 3 F@ple) = S pS) S s).
T T S
@

Let U be the collection of alin? sets of variables contain-
ing exactly one variable from each of theblocks. We
can partition any sef of variables assS = S; U --- U Sy,
where S; are the variables from block If |S| < d and

S ¢ U, then at least on&; will be empty, and we have
(MAJ,,, xs,) = %Zmie{il}m MAJ,,(z;) - 1 = 0 be-
cause majority on an odd number of bits has equally many
+1-inputs as—1-inputs. Hence for sucH we have:

d

(f.25) = [[(MAd, z5,) = 0.

i=1

On the other hand, i6 € U then|S;| = 1 for all . The
inner product of MAJ, with any one of its variables (say
the first one) is

(MAJ,,, (1) > MA(2)z

z€{0,1}™

>

zi|z2...2m|=(m—1)/2

>

zi|z2...2m |#(Mm—1)/2

MAJ,,,(2)z1 +
MAJ,. ()21

1
zi|z2...2m |=(m—1)/2
2 m—1

5 1y2)
O(1/vm).

The third equality holds becausdit . .. z,,,| = (m—1)/2
then MAJ,,(z) = z1, whileif |22. .. z;y| # (m —1)/2 then
MAJ,,.(z) is independent of;. Hence forS € U we have

d

(f.zs) = [[(MAI, zs,) =

i=1

Equation (4) thus becomes

1
O(m)d/2

r 6=

> B(9).

SeU

1
It remains to bound_ ¢ ., 5(S). To that end, define d-
variate multilinear polynomiaj by

q(yr, - ya) = pWi" . y0)-

That is, we substitute the variahjefor each of then vari-
ablesz;;. Note that if a monomial ip contains some;;
andxz;;-, then the degree of this monomial will decrease
under this substitution (both variables will be replaced by
Y andyf- = 1). Hence the only degre¢monomials of

p whose degree does not decrease under this substitution,
are the ones containing exactly one variable from each of
thed blocks, i.e. the monomialss with S € U. The sub-
stitution maps all such s to the same degreémonomial

y1 - - - ya. Accordingly, the coefficien§([d]) of that mono-
mial inq willbe ) 4., p(S). Because is normalizedq is
normalized as well, and we have

<Zﬁ(5’)> = §([d))?
SeU
< )Ty
TC[d]
= % > aw)?
ye{£1}d
< 1

)

where the last equality is Parseval’s identity. Combining
this with Egn (5) proves the last part of the theorem. [J



5 Futurework

We mention the following open problems:

Another communication complexity class question

[14]

[15]

that has been open since it was first stated by Babai[16]

et al. [6], is to separat&, andIl, (and other classes
in PH). Could our techniques help there?

How does the tradeoff between degree and bias change17]

if one allows degrees higher thadeg(f)?

Acknowledgments. We thank Hartmut Klauck for an-
swering a question about PPvs UPP¢, Adi Shraibman
for sending a version of [22], and Alexander Sherstov for
comments.
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