
UC Irvine
ICS Technical Reports

Title
On computing minimal models

Permalink
https://escholarship.org/uc/item/4b82c43j

Authors
Ben-Eliyahu, Rachel
Dechter, Rina

Publication Date
1994-09-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4b82c43j
https://escholarship.org
http://www.cdlib.org/

ON COMPUTING MINIMAL MODELS

Rachel Ben-Eliyahu
Computer Science Department

Technion - Israel Institute of Technology
Haifa 32000, Israel

Rim Dechter

Department of Information and Computer Science
University of Califomia, Irvine

Technical Report 94-55
September 18, 1994

'^99

>10.9

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

Abstract

This paper addresses the problem of computing the minimal models of a given CNF
propositional theory. We present two groups of dgorithms. Algorithms in the first group
are efficient when the theory is almost Horn, that is, when there are few non-Horn clauses
and/or when the set of all literals that appear positive in any non-Horn clause is small.
Algorithmsin the other group are efficient when the theorycan be represented as an acyclic
network of low-arity relations. Our algorithms suggest several characterizations of
tractable subsets for the problem of finding minimal models.

*To appear in annals of Math and AI.

On computing minimal models*

Rachel Ben-Eliyahu

Computer Science Department

Technion — Israel Institute of Technology

Haifa 32000

Israel

rachelb @cs. technion. ac. il

Rina Dechter

Information h Computer Science

University of California

Irvine, California 92717

USA

dechter@ics. uci. edu

September 18, 1994

*This work was partially supported by an IBM graduate fellowship to the first author,
by NSF grants IRI-9157636 and IRI-9200918, by Air Force Office of Scientific Research
grant AFOSR 900136, by a grant from Xerox Palo Alto research center, and by Toshiba of
America. Part of this work was done while the first author was a graduate student at the
Cognitive Systems Laboratory, Computer Science Department, University of California,
Los Angeles, California, USA.

Abstract

This paper addresses the problem of computing the minimal mod

els of a given CNF propositional theory. We present two groups of
algorithms. Algorithms in the first group are efficient when the theory
is almost Horn, that is, when there are few non-Horn clauses and/or
when the set of all literals that appear positive in any non-Horn clause

is small. Algorithms in the other group are efficient when the theory
can be represented as an acyclic network of low-arity relations. Our

algorithms suggest several characterizations of tractable subsets for
the problem of finding minimal models.

1 Introduction

One approach to attacking NP-hard problems is to identify islands of tractabil-
ity in the problem domain and to use their associated algorithms as building

blocks for solving hard instances, often approximately. A celebrated example
of this approach is the treatment of the prepositional satisfiability problem.

In this paper, we would like to initiate a similar effort for the prob

lem of finding one, all, or some of the minimal models of a prepositional

theory. Computing minimal models is an essential task in many reason
ing systems in Artificial Intelligence, including prepositional circumscrip

tion [McCSO, McC86, Lif85] and minimal diagnosis [Rei87, dKMR92], and
in answering queries posed on logic programs (under stable model semantics
[GL91, BNNS91]) and deductive databases (under the generalized closed-
world cissumption [Min82]). While the ultimate goal in these systems is not
to compute minimal models but rather to produce plausible inferences, effi
cient algorithms for computing minimal models can substantially speed up
inference in these systems.

Special cases of this problem have been studied in the diagnosis literature
and, more recently, the logic programming literature. Algorithms used in
many diagnosis systems [dKW87, dKMR92] are highly complex in the worst
case: To find a minimal diagnosis, they first compute all prime implicates
of a theory and then find a minimal cover of the prime implicates. The

first task is output exponential, while the second is NP-hard. Therefore, in

the diagnosis literature, researchers have often compromised completeness

by using a heuristic approach. The work in the logic programming literature

(e.g. [BNNS91]) focused on using efficient optimization techniques, such as
linear programming, for computing minimal models. A limitation of this
approach is that so far it did not address the issue of worst-case and average-
case complexities.

