On Computing Backbones of Propositional Theories

Joao Marques-Silva¹ **Mikoláš Janota**² Inês Lynce³

¹ CASL/CSI, University College Dublin, Ireland ² INESC-ID, Lisbon, Portugal ³ INESC-ID/IST, Lisbon, Portugal

1 / 14

 Хj	 x _k	 Хn
 Xj	 $\neg x_k$	 $\neg x_n$

 Хj	 x _k	 Хn
 Xj	 $\neg x_k$	 $\neg x_n$
 Xj	 $\neg x_k$	 x _n

 Хj	 x _k	 Хn
 Xj	 $\neg x_k$	 $\neg x_n$
 Хj	 $\neg x_k$	 Xn
 x _j	 $\neg x_k$	 $\neg x_n$
 Xj	 $\neg x_k$	 Xn

 Хj	 x _k	 Хn
 xj	 $\neg x_k$	 $\neg x_n$
 xj	 $\neg x_k$	 Xn
 xj	 $\neg x_k$	 $\neg x_n$
 xj	 $\neg x_k$	 X _n

$$\phi \models x_j$$

$$\phi \models \neg x_k$$

- backbones tell us more about the formula, e.g.
 - upper bound for number of models

 2^{n-k} , where *n* #variables and *k* #backbones

- backbones tell us more about the formula, e.g.
 - upper bound for number of models

 2^{n-k} , where *n* #variables and *k* #backbones

• product configuration

```
\left.\begin{array}{l} \text{gas-engine} \lor \text{electric-engine} \\ \text{electric-engine} \Rightarrow \text{automatic} \\ \neg \text{automatic} \lor \neg \text{manual} \end{array}\right\}
```

- backbones tell us more about the formula, e.g.
 - upper bound for number of models

 2^{n-k} , where *n* #variables and *k* #backbones

• product configuration

gas-engine \vee electric-engine electric-engine \Rightarrow automatic \neg automatic \vee \neg manual electric-engine

- backbones tell us more about the formula, e.g.
 - upper bound for number of models

 2^{n-k} , where *n* #variables and *k* #backbones

• product configuration

gas-engine ∨ electric-engine electric-engine ⇒ automatic ¬automatic ∨ ¬manual electric-engine

- Can we compute backbones for large instances?
- How many backbone literals do real-world instances have?

Armory

• We use a satisfiability (SAT) solver as a blackbox

Armory

• We use a satisfiability (SAT) solver as a blackbox

$$\mathtt{SAT}(x \vee y) = (\mathsf{true}, \{x, \neg y\})$$

Armory

We use a satisfiability (SAT) solver as a blackbox

$$\mathtt{SAT}(x \vee y) = (\mathsf{true}, \{x, \neg y\})$$

$$\mathtt{SAT}(x \wedge \neg x) = (\mathsf{false}, -)$$

Model Enumeration

```
Input: CNF formula \varphi
    Output: Backbone of \varphi, \nu_R
 1 \nu_R \leftarrow \{ \neg x, x \mid x \in X \}
                                                   // Initial backbone estimate
 2 repeat
         (\mathsf{outc}, \nu) \leftarrow \mathtt{SAT}(\varphi)
                                                                   // SAT solver call
        if outc = false then
 4
             return \nu_R
                                                 // Terminate if unsatisfiable
 5
 6
        \nu_R \leftarrow \nu_R \cap \nu
                                                     // Update backbone estimate
        \omega_B \leftarrow \text{BlockClause}(\nu)
                                                                         // Block model
         \varphi \leftarrow \varphi \cup \omega_B
 9 until \nu_R = \emptyset
10 return ∅
```

$$\phi \models I$$

$$\phi \models I$$
 iff UNSAT $(\phi \land \overline{I})$

$$\phi \models I$$
 iff UNSAT $(\phi \land \overline{I})$

$$\phi \models x$$

$$\phi \models I$$
 iff UNSAT $(\phi \land \overline{I})$
 $\phi \models x$ iff UNSAT $(\phi \land \neg x)$

```
Input : CNF formula \varphi, with variables X
   Output: Backbone of \varphi, \nu_R
1 \nu_R \leftarrow \emptyset
2 foreach I \in \{\neg x, x \mid x \in X\} do
         (\text{outc}, \nu) \leftarrow \text{SAT}(\varphi \cup \{\overline{I}\})
         if outc = false then
      \nu_R \leftarrow \nu_R \cup \{I\}\varphi \leftarrow \varphi \cup \{I\}
                                                                                     // / is backbone
```

3

4

7 return ν_R

```
Input : CNF formula \varphi, with variables X
Output: Backbone of \varphi, \nu_R

1 \nu_R \leftarrow \emptyset
2 foreach I \in \{\neg x, x \mid x \in X\} do
3 \left( \text{outc}, \nu \right) \leftarrow \text{SAT}(\varphi \cup \{\overline{I}\})
4 if outc = false then
5 \left( \begin{matrix} \nu_R \leftarrow \nu_R \cup \{I\} \end{matrix} \right) // I is backbone
6 \left( \begin{matrix} \varphi \leftarrow \varphi \cup \{I\} \end{matrix} \right)
```

• SAT is called twice per variable

7 return ν_R

• if ν is a model of ϕ and $\nu \models I$ then \overline{I} is not a backbone

• if ν is a model of ϕ and $\nu \models I$ then \overline{I} is not a backbone

• if ν is a model of ϕ and $\nu \models I$ then \overline{I} is not a backbone

• Implicant $\nu = l_1 \wedge \ldots \wedge l_k$ is a conjunction of literals such that $\nu \Rightarrow \phi$

