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ON COMPUTATIONAL ALGORITHMS  
IMPLEMENTED IN MARINE NAVIGATIONAL 
SOFTWARE USED IN  MARINE NAVIGATION 

ELECTRONIC DEVICES AND SYSTEMS 

ABSTRACT 

In the paper the authors attempt to present the computational problem related to the naviga-
tional algorithm (meridian arc formula) implemented in the software applied in marine navi-
gation electronic devices and systems, such as GNSS (GPS, GLONASS, Galileo), AIS, 
ECDIS/ECS, and other marine GIS.  
From the early days of the development of the basic navigational software built into satellite 
navigational receivers, it has been noted that for the sake of simplicity and a number of other 
reasons, this navigational software is often based on the simple methods of limited accuracy. 
It is surprising that even nowadays the use of navigational software is still used in a loose man-
ner, sometimes ignoring basic computational principles and adopting oversimplified assump-
tions and errors such as the wrong combination of spherical and ellipsoidal calculations in 
different steps of the solution of a particular sailing problem. The lack of official standardiza-
tion on both the ‘accuracy required’ and the equivalent ‘methods employed’, in conjunction 
to the ‘black box solutions’ provided by GNSS navigational receivers and navigational sys-
tems (ECDIS and ECS) suggest the necessity of a thorough examination of the issue of sailing 
calculations for navigational systems and GNSS receivers. 
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INTRODUCTION 

These matters became especially important with the appearance of the satellite 
system TRANSIT and were discussed for example in: Holmstrom J. S. ‘A new approach 
to the theory of geodesics on an Ellipsoid’ (Navigation, 1976, Vol. 23, No. 3), 
Williams R. and Phytian J. E. ‘Navigating along Geodesic Paths on the surface of 
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a spheroid’ (Navigation, 1985, Vol. 42, No. 2) as well as in Polish literature (Śledz-
inski J., Felski A., Osada K. and other authors). The discrepancies between the re-
sults on the spherical and the ellipsoidal model of the Earth are in the order of 0.27% 
according to Tobler [12], and in the order of 0.5% according to Earle [7]. In reality 
these discrepancies can exceed 13 nautical miles (about 24 km) for a number of 
common navigational routes. An example of such a discrepancy is shown through 
the calculation of the shortest navigational distance from a departure location in the 
west coast of USA such as the entrance of San Francisco bay (37º45.047’N, 
122º42.023’W) to a destination point in Japan such as the approaches to Yoko-
hama harbour (34º26.178’N, 139º51.139’E). This calculation on the spherical earth 
model using spherical trigonometry and the classical assumption that 1 minute of a 
great circle arc is equal to the international nautical mile (1852 metres) yields a dis-
tance of 4489.9 nautical miles. The calculation of this distance on the WGS-84 ellip-
soid, using very accurate methods for the calculation of long geodesics, as the 
method of Vincenty [15], yields 4502.9 nautical miles. For this example the differ-
ence in calculated distances on the spherical model from those on the ellipsoid is 13 
nautical miles (~24 km).  

Despite these discrepancies the use of the spherical model in traditional 
navigation for most practical purposes is considered satisfactory. Nevertheless for 
the case of sailing computations in GIS navigational systems such as ECDIS and 
other ECS systems the computations must be conducted on the ellipsoid in order to 
eliminate these errors but without seeking the submeter accuracies pursued in other 
geodetic applications. According to [9] seeking extremely high accuracy for marine 
navigation purposes does not offer any real benefit and requires more computing 
power and processing time. For these reasons and before proceeding with the adop-
tion of any geodetic computational method on the ellipsoid for sailing calculations it 
is required to adopt realistic accuracy standards in order not only to eliminate the 
significant errors of the spherical model but also to avoid the exaggerated and unre-
alistic requirements of submeter accuracy [9]. 

ACCURACY REQUIREMENTS FOR SAILING CALCULATIONS IN GIS 

The IMO performance standards for ECDIS [16] do not provide specific accu-
racy standards for sailing calculations, except for the following general requirements:  
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It should be possible to carry out route planning and route monitoring in  
a simple and reliable way. 

