
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title On Computational Models for Flash Memory Devices

Authors(s) Ajwani, Deepak; Beckmann, Andreas; Jacob, Riko; et al.

Publication date 2009-08-20

Publication information Vahrenhold, J. (ed.). Experimental Algorithms: 8th International Symposium, SEA 2009,

Dortmund, Germany, June 4-6 2009. Proceedings

Series Lecture Notes in Computer Science (LCNS, volume 5526)

Publisher Springer

Item record/more information http://hdl.handle.net/10197/9903

Publisher's statement The final publication is available at www.springerlink.com.

Publisher's version (DOI) 10.1007/978-3-642-02011-7_4

Downloaded 2022-08-24T08:47:17Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1007%2F978-3-642-02011-7_4&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F9903

On Computational Models for Flash Memory

Devices ⋆

Deepak Ajwani1, Andreas Beckmann2, Riko Jacob3, Ulrich Meyer2, and
Gabriel Moruz2

1 Department of Computer Science, Aarhus University, Denmark.
2 Institut für Informatik, Goethe-Universität Frankfurt am Main, Germany.

3 Computer Science Department, TU München, Germany.

Abstract. Flash memory-based solid-state disks are fast becoming the
dominant form of end-user storage devices, partly even replacing the
traditional hard-disks. Existing two-level memory hierarchy models fail
to realize the full potential of flash-based storage devices. We propose
two new computation models, the general flash model and the unit-cost
model, for memory hierarchies involving these devices. Our models are
simple enough for meaningful algorithm design and analysis. In particu-
lar, we show that a broad range of existing external-memory algorithms
and data structures based on the merging paradigm can be adapted
efficiently into the unit-cost model. Our experiments show that the theo-
retical analysis of algorithms on our models corresponds to the empirical
behavior of algorithms when using solid-state disks as external memory.

1 Introduction

In many practical applications, one needs to compute on data that exceeds the
capacity of the main memory of the available computing-device. This happens
in a variety of settings, ranging from small devices, such as PDAs, to high-
performance servers and large clusters. In such cases, the cost of data transfers
between disk and the main memory often proves to be a critical bottleneck in
practice, since a single disk transfer may be as time-costly as millions of CPU
operations. To capture the effect that memory transfers have on the running
time of algorithms, several computational models have been proposed over the
past decades. One of the most successful of these models is the I/O-model.

I/O-model. The I/O-model, as defined in [1], is a two-level memory model. It
consists of a CPU, a fast internal memory of size M and a slow external-memory
of infinite size. The CPU can access only data stored in the internal memory, and
data transfers between the two memories are performed in chunks of B consec-
utive data items. The I/O-complexity of an algorithm is given by the number of
memory transfers, or I/Os, performed. Many problems have been studied in this
model and efficient algorithms have been proposed. For comprehensive overviews
we refer the interested reader to [2, 3].

⋆ Partially supported by the DFG grant ME 3250/1-1, and by MADALGO – Center for
Massive Data Algorithmics, a Center of the Danish National Research Foundation.

Flash memories. In the recent years, a new trend has emerged in the storage de-
vice technology – that of solid-state disks based on flash memory. Flash memories
are non-volatile, reprogrammable memories. Flash memory devices are lighter,
more shock resistant and consume less power. Moreover, since random accesses
are faster on solid-state disks compared to traditional mechanical hard-disks,
flash memory is fast becoming the dominant form of end-user storage in mobile
computing. Many recent notebook and netbook models have already replaced
traditional mechanical hard-disks by flash memory disks. Market research com-
pany In-Stat predicted in July 2006 that 50% of all mobile computers would use
flash (instead of hard-disks) by 2013.

Flash memory devices typically consist of an array of memory cells that are
grouped into pages of consecutive cells, where a fixed amount of consecutive
pages form a block. Reading a bit is performed by reading the whole page con-
taining the given bit. When writing, we distinguish between changing bits from 1
to 0 and from 0 to 1. To change a bit from 0 to 1, the device first “erases” the
entire block containing the given bit, i. e. all the bits in the block are set to 1.
However, changing a bit from 1 to 0 is done by writing only the page containing
it, and each page can be programmed only a small number of times before it must
be erased again. Reading and writing pages is relatively fast, whereas erasing a
block is significantly slower. Each block can sustain only a limited number of
erasures. To prevent blocks from wearing prematurely, flash devices usually have
a built-in micro-controller that dynamically maps the logical block addresses to
physical addresses to even out the erase operations sustained by the blocks.