• Implicant $\nu = \mathit{I}_1 \wedge \ldots \wedge \mathit{I}_k$ is a conjunction of literals such that

$$\nu \Rightarrow \phi$$

• Implicant $\nu = \mathit{I}_1 \wedge \ldots \wedge \mathit{I}_k$ is a conjunction of literals such that

$$\nu \Rightarrow \phi$$

$$(x \lor y) \land (x \lor \neg y)$$

• Implicant $\nu = I_1 \wedge \ldots \wedge I_k$ is a conjunction of literals such that

$$\nu \Rightarrow \phi$$

$$x \Rightarrow ((x \lor y) \land (x \lor \neg y))$$

• Implicant $\nu = l_1 \wedge \ldots \wedge l_k$ is a conjunction of literals such that

$$\nu \Rightarrow \phi$$

$$|x| \Rightarrow ((x \lor y) \land (x \lor \neg y))$$

x	у
X	$\neg y$
X	y
÷	:

• Implicant $\nu = l_1 \wedge \ldots \wedge l_k$ is a conjunction of literals such that

$$\nu \Rightarrow \phi$$

• Any literal not appearing in ν is not a backbone.

$$\begin{array}{c|c} \mathbf{x} & \Rightarrow ((x \lor y) \land (x \lor \neg y)) & \begin{array}{c|c} \mathbf{x} & \mathbf{y} \\ \hline x & \neg y \\ x & y \\ \vdots & \vdots \end{array}$$

• Implicants are like "models with wild cards"

Implicants and CNF

• Any model of a formula is an implicant

Implicants and CNF

Any model of a formula is an implicant

A model can be reduced

$$\begin{array}{ccccc} x & \vee & \mathbf{y} & \vee & \mathbf{z} \\ y \wedge \neg z & \Rightarrow & x & \vee & \neg y & \vee & \neg \mathbf{z} \\ x & \vee & \mathbf{y} & \vee & \neg \mathbf{z} \end{array}$$

Implicants and CNF

Any model of a formula is an implicant

A model can be reduced

$$\begin{array}{ccccc} & x & \vee & \mathbf{y} & \vee & \mathbf{z} \\ y \wedge \neg z & \Rightarrow & x & \vee & \neg y & \vee & \neg z \\ & x & \vee & \mathbf{y} & \vee & \neg z \end{array}$$

Multiple reductions may exist

$$\begin{array}{ccccc} & & & \times & \vee & y \vee & z \\ x & \vee & \neg y \vee \neg z \\ & & \times & \vee & y \vee \neg z \end{array}$$

Improving Iterative Testing

Input : CNF formula φ , with variables X **Output**: Backbone of φ , ν_R 1 $\Lambda \leftarrow \{x, \neg x \mid x \in X\}$ // candidates for backbone 2 $\nu_R \leftarrow \emptyset$ // initial backbone estimate 3 foreach $l \in \Lambda$ do $(\text{outc}, \nu) \leftarrow \text{SAT}(\varphi \cup \{\overline{I}\})$ if outc = false then 5 $\nu_R \leftarrow \nu_R \cup \{I\}$ 6 // Backbone identified $\varphi \leftarrow \varphi \cup \{I\}$ else 8 $\nu \leftarrow \texttt{ReduceModel}(\nu)$ 9 // Simplify model $\Lambda \leftarrow \Lambda \cap \nu$ 10

11 return ν_R

Results

Results

Instance	#vars	%bb	best time [s]
narain-sat07-clauses-2	75528	89.3	869.3
2dlx_cc_mc_ex_bp_f2_bug001	4821	36.6	14.8
2dlx_cc_mc_ex_bp_f2_bug005	4824	44.7	17.9
2dlx_cc_mc_ex_bp_f2_bug009	4824	34.8	12.1
grieu-vmpc-s05-25	625	100.0	92.1
grieu-vmpc-s05-27	729	92.9	591.2
IBM_FV_03_SAT_dat.k35	34174	59.8	320.8
IBM_FV_04_SAT_dat.k25	27670	78.4	163.6
IBM_FV_06_SAT_dat.k35	42801	50.8	655.4
IBM_FV_1_02_3_SAT_dat.k20	15775	17.4	36.8
AProVE09-03	59231	51.7	743.3
AProVE09-05	14685	76.3	41.7
AProVE09-17	33894	65.4	629.8
AProVE09-24	61164	18.0	648.0

• We used a SAT solver in a blackbox approach to compute backbones of a propositional formula.

- We used a SAT solver in a blackbox approach to compute backbones of a propositional formula.
- In the worst case, the algorithm calls the solver as many times as there are variables in the formula. However, this can be reduced.

- We used a SAT solver in a blackbox approach to compute backbones of a propositional formula.
- In the worst case, the algorithm calls the solver as many times as there are variables in the formula. However, this can be reduced.
- Backbones can be computed for formulas with dozens of thousands of variables.

- We used a SAT solver in a blackbox approach to compute backbones of a propositional formula.
- In the worst case, the algorithm calls the solver as many times as there are variables in the formula. However, this can be reduced.
- Backbones can be computed for formulas with dozens of thousands of variables.
- Large number off backbones appeared in real-world examples.