The accuracy of all calculations performed by ECDIS should be independent 
of the characteristics of the output device and should be consistent with the SENC 
accuracy. 

Setting accuracy requirements in relation to SENC, depends directly on the 
category of the Electronic Navigational Charts (ENCs) installed in the SENC. This 
is a reasonable requirement for calculations relating to real time positions that affect 
the safety of navigation when using ECDIS. This safety is assured through the installa-
tion of the proper ENCs in the SENC. Nevertheless these standards, when applied to 
set the accuracy of sailing calculations for route planning may result in vague, am-
biguous and sometimes unreasonable standards due to their direct dependency on 
the installed ENCs. This deficiency is illustrated in the attempt to apply this general 
ECDIS accuracy requirement for consistency with SENC accuracy in sailing calcu-
lations. Taking into consideration that the SENC contains ENCs of various catego-
ries, the average compilation scale of each category and considering SENC accuracy 
equivalent to 0.5 mm at the compilation scale of the contained ENCs, we obtain 
accuracy requirements ranging from 5 metres to more than 1250 metres (even to 
5.000 metres for ‘category 1’ ENCs compiled from 1/10.000.000 paper charts).  

 
Table 1. Accuracy requirements for sailing calculations [9] 

Calculated Distance Maximum Acceptable Error 

up to 250 nautical miles 0,1 nautical miles 
between 250 and 500 nautical miles 0,2 nautical miles 

between 500 and 2000 nautical miles 0,3 nautical miles 
greater than 2000 nautical miles 0,5 nautical miles 

 
For the above mentioned reasons the study for the development of more re-

alistic formulas for the computation of the length of the arc of the meridian has been 
based on the requirements of table 1 rather than on the IMO general ECDIS accu-
racy requirements. 
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THE LENGTH OF THE MERIDIAN ARC  
IN SAILING CALCULATIONS 

The calculation of the length of the arc of the meridian is a basic prerequisite 
for many accurate sailing calculation methods on the ellipsoid concerning both 
Rhumb-Line Sailing (RLS) and shortest sailings on the ellipsoid such as Great Elliptic 
Sailing (GES). A lot of specific papers present in detail the advantages and benefits 
of these methods [2, 6, 9].  

It is noted though that in certain sailing calculation methods it is not necessary 
to calculate the length of the meridian arc. Typical examples of these methods concern:  

⎯ RLS calculations by the employment of the general formulas of the Mercator 
projection [11] and isometric latitude [5];  

⎯ calculation of shortest sailings paths on the ellipsoid by a geodetic inverse 
method such as the Andoyer-Lambert method proposed by the Admiralty Manual 
of Navigation [1]. 

RLS calculations employing direct formulas on the ellipsoid, which require 
the calculation of the length of the arc of the meridian [1, 2] are simpler than those 
employing the Mercator projection formulas and isometric latitude. In addition the 
formulas on the ellipsoid provide more flexibility for the solution of the direct problem 
for the calculation of the geodetic coordinates of an unlimited number of intermediate 
points for the purpose of the display of RLS routes on the electronic chart of the 
ECDIS and ECS systems.  

If we consider the great ellipse as an inclined version of the meridian ellipse, 
it is possible to calculate the great elliptic arc (sailing distance) in a similar way to 
that used for the calculation of the meridian arc. Various numerical tests and com-
parisons show that discrepancies in the computed distances between the ‘geodesic’ 
and the ‘great elliptic arc’ are practically negligible for marine navigation [6, 8, 18]. 
Moreover GES calculations are much simpler and straightforward and can be easily 
implemented in navigational software. They provide the same and in some cases, 
higher accuracy than other methods and formulas for sailing calculations on the 
ellipsoid. An example is that GES calculations provide more accurate results than 
the geodesic inverse solutions with the Lambert method.. GES calculations can be 
also used for the precise calculation of the geodetic coordinates of an unlimited 
number of intermediate points along the great elliptic arc, and thus be implemented 
in GIS navigational systems (ECDIS and ECS) for the display of navigational paths 
on the electronic chart. The purpose of this paper is to present new simpler and 
faster formulas for meridian arc computations that can be immediately implemented 
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in various sailing calculation methods that require the calculation of the meridian 
arc. The detailed presentation of these sailing calculations can be found in the relevant 
bibliographic references, in particular [9]. 