Related work. Recently, there has been an increased interest in using flash mem-
ories to improve the performance of computer systems. This includes the exper-
imental use of flash memories in database systems [4–6], using flash memories as
caches in hard-disks (e. g. Seagate’s Momentus 5400 PSD hybrid drives), Win-
dows Vista’s ReadyBoost, i. e. using USB flash memories as a cache, or integrat-
ing flash memories into motherboards or I/O-buses, e. g. Intel’s Turbo Memory
technology [7].

Most previous algorithmic work on flash memories deals with wear level-
ing, i. e. block-mapping and flash-targeted file systems (see [8] for a compre-
hensive survey). There exists very little work on algorithms designed to exploit
the characteristics of flash memories. Wu et al. [9, 10] proposed flash-aware im-
plementations of B-trees and R-trees without file system support by explicitly
handling block-mapping. More recently, efficient dictionaries on flash disks have
been engineered [11]. Other works include the use of flash memories for model
checking [12] or route planning on mobile devices [13, 14].

Our contributions. Owing to the lack of good computation models to help ex-
ploiting the particular characteristics of flash devices, there is no firm theoretical
foundation for comparing algorithms. In this paper, we propose two computa-
tional models for flash devices that exploit their constructive characteristics –
the general flash model and the unit-cost flash model. These models can be used
as a basis for a theoretical comparison between different algorithms on flash

memory devices. While the general flash model is very generic and is especially
suitable for studying lower bounds, the unit-cost flash model is appealing for the
design and analysis of algorithms. In particular, we show that a large number of
external-memory algorithms can be easily adapted to give efficient algorithms in
the unit-cost flash model. Interestingly, we observe that external-memory algo-
rithms based on the merging paradigm are easy to adapt in the unit-cost flash
model, while this is not true for algorithms based on the distribution paradigm.
We conduct experiments on several algorithms exhibiting various I/O-access pat-
terns, i.e. random and sequential reads, as well as random and sequential writes.
Our experiments confirm that the analysis of algorithms on our models (par-
ticularly, the unit-cost flash model) predicts the observed running-times much
better than the I/O model. Our experiments also show that the adaptations of
these algorithms improve their running-times on solid-state disks.

2 Models for flash memory

In this section we propose and discuss models for flash memories. We first discuss
the practical behavior of flash memories. We then propose two models of com-
putation, a general flash model and a unit-cost flash model. They are both based
on the I/O-model, but use a different block size for reading than for writing.

Flash memory behavior. Due to constructive characteristics, in practice flash
memories have a significantly different behavior compared to hard disks [15–17].
In Figure 1 we give empirical results showing the dependence of throughput on
the block size when performing random reads and writes, as well as sequential
reads and writes. We used two different disks: a 64 GB Hama SSD drive and a
Seagate Barracuda 7200 rpm 500 GB hard-drive. The main difference concerns
the relative performance of random reads and random writes. For hard-disks
random reads and random writes provide similar throughput, whereas for the
SSD drive random reads provide significantly more throughput than random
writes, especially for small block sizes. Furthermore, the throughput of random
accesses converges to the throughput of the corresponding sequential accesses
at different block sizes, implying different block sizes for reading and writing.
Also, the throughput provided by sequential reads is nearly the same as the
throughput provided by sequential writes for most flash devices [15].

The key characteristic of the flash devices that we model is the different
block sizes for reading and writing. For the general flash model we also consider
different throughput for reading and writing. To keep our computation models
simple enough for algorithm design, we abstract away the other flash-memory
characteristics, such as effects of misalignment, limited endurance etc.