We want to complement these approaches by studying the task of finding
all or some of the minimal models in general, independent of any specific

domain. We will use the "tractable islands" methodology to provide more

refined worst-case guarantees. The two primary "islands" that we use are
Horn theories and acyclic theories. It is known that Horn theories have a
unique minimal model that can be found in linear time [DG84, IM87]. Our
near-Horn algorithms try to associate an input theory with a "close" Horn
theory, yielding algorithms whose complexity is a function of this "distance".

For acyclic theories, we will show that while finding one or a subset of the

minimal models can be done in output-polynomial time, the task of finding
aJl minimal models is more complex. We will set up necessary and sufficient
conditions under which an acyclic theory has a unique minimal model. Test

ing the conditions for unique minimal model and generating this model (if it
exists) can be done in time polynomial in the size of the acyclic theory. We
will also present a tree-algorithm that generates all the minimal models of
an acyclic theory.

Once we have an efficient algorithm for generating minimal models of
tree-like theories, we can apply it to any arbitrary theory by first compiling
the theory into a tree. The resulting complexity will often be dominated by
the complexity of this compilation process and will be less demanding for
"ne«ir-tree" theories.

2 Preliminary definitions

A clause is positive if it contains only positive literals and is negative if it
contains only negative literals. We will sometimes refer to a clause as a set of
literals. In this paper, a theory is a set of clauses. Given a theory $, size($)
will denote its length, that is, the number of symbols in the theory. Given
a set A, |A| denotes its cardinality. A set of literals covers a theory iff it
contains at least one literal from each clause in the theory. A set of covers

of a theory is complete iff it is a superset of all minimal covers of the theory.
A theory is called positive if it is composed of positive clauses only. Given

a theory $ and a set of literals 5, the operation $05 performs unit prop
agation on Unit propagation is the process where given a theory $,

you do the following until $ has no unit clauses: you pick a unit clause C
from $, delete the negation of C from each clause and delete each clause that

contains C. Itai and Makowsky [IM87] have shown that unit propagation can
be done in time which is linear in the size of the theory^. For each theory $,
n/($) denotes $00. For each model M, pos{M) denotes the set of atoms to
which M assigns true. We will sometimes refer to a model as a set of literals,
where a negative literal ->P in the model means that the model assigns false

Ttai and Makowsky worked with Horn theories but their method applies also to general
theories.

to P and a positive literal P in the model means that the model assigns true

to P.

Definition 2.1 (X-minimal model) Let ^ be a theory over a set of atoms
C, X C C, and M a model for M is an X-minimal model for <5 iff there
is no other model M' for $ such that pos{M')f\X C pos(M)n-V- If M is an
X-minimal model for X = C, it will be called simply a minimal model.

3 A general algorithm for computing a min

imal model

Cadoli [Cad92] has shown that the problem of finding an X-minimal model
for a theory is P^^ '̂̂ '̂°®"'bhard. Roughly, this means that it is at least
as hard as problems that can be solved by some deterministic polynomial
algorithm that uses 0(log n) calls to an NP oracle. In Figure 1 we show an
algorithm for computing X-minimal models that taJces 0{tP) steps and uses
0{n) calls to an NP oracle (where n is the number of variables in the theory).
In Figure 2 we show a variation of this algorithm that uses a procedure for
satisfiability called model-sat that also returns a model in case the theory is
satisfiable.

Lemma 3.1 Algorithm Find-X-minimal is correct.

Proof: It is clear that the algorithm returns false iff $ is inconsistent,
and true otherwise. It is left to show that when $ is satisfiable, at the end

of the execution of the algorithm M is an X-minimal model. Assume by
contradiction that M is not an X-minimal model. So there must be a model

M' such that M'f]X C MflX. Let k be minimal such that M'{Pk) = false
and M{Pk) = true. Since k is minimal, and by the way the algorithm works
(statement 4), it must be that {-"PfclU {fi I M{Pi) = true, 1 < i < fc}U
{-<Pi I M{Pi) = false, 1 < z < A;} is consistent and therefore it should be the
case that M{Pk) = false, a contradiction. •

Lemma 3.2 Algorithm Find-X-minimal2 is correct.