GEODETIC FORMULAS FOR THE MERIDIAN ARC LENGTH 

The methods and formulas used to calculate the length of the arc of the me-
ridian for precise sailing calculations on the ellipsoid, such as ‘rhumb-line sailing’, 
‘great elliptic sailing’ and ‘geodesic sailing’ are simplified forms of general geodetic 
formulas used in geodetic applications. In this section an overview of the most im-
portant geodetic formulas along with general comments and remarks on their use is 
carried out. For consistency purposes and in order to avoid confusion in certain for-
mulas the symbolization has been changed from that of the original sources. The 
fundamental equation for the calculation of the length of the arc of the meridian on 
the ellipsoid  (fig. 1), is:  

  (1) 

 
Fig. 1. The length of the arc of the meridian [9] 

 
In (1), RM is the radius of curvature of the meridian given by (2).  

   (2) 
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In (2), a and e are the semi-major axis and the eccentricity of the ellipsoid, 
respectively. 

Replacing the value of RM from (2) in (1), we obtain: 

  (3) 

Equation (3) can be transformed to an elliptic integral of the second type, 
which cannot be evaluated in a ‘closed’ form. The calculation can be performed 
either by numerical integration methods, such as Simpson’s rule, or by the binomial 
expansion of the denominator to rapidly converging series, retention of a few terms 
of these series and further integration by parts. According to Snyder [11] and Torge 
[13], Simpson’s numerical integration does not provide satisfactory results and con-
sequently the standard computation methods are based on the use of series expan-
sion formulas. Expanding the denominator of (3) by the binomial theorem yields:  

· 1 1 sin sin sin   (4) 

Since the values of powers of e are very small, equation (4) is a rapidly con-
verging series. Integrating (4) by parts we obtain:  

1 1 … sin 2

sin 4    (5) 

Equation (5) is the standard geodetic formula for he accurate calculation of 
the meridian arc length, which is proposed in a number of textbooks such as in 
Torge’s ‘Geodesy’ using up to sin(2φ) terms, [13] and in Veis’ ‘Higher Geodesy’ 
using up to sin(8φ) terms [14]. A rigorous derivation of (5) for terms up to sin(6φ), 
is presented in [10]. 

Equation (5) can be written in the form of equation (6) provided by Veis [14]  

1 sin2 sin4 sin6 sin8  (6) 
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Equation (7) is derived directly from equation (6) for the direct calculation 
of the length of the meridian arc between two points (A and B) with latitudes φA and 
φB. In the numerical tests for the assessment of the relevant errors of selected alterna-
tive formulas, we will refer to equations (6) and (7) as the ‘Veis-Torge’ formulas [9]. 

1 sin 2 sin 2 sin 4
sin 4 sin 6 sin 6 sin 8 8                         (7) 

Equations (6) and (7) are the basic series expansion formulas used for the calcu-
lation of the meridian arc. They are rapidly converging since the value of the powers 
of e is very small. In most applications, very accurate results are obtained by formula 
(6) and the retention of terms up to sin(6φ) or sin(4φ) and 8th or 10th powers of e. For 
sailing calculations on the ellipsoid it is adequate to retain only up to sin(2φ) terms, 
whereas for other geodetic applications it is adequate to retain up to sin(4φ) or sin 
(6φ) terms. The basic formulas (6) and (7) can be further manipulated and trans-
formed to other forms. The most common of these forms is formula (8). Simplified 
versions of (8) (retaining up to A6 and e6 terms only) are proposed in textbooks such 
as in Bomford’s ‘Geodesy’ [3] and in the ‘Admiralty Manual of Navigation’ [1].  