General flash model. The general model for flash memory devices is similar to
the I/O model, with the exception that read and write block sizes are different
and that they incur different costs. The general flash model assumes a two-level
memory hierarchy, with a fast internal memory of size M and a slow external

random write
sequential write

random read
sequential read

Hama 64 GB SDD

log
2
B

T
h
ro

u
g
h
p
u
t

[M
B

/
s]

282624222018161412108

100

80

60

40

20

0
random write

sequential write
random read

sequential read

Seagate 500 GB HDD

log
2
B

T
h
ro

u
g
h
p
u
t

[M
B

/
s]

282624222018161412108

100

80

60

40

20

0

Fig. 1. Performance summary of solid-state disks (left) vs. hard disks (right). The
x-axis shows the block size (in bytes), in logarithmic scale.

flash memory of infinite size. The input and output data reside on the exter-
nal flash memory, and computation can only be done on data residing in the
internal memory. Read and write I/Os from and to the flash memory occur in
blocks of consecutive data of sizes Br and Bw respectively. The complexity of
algorithms is x + c · y, where x and y are the number of read and write I/Os
respectively, and c is a penalty factor for writing. Similarly to the I/O-model, the
parameters M , Br, Bw, and c are known to the algorithms. Typically, we assume
Br ≤ Bw < M ≪ N and c ≥ 1. We note that the I/O-model is a particular case
of this general model, when Br = Bw = B and c = 1.

Unit-cost flash model. The fact that in the general flash model c may take arbi-
trary values implies arbitrary relative costs between read and write I/Os. This
complicates the reuse of existing external-memory algorithms and algorithmic
techniques. In [15] it was shown that for most flash devices the throughput pro-
vided by reads and writes is nearly the same, assuming proper block sizes, i.e.
Br and Bw are set so that the maximum throughput is achieved on random
I/Os. This means that, in spite of different read and write block sizes, the access
time per element is nearly the same. The unit-cost flash model is the general
flash model augmented with the assumption of an equal access time per element
for reading and writing. This simplifies the model considerably, since it becomes
significantly easier to adapt external-memory results. For the sake of clarity,
the cost of an algorithm performing x read I/Os and y write I/Os is given by
xBr +yBw, where Br and Bw denote the read and write block sizes respectively.
Essentially, the cost of an algorithm in this model is given by the total amount
of items transferred between the flash-disk and the internal memory.

For both models, we note that “items transfered” refers to all the Br (Bw)
elements moved during a read (write) I/O and not just the useful elements trans-
fered. Also, our models can be adapted to obtain hardware-oblivious models.

Relating unit-cost models to external-memory models. We turn to exploring the
relation between the unit-cost models and the external-memory models.

Lemma 1. Any algorithm designed in the unit-cost flash model which transfers
f(N, M, Br, Bw) items can be simulated by an external-memory algorithm with
B = Br which performs f(N, M, Br, Bw)/Br I/Os.

Consider some algorithm A in the unit-cost flash model, which transfers
f(N, M, Br, Bw) items. Denote by fr(N, M, Br, Bw) the total cost for read I/Os
and let fw(N, M, Br, Bw) be the total cost for write I/Os. The algorithm is
executed as an external-memory algorithm with a block size B = Br as follows.
Read operations are done in blocks of size Br and therefore the reads incur
fr(N, M, Br, Bw)/Br I/Os, whereas writes are done in blocks of size Bw which
implies that each write incurs Bw/Br I/Os. We obtain that all the writes take
(fw(N, M, Br, Bw)/Bw) · (Bw/Br) = fw(N, M, Br, Bw)/Br I/Os.

The simulation in Lemma 1 provides an efficient mechanism for obtaining
lower bounds in the unit-cost flash model, as stated in Lemma 2.

Lemma 2. A problem that requires Ω(L(N, M, B)) I/Os in the I/O-model re-
quires Ω(Br · L(N, M, Br)) items transferred in the unit-cost flash model.

3 Algorithms for the unit-cost flash model

Typical external-memory algorithms manipulate buffers using various opera-
tions, such as merging and distributing. Given that in the unit-cost flash model
the block sizes for reads and writes are different, algorithms can merge O(M/Br)-
ways and distribute O(M/Bw)-ways. Since M/Br > M/Bw, merging is preferred
to distributing because more buffers can be manipulated simultaneously. A sur-
prisingly large body of merging-based external-memory algorithms (and data
structures) can be easily adapted to get efficient and sometimes even optimal
algorithms (and data structures) in the unit-cost flash model, sometimes by sim-
ply setting the block size B to Br. In this section we show a few typical examples
of how simple changes lead to efficient algorithms in the unit-cost flash model.