2 4 6 8 …   (8) 
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It should be noted that an important step in the solution included in the 
above-cited work is simplification by the omission of the expansion part into power 
series of mathematical solutions (see formula (6)), previously known from the literature, 
i.e., [13, 14], and reliance in the explanatory memorandum of application, in particular, 
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on the amount of the available processing power of modern calculating machine 
(processor). The vertical (green) and horizontal (red) line in (6) shows applied limi-
tation of the computational formula. In our opinion this criterion is relevant from  
a practical point of view, but temporary, given the growth and availability of com-
puting power, including GIS. Calculating speed measured by the parameter CPU 
(Central Processing Unit called Speed Measurement) should not restrict the avail-
able accuracy, and this takes place in the proposed algorithm. 

THE PROPOSED NEW FORMULAS BY PALLIKARIS, TSOULOS AND PARADISSIS 

The proposed new formulas implying from section 4 for the calculation of 
the length of the meridian in sailing calculations on the WGS-84 ellipsoid in meters 
and international nautical miles are (9) and (10), respectively. We observe the following 
formulas are based on (6) after ‘horizontal’ and ‘vertical’ approximations in (6) indi-
cated by green and red lines above and then applied in (7). This operation yields. 

111132.95251 · Δ 16038.50861 · sin · sin ·  (9) 

60.006994 8.660102 · sin · sin ·  (10) 

In both formulas (9) and (10) the values of geodetic latitudes  A and   B are 
in degrees and the calculated meridian arc length in meters and international nautical 
miles, respectively. Formulas (9) and (10) have been derived from (7) for the WGS-84, 
since the geodetic datum employed in Electronic Chart Display and Information 
Systems is WGS-84. The derivation of the proposed formulas is based on the calcu-
lation of the M0 and M2 terms of (7) using up to the 8th power of e. This is equiva-
lent to the accuracy provided by (8) using A0 and A2 terms with subsequent e terms 
extended up to the 10th power since in formula (7) the terms M0, M2, M4 … are mul-
tiplied by (1-e2). According to the numerical tests carried out, which are presented in 
the next section, the proposed formulas have the following advantages [9]:  

⎯ they are much simpler than and more than twice as fast as traditional geodetic 
methods of the same accuracy; 

⎯ they provide extremely high accuracies for the requirements of sailing calcula-
tions on the ellipsoid. 

NUMERICAL TESTS AND COMPARISONS 

Errors have been calculated as discrepancies from the complete formula (6) 
with up to sin(8φ) terms (calculation of the 18 meridian arcs presented in [9]). 
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Table 2. Error assessment of formulas providing submeter accuracies [9] 

 Formula (6) with up to 
sin(6φ) terms 

Formula (6) with up to 
sin (4φ) terms 

average error 0,22 mm –4,4 mm 
maximum error  4 mm 21,98 mm 
minimum error 0,03 –21,95 

 
For the accuracy assessment of the evaluated formulas, the ‘Veis-Torge’ formu-

las with up to sin(8φ) terms (formula (6)) were adopted as the most accurate standard. 
Formula (6) provides slightly higher accuracy because it contains more complete terms 
than all the other formulas. For instance, comparing formulas (6) and (8) it is noted that 
in formula (6) the e power terms are computed up to the 10th power, instead of the 8th 
power in formula (8), since the terms M0, M2, M4, … in formula (6) are multiplied by (1-
e2), whereas the terms A0, A2, A4,… in formula (8) contain up to e8 terms. Calculations of 
the meridian arc distance performed with formula (6) matches perfectly with geodesic 
distances (between corresponding points on the meridian) calculated with Vincenty’s 
algorithm [15]. The latter is considered as one of the most precise methods for the calcu-
lation of long geodesics however not the only one e.g. Pittman’s method.  