3.1 Sorting

Sorting N records in the I/O-model requires Ω(N/B logM/B N/B) I/Os [1].
Using Lemma 2, we obtain that sorting N elements needs Ω(N logM/Br

N/Br)
items to be transfered in the unit-cost flash model.

To sort in the unit-cost flash model, we use multi-way mergesort, which is
optimal in the I/O-model, and we show that it achieves optimality also in the
unit-cost flash model. The algorithm splits the input into Θ(M/B) subsequences,
recursively sorts them, and in the end merges the (sorted) subsequences. The
I/O-complexity is Θ(N/B logM/B N/B) I/Os. For the unit-cost flash model, dif-
ferent costs are achieved depending on the number of subsequences the input is
split into. Splitting the input in Θ(M/Bw) subsequences yields an algorithm that
transfers O(N logM/Bw

N/Bw) items, whereas splitting Θ(M/Br)-ways yields
the optimal Θ(N logM/Br

N/Br) cost.

Lemma 3. Sorting N elements can be done by transferring Θ(N logM/Br

N/Br)
items in the unit-cost flash model.

3.2 Data structures

In this section we give brief descriptions of efficient implementations for search
trees and priority queues in the unit-cost flash model.

Search trees. For searching, we show how to adapt the B-trees used in the I/O-
model to obtain an efficient implementation in the unit-cost flash model. We
employ a two-level structure. The primary data structure is a B-tree with a
fan-out of Θ(Bw); each node of the primary structure is stored also as a B-
tree, but with nodes having a fan-out of Θ(Br). Searches and updates transfer
O(Br logBr

N) items.

Priority queues. Several optimal external-memory priority queues have been
proposed [18–21]. Each of them takes amortized O(1/B logM/B N/B) I/Os per
operation. However, only the cache-oblivious priority queue in [20] translates
directly into an optimal priority queue in unit-cost flash model, taking amor-
tized O(logM/Br

N/Br) items transfered per operation. This is because it only
merges buffers, whereas the other priority queues also employ distribution and
achieve only amortized O(logM/Bw

N/Bw) transfered items. We note that prior-
ity queues are the core of time forward processing, a technique widely employed
to achieve efficient external memory graph algorithms.

3.3 BFS

For BFS on undirected graphs G(V, E) in the unit-cost flash model, we focus
on the randomized external-memory algorithm by Mehlhorn and Meyer [22].
For ease of exposition, we restrict ourselves to sparse graphs, i.e. |E| = O(|V |).
The algorithm starts with a preprocessing phase, in which the input graph is
rearranged on disk. This is done by building |V |/µ disjoint clusters of small
diameter (O(µ · log |V |) with high probability (whp.)) that are laid contiguously
on disk. In the BFS phase, the algorithm exploits the fact that in an undirected
graph, the edges from a node in BFS level t lead to nodes in BFS levels t−1, t or
t+1 only. Thus, in order to compute the nodes in BFS level t+1, the algorithm
collects all neighbors of nodes in level t, removes duplicates and removes the
nodes visited in levels t−1 and t. For collecting the neighbors of nodes efficiently,
the algorithm spends one random read I/O (and possibly, some further sequential
read accesses depending on the cluster size) for loading a whole cluster as soon
as a first node of it is visited and then keeps the cluster data in some efficiently
accessible data structure (hot pool) until all nodes in the cluster are visited. The
preprocessing and BFS phases together require O(scan(|V |)·µ·log |V |+sort(|V |))
I/Os (reading and writing) whp. plus another O(|V |/µ) read-I/Os. In the I/O-

model, choosing µ = Θ
(

√

B/ log |V |
)

implies a total cost of O(|V |·
√

log |V |/B+

sort(|V |)) I/Os whp. In the unit-cost flash model this means a total cost of

O(|V | · µ · log |V | + |V | · logM/Br

|V |
Br

+ |V | · Br/µ), which is minimized by

choosing µ = Θ
(√

Br

log |V |

)

.

Lemma 4. Computing undirected BFS on sparse graphs (|E| = O(|V |)) in the
unit-cost flash model requires O(|V | ·

√

Br · log |V |+ |V | · logM/Br

(|V |/Br)) item
transfers.

4 Experimental results

The main goal of our experimental study is to verify the suitability of the pro-
posed unit-cost flash model for predicting the running-time of algorithms using
SSD as an external-memory. We want to check how well the behavior of the al-
gorithms on SSDs correspond to their theoretical analysis on the unit-cost flash
model. In particular, we look at the improvements from the adaptation process
as predicted theoretically on the unit-cost flash model and ascertain if these gains
are actually observed in practice. We consider three algorithms which present
various I/O-patterns and have very different complexities in the I/O model.
First, we consider sorting, which takes sort(N) = O(N/B logM/B N/B) I/Os
and performs mainly sequential I/Os. We then move to BFS, which requires
O(|V | ·

√

log |V |/B + sort(|V |)) I/Os whp. for sparse graphs and causes both
sequential and random reads, but no random writes. Finally, the classical DFS
implementation performs O(|V |) I/Os on sparse graphs and does a large num-
ber of random reads and writes. We observe the performance of these algorithms
when using a SSD as external-memory.

Experimental setup. For algorithms and data structures designed in the I/O-
model we use implementations already existent in the STXXL library [23] wher-
ever possible. We show results where the size of blocks in which data is trans-
ferred between the internal memory and the flash device is set to both the read
and write block sizes of the device. According to our flash models, algorithms
read blocks of size Br and write blocks of size Bw. To comply with this require-
ment, we implement a translation layer similar to Easy Computing Company’s
MFT (Managed Flash Technology) [24]. The translation layer prevents random
writes of blocks of size Br by buffering Br-sized blocks into blocks of size Bw

that provide optimal throughput when written to the disk. When using the
translation layer, an algorithm reads and writes pages of size Br. Oblivious to
the algorithm, the translation layer logically groups Bw/Br pages into a block of
size Bw, which is written to the flash disk. To do so, O(1) Bw-sized buffers are
reserved in the memory, so that when one such buffer gets full it is immediately
written to the flash disk. To keep track of the data used, this layer maintains a
mapping of the logical addresses of the pages viewed by the algorithm to their
actual address on the flash disk. Since this mapping occupies little space and
is used only to manage temporary data, the translation layer is stored in main
memory throughout the execution of the algorithm. Additionally, the translation
layer is responsible for keeping track of the free pages and blocks.

Due to its simplicity and generality, we view the translation layer as a generic
easy-to-implement adaptation of I/O algorithms to algorithms in the unit-cost
flash model. However, we note that there exist cases where the translation layer

can not be employed, e.g. extremely large inputs when the translation layer may
no longer fit into the main memory.

Our experiments were conducted on a standard Linux machine, with an Intel
Core 2 Quad 2.4 GHz CPU, 8 GB RAM out of which algorithms are restricted to
use only 512 MB, and a 64 GB HAMA flash disk. The smallest block sizes where
the disk reaches optimal performance for random reads and random writes are
128 KB and 16 MB respectively, see e. g. Figure 1, and consequently we set Br

and Bw to these values. The code was compiled using GCC version 4.3.

Sorting. For sorting we consider the STXXL implementation, which is based
on (cache-aware) multi-way mergesort. The results in Table 1 show that when
the block size is set to Bw, the running time is larger than when the block size
equals Br, and the volume of data read and written by the algorithm is larger
as well. This behavior is easily explained theoretically by the larger number
of recursion levels in the former case, noticeable by the relative ratio between
the read/write volumes and the input volume. Also, when using the translation
layer we obtain very similar results to when setting the block size to Br. This
behavior is also in line with the theoretical analysis in unit-cost flash model,
since the algorithm essentially writes data sequentially, and in this case writing
blocks of size Br yields the same throughput as when writing blocks of size Bw