 

 
Fig. 2. Error assessment of formulas providing submeter accuracies [9] 

 
According to the above mentioned results of the accuracy assessment and 

the CPU time required, the proposed formulas can considerably simplify existing 
calculation methods of comparable accuracy on the ellipsoid such as in rhumb-line 
sailing [2, 5] and great elliptic sailing [4, 6, 8, 18]. This simplification does not reduce 
the accuracy of existing methods and algorithms. Referring to numerical tests in [9] 
the exemplary positions are as in table 3.  
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Table 3. Geographical positions’ coordinates applied in numerical tests [own study] 

 Position 

Harbour Latitude Longitude 
[°] ['] [°] ['] 

A New Port-Boston 41 06,336 –071 23,460 
B Leath Harbour –54 07,902 –036 32,280 
C Buenos Aires –36 03,762 –055 30,240 
D Dakar 14 22,146 –017 27,240 
E Pearth –32 06,216 115 34,080 
F Mombasa –04 05,922 039 42,660 
G San Francisco 37 45,048 –122 42,000 
H Yokohama 34 26,178 139 51,120 
I Valparaiso –33 00,000 –071 36,660 
J Sydney –33 46,212 151 31,980 
K Cape of Good Hope –34 25,608 018 25,920 
L Rio de Janeiro –23 01,914 –043 07,200 
M Beirut 33 56,016 035 30,300 
N Tobruk 32 03,846 024 00,660 
O Lisbon 38 37,206 –009 13,380 

 
In addition to obtained results in [9] we compare in table 4 the distance and 

angle measurements we had observed in the commercial ECDIS widely used in 
world-wide shipping. The figures show the relative error keeping the calculations 
according to Vincenty’s algorithm as the reference (0-level).  

 
Table 4. Comparison of numerical tests on distance and angle calculations [9, 17]  

 
 
As the Navpack states the reason for the greatest discrepancies the following 

figures present the numerical results including and excluding the Navpack calculations, 
i.e fig. 3 and 4, respectively.  

From To Vincety's
D [Nm] Az [°] D [Nm] D [Nm] Az [°] D [Nm] Az [°] D [Nm] Az [°]

F E 4557,19000 122,0 4556,10000 4557,23000 122,0 4557,19000 122,0 4551,20000 122,1
I H 9242,79000 281,8 9241,92000 9242,78000 281,8 9242,80000 281,9 9233,70000 282,0
G H 4502,89000 302,1 4502,34927 4502,86000 302,0 4502,89000 302,0 4489,70000 302,0
A K 6699,26000 117,2 6698,49520 6699,26000 117,2 6699,26000 117,3 6702,10000 117,4
D B 4213,53000 191,8 4213,04600 4213,54000 191,8 4213,53000 191,8 4224,50000 191,7
C K 3541,10000 112,2 3540,69170 3541,08000 112,2 3541,10000 112,1 3530,80000 112,1
A O 2813,75000 71,5 2813,42570 2813,74000 71,5 2813,75000 71,6 2804,90000 71,6
L K 3268,79000 116,8 3269,20270 3268,78000 116,8 3268,79000 116,7 3261,10000 116,8
M N 590,37000 262,2 590,32440 590,39000 262,2 590,37000 262,2 589,00000 262,1
J I 6129,11000 144,2 6128,41000 6128,95000 144,2 6129,12000 144,0 6113,00000 144,1

ECDIS [#] GES algorithm [Pallikaris, Tsoulos 2009] Navpack [Hohenkerk 2004]ECDIS
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Fig. 3. Numerical tests comparison on distance and angle referred  

to table 4 excluding Navpack (N) [own study] 
 

 
Fig. 4. Numerical tests comparison on distance and angle referred  

to table 4 including Navpack (N) [own study] 

CONCLUSIONS 

The proposed new formulas by Pallikaris, Tsoulos and Paradissis [9] for the cal-
culation of the meridian arc are sufficiently precise for sailing calculations on the ellip-
soid, because the maximum error for the calculation of the length of the meridian arc 
for very long distances is less than 17 meters. It is pointed out that they are about 
235% faster than the alternative geodetic methods and formulas of the same accu-
racy. Higher sub metre accuracies can be obtained by the use of more complete 
equations with additional higher order terms. Seeking this higher accuracy for sailing 
calculations does not have any practical value for marine navigation and simply adds 
more complexity to the calculations. In other than navigation applications, where 
higher sub metre accuracy is required, the Bowring formulas showed to be approxi-
mately two times faster than alternative geodetic formulas of similar accuracy. De-
spite the fact that contemporary computers are fast enough to handle more complete 
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geodetic formulas of sub meter accuracy, a basic principle for the design of naviga-
tional systems is the avoidance of unnecessary consumption of computing power. 
Saving and reserving computer resources is always beneficial for the improvement 
of the systems effectiveness on the evolving new navigational functions and applica-
tions such as the handling of greater amounts of cartographic and navigational in-
formation, the capability for 3-D presentation etc. The proposed formulas provide  
a more realistic balance between accuracy and computing power required for the 
sailing calculations in a GIS environment and particularly in ECDIS, in compliance 
with the performance standards of the International Maritime  Organization (IMO). 
These formulas can be immediately used not only for the development of new algo-
rithms for sailing calculations, but also for the simplification of existing algorithms 
without degrading the accuracies required for precise navigation. The simplicity of 
the proposed method allows for its easy implementation on pocket calculators for 
the execution of accurate sailing calculations on the ellipsoid [9].  

Original contribution affects and verifies established views based on ap-
proximated computational procedures (mainly power series) used in the software of 
marine navigational systems and devices. The current stage of knowledge enables to 
implement geodesics based computations which present higher accuracy. It also lets 
to assess the quality of contemporary algorithms used in practical marine applica-
tions. Currently, on the pages of a reputable scientific ‘Journal of Navigation’, there 
is a discussion on the problem of calculation procedures for marine navigation (great 
ellipse sailing (GES), a rhumb-line sailing (RLS), great circle (GC), geodetic lines), as 
evidenced by works published by researchers from different countries and institutions.  

Vincenty’s algorithm allowing calculation of geodetic distances along lines 
of rotational ellipsoid is taken as a reference point for verification and determining 
the accuracy of the calculations. Numerical analysis associated with the power series 
development involves giving the solution to elliptic integrals of the second 
kind √1 sin , which occurs when calculating the length of the arc of a great 
ellipse of a spheroid in sailing. The second of the arguments supporting the use of 
the above algorithm says about the threshold accuracy established in practice of 1 Nm 
in the global modelling and hence no need, according to the authors of the above 
cited paper, to obtain greater accuracy than the proposed computational algorithm. 
We claim this argument which is, in principle, questionable but acceptable for many 
applications. The authors in the journal ‘Coordinates’ and a research paper presented 
at the International Conference TransNav in 2011 [17] drew attention to the merits 
of navigational calculations based on geodesics, both locally and globally, stressing 
the importance of the function of curvature of the modelling surface. The validity of 
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the discussed problem is also related to the fact that at present navigation algorithms 
based on the lines being arcs of great ellipse or a geodetic instead of a rhumb-line 
used in practice for hundreds of years and cartographically associated primarily with 
conformal Mercator’s projection is used more and more frequently. In addition, it 
should be noted that there are no standards on the use map projections in created pre-
sent marine Geographic Information System. Today, the same system ECDIS/ECS 
can potentially use about 20 different projections in which graphical presentation of 
the above mentioned lines used in navigation is differ significantly. This affects the 
correct interpretation of the information generated in GIS, particularly in navigation, 
by the more and more mass user of the system. Scientific workshop employed to 
solve the problem makes use of various tools, i.e. of differential geometry, marine 
geodesy (marine navigation), analysis of measurement error, approximation theory 
and problems of modelling and computational complexity, mathematical and descrip-
tive statistics, mathematical cartography. Geometric problems are important aspect 
of the tested models which are used as the basis of calculations and solutions imple-
mented in contemporary navigational devices and modern electronic chart systems. 
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