(when using the translation layer). Such a behavior would be inexplicable in the
I/O-model, which assumes reads and writes in equally sized blocks for reading
and writing. We note that, due to the limited size of the flash disk, we could not
sort larger sequences.

input TL Br Bw

log
2
N volume RDV WRV RT RDV WRV RT RDV WRV RT

[GB] [GB] [GB] [s] [GB] [GB] [s] [GB] [GB] [s]

25 0.12 0.20 0.25 9.10 0.25 0.25 9.35 0.25 0.25 9.13
26 0.25 0.49 0.50 16.73 0.50 0.50 16.72 0.50 0.50 17.10
27 0.50 0.99 1.00 32.25 1.00 1.00 31.29 1.00 1.00 33.58
28 1.00 1.99 2.00 62.35 2.00 2.00 60.96 3.00 3.00 93.46
29 2.00 3.99 4.00 120.82 4.00 4.00 118.84 6.00 6.00 192.98
30 4.00 8.00 8.00 240.24 8.00 8.00 238.74 12.00 12.00 387.16
31 8.00 16.00 16.00 478.46 16.00 16.00 475.11 32.00 32.00 1002.95
32 16.00 32.00 32.00 946.88 32.00 32.00 950.04 64.00 64.00 2029.41

Table 1. The read volume (RDV), write volume (WRV), and the running time (RT)
for sorting N random integers (taking the specified volume) when using the translation
layer (TL), setting the block size to Br and to Bw respectively. RDV and WRV are
measured in GB, and RT is measured in seconds.

BFS. We perform experiments on square grid graphs as they have proven to be
a difficult graph class [25] for the external-memory BFS algorithm. As shown in
Table 2, using the translation layer yields only a small benefit compared to the

log
2
|V |

TL Br Bw

pp bfs Σ pp bfs Σ pp bfs Σ

READ VOLUME [GB]

20 0.194 0.000 0.194 0.670 1.924 2.594 0.406 0.094 0.500
22 2.423 5.968 8.391 2.709 8.080 10.789 1.500 0.188 1.688
24 26.943 60.406 87.350 27.187 61.660 88.848 91.922 457.750 549.672
26 108.953 316.341 425.294 109.726 320.881 430.607 364.578 2621.047 2985.625

WRITE VOLUME [GB]

20 0.594 0.000 0.594 0.560 0.009 0.569 0.250 0.172 0.422
22 2.281 0.094 2.375 2.271 0.104 2.375 1.016 0.234 1.250
24 9.344 1.656 11.000 9.251 1.654 10.905 22.734 0.812 23.547
26 36.750 5.531 42.281 36.783 5.531 42.313 89.938 1.203 91.141

RUNNING TIME [s]

20 21.5 744.5 766.0 31.5 768.4 799.9 40.5 381.4 421.9
22 95.0 1668.4 1763.4 100.0 1697.0 1797.0 76.2 1126.0 1202.2
24 609.8 4581.2 5191.0 632.9 4570.4 5203.3 1738.2 9184.6 10922.8
26 2426.8 15755.4 18182.2 2524.2 15778.9 18303.1 6824.8 43329.1 50153.9

Table 2. Read/write volumes (in GB) and running times (in seconds) for external-
memory BFS with randomized preprocessing on square grid graphs, separated into
preprocessing phase (pp) and BFS phase, using block sizes Br, Bw and the translation
layer (TL).

read block size. This is explained by the fact that the algorithm performs no
random writes, while random and sequential reads are not affected by the layer.

For preprocessing, using a smaller block size, and consequently a smaller µ,
results in smaller running time, since the computed clusters tend to contain fewer
nodes and have a smaller diameter. Comparing the preprocessing times for Br

and Bw on the square grid graph in Table 2 confirms this, as preprocessing using
Bw takes up to three times as long as when Br is used.

For the BFS phase, choosing a larger block size reduces the number of random
I/Os needed to load clusters, but at the same time potentially increases the size
of the hot pool because clusters with bigger diameter tend to stay longer in
the pool. This affects the performance adversely if the hot pool no longer fits
in internal memory as can be seen in Table 2 for |V | ≥ 224. At that point the
algorithm using Bw is outperformed by the one using Br.

DFS. For DFS, we use a straightforward non-recursive implementation of the
text-book RAM algorithm. The algorithm explores the graph by visiting for each
node the first not yet visited neighbor, and to do so we use two data structures:
a vector to mark the nodes visited and a stack to store the nodes for which
not all the neighbors have been visited. The key particularity of this algorithm
is that it performs extensive random reads to access many adjacency lists, as
well as extensive random writes to mark the nodes. For a graph G = (V, E) the
unit-cost of the algorithm is given by O(|E| ·Br + |V | ·Bw), since there are |E|
read accesses to the adjacency lists and |V | write accesses to mark the vertices
visited. The costs for accessing the stack are much smaller since both reads and
writes can be buffered. We note that when transferring data in chunks of size

Br the cost of the algorithm remains O(|E| ·Br + |V | ·Bw), but when the block
size is set to Bw the cost increases to O(|E| · Bw + |V | · Bw).

We conduct experiments which show the running time of DFS when transfer-
ring chunks of Br and Bw consecutive data between the memory and the flash
disk, as well as on using the translation layer. Due to extensive running times,
we restrict to square grid graphs. We noted that for all input sizes using the
translation layer yields better running times than when doing I/Os in blocks of
size Br, which is due to writing many blocks of size Br at random locations.
When the graph fits into the main memory the algorithm is extremely fast.
For |V | ≤ 220, the running times were below two seconds. However, when the
graph no longer fits into the main memory, the running times and the I/O-traffic
increase significantly.

For |V | = 222, the running times were of 4 180, 4 318, and 610000 seconds
for the translation layer, Br, and Bw block sizes respectively. The huge running
time for the Bw block size is explained by the huge volume of read data, of about
46 TB, compared to 336 GB read when using Br-sized blocks and 311 GB when
using the translation layer. The volume ratio between Bw and Br approximately
matches Bw

Br

= 128. However, the volume of data written was significantly low
(less that 300 MB in each experiment). This is due to vector marking the visited
nodes completely residing in memory.

Therefore we used another approach and stored the visited information with
each node, effectively scattering the bits over a larger range of external memory.
Internal memory was further restricted to cache at most half of an external
memory data structure. Comparable experiments with block size Bw are not
possible in these settings because the internal memory cannot store a required
minimal amount of blocks. For |V | = 221 the DFS using the translation layer
took 6 064 seconds reading 250 GB and writing 146 GB of data. Using block
size Br instead, the running time increased to 11 352 seconds and read volume
of 421 GB, while write volume was 145 GB. The translation layer could serve a
fraction of the read requests directly from its write buffers explaining the increase
in read volume. While the written volume and write throughput rate were nearly
unchanged (145 GB, 77-80 MB/s), the read throughput dropped from 69 MB/s
to 46 MB/s. The subobptimal block size used for writing obviously triggers
reorganization operations in the flash device that block subsequent operations
(reads in our case). This accounts for the major part of the additional running
time showing a clear benefit for the translation layer bundling these small random
write requests.

5 Conclusions and future research

We proposed two models that capture the particularities of the flash memory
storage devices, the general flash model and the unit-cost flash model. We show
that existing external-memory algorithms and data structures, based on the
merging paradigm, can be easily translated into efficient algorithms in the unit-
cost flash model. Relevant examples include sorting, search trees, priority queues,

and undirected BFS. We conduct experiments that the unit-cost flash model
predicts correctly the running times of several algorithms that present various
I/O-patterns.

For the general flash model, an interesting future direction concerns obtaining
lower bounds for fundamental problems, such as sorting or graph traversals, even
for extreme cases when we set the penalty factor c to a very large value that
allows the algorithm to write only the output. Future investigations in this model
include engineering fast algorithms for basic problems, such as sorting.

For the unit-cost flash model, possible topics for future research include iden-
tifying problems for which the best external memory upper bounds cannot be
matched in the unit-cost flash model.

Promising directions also include introducing relevant computational models
that capture other characteristics of the flash devices and yet allow meaningful
algorithm design.

References

1. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related
problems. Communications of the ACM 31(9) (1988) 1116–1127

2. Meyer, U., Sanders, P., Sibeyn, J.F., eds.: Algorithms for Memory Hierarchies,
Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002]. In Meyer,
U., Sanders, P., Sibeyn, J.F., eds.: Algorithms for Memory Hierarchies, Springer
(2003)

3. Vitter, J.S.: Algorithms and Data Structures for External Memory. now Publishers
(2008)

4. Lee, S.W., Moon, B.: Design of flash-based DBMS: an in-page logging approach.
In: SIGMOD Conference. (2007) 55–66

5. Lee, S.W., Moon, B., Park, C., Kim, J.M., Kim, S.W.: A case for flash memory
ssd in enterprise database applications. In: Proc. ACM SIGMOD international
conference on Management of data. (2008) 1075–1086

6. Myers, D.: On the use of NAND flash memory in high-performance relational
databases. Master’s thesis, Massachussets Institute of Technology (2008)

7. Matthews, J., Trika, S., Hensgen, D., Coulson, R., Grimsrud, K.: Intel R© turbo
memory: Nonvolatile disk caches in the storage hierarchy of mainstream computer
systems. ACM Transactions on Storage 4(2) (2008) 1–24

8. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM
Computing Surveys 37(2) (2005) 138–163

9. Wu, C.H., Chang, L.P., Kuo, T.W.: An efficient R-tree implementation over flash-
memory storage systems. In: Proc. 11th ACM International Symposium on Ad-
vances in Geographic Information Systems. (2003) 17–24

10. Wu, C.H., Kuo, T.W., Chang, L.P.: An efficient B-tree layer implementation for
flash-memory storage systems. ACM Transactions on Embedded Computing Sys-
tems 6(3) (2007)

11. Li, Y., He, B., Luo, Q., Yi, K.: Tree indexing on flash disks. In: Proc. 25th
International Conference on Data Engineering. (2009) To appear.

12. Barnat, J., Brim, L., Edelkamp, S., Sulewski, D., Šimeček, P.: Can flash memory
help in model checking? In: Proc. 13th International Workshop on Formal Methods
for Industrial Critical Systems. (2008) 159–174

13. Goldberg, A.V., Werneck, R.: Computing point-to-point shortest paths from exter-
nal memory. In: Proc. 7th Workshop on Algorithm Engineering and Experiments.
(2005) 26–40

14. Sanders, P., Schultes, D., Vetter, C.: Mobile route planning. In: Proc. 16th Annual
European Symposium on Algorithms. (2008) 732–743

15. Ajwani, D., Malinger, I., Meyer, U., Toledo, S.: Characterizing the performance
of flash memory storage devices and its impact on algorithm design. In: Proc. 7th
International Workshop on Experimental Algorithms. (2008) 208–219

16. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A design for high-performance
flash disks. ACM SIGOPS Operating Systems Review 41(2) (2007) 88–93

17. Bouganim, L., Jónsson, B.P., Bonnet, P.: uFLIP: Understanding Flash IO Patterns.
In: Proc. 4th biennial conference on innovative data systems (CIDR). (2009)

18. Arge, L.: The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica 37(1) (2003) 1–24

19. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An
optimal cache-oblivious priority queue and its application to graph algorithms.
SIAM J. Comput. 36(6) (2007) 1672–1695

20. Brodal, G.S., Fagerberg, R.: Funnel heap - a cache oblivious priority queue. In:
Proc. 13th Annual International Symposium on Algorithms and Computation.
(2002) 219–228

21. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority queues.
In: Proc. 6th Scandinavian Workshop on Algorithm Theory. (1998) 107–118

22. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear
I/O. In: Proc. 10th Annual European Symposium on Algorithms. (2002) 723–735

23. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for
XXL data sets. Software: Practice and Experience 38(6) (2008) 589–637

24. Easy Computing Company: Managed flash technology. (http://www.easyco.com/
mft/)

25. Ajwani, D., Meyer, U., Osipov, V.: Improved external memory BFS implementa-
tion. In: Proc. 9th Workshop on Algorithm Engineering and Experiments. (2007)
3–12