Proof: Similar to the proof of Lemma 3.1. •

Algorithm Find-X-minimal2 suggests the following theorem which will be
used in proofs in the following sections:

Find-X-niinimaI($, X, M)
Input: A theory $ and a subset X of the variables in
Output: true if $ is satisfiable, false otherwise. In case $ is
satisfiable, the output variable M is an X-minimal model for

1. If -'sat($) return false;

2. For i := 1 to n do M[i\ := false;

3. Let Pi,P„ be an ordering on the variables in $ such that the first
|X| variables are all the variables from X.

4. For i := 1 to n do

If sat($U{~'F,}) then $:=
else $:= $0{P}, M[i] := true;

5. return true;

Figure 1: Algorithm Find-X-minimaJ

Theorem 3.3 Let C be a class of theories over a language C having the
following properties:

1. There is an algorithm a such that for any theory ^ e C, a decides
whether $ is satisfiable and produces a model for $ (ifthere is one) in
time 0{tc).

2. C is closed under instantiation, that is, for every $ 6 C and for every
literal L in C, $0{L} e C.

Then for any theory $ GC, an X-minimal model for $ can be found in time
Oi\X\tc).

Proof: Follows from the correctness of Algorithm Find-X-minimal2. •
Since satisfiability of a 2-CNF theory can be checked in time linear in its

size [SES76], we have the following corollary:

Corollary 3.4 An X-minimal model for a 2-CNF theory $ can be found in
time 0{\X\ * I), where I is the legth of the theory.

Find-X-minimal2($, X, M)
Input: A theory $ and a subset of the variables in X.

Output: true if $ is satisfiable, false otherwise. In case $ is

satisfiable, the output variable M is an X-minimal model for

1. If -'model-sat($, iV/) return false;

2. negX := {P\P e X,^P e M};
X :=X-negX;

$:= ^ ^^gX}-,

3. While X # 0 do

a. Let P 6 A";

b. If -'modeI-sat($U{~'̂ })-W '̂) then $:= $0{P}
else $:= ^Ol-^P}, M := M';

c. X:=X-{Py,

4. return true;

Figure 2: Algorithm Find-X-minimal2

However, using a straightforward reduction from VERTEX COVER [Kar72],
we can show that if we are interested in finding a minimumcardinality model
for a 2-CNF theory (namely, a model that assigns true to a minimumnumber
of atoms), the situation is not so bright:

Theorem 3.5 The following decision problem is NP-complete: Given a pos
itive 2-CNF theory $ and an integer K, does $ have a model of cardinality
< K?

4 Algorithms for almost-Horn theories

In this section, we present algorithms for computing minimal models of a
propositional theory which are efficient for almost Horn theories. The basic

idea is to instantiate as few variables as possible so that the remaining theory

will be a Horn theory and then find a minimal model for the remaining theory
in linear time.

4.1 Algorithm for theories with only a few non-Horn
clauses

Algorithm MinSAT (Figure 3) is efficient when most of the theory is Horn
and there are only few non-Horn clauses. Given a theory, MinSAT works
as follows: It first tries to solve satisfiability by unit propagation. If the
empty clause was not generated and no positive clause is left, the theory
is satisfiable, and the unique minimal model assigns false to the variables
in the remaining theory. If a nonempty set of positive clauses is left, we
computea cover for the remaining set of positive clauses, replace them with
the cover, and then call MinSAT recursively on the new theory. Ifthe theory
is not satisfiable, or if we are interested in all minimal models, we have to
call MinSAT again with a different cover.

Algorithm MinSAT is shown in Figure 3. The procedure Unitlnst{^, /, Sat)
takes as input a theory $ and returns nf{^). I is an output variable which
contains the set of unit clauses used for the instantiations. Sat is false iff
the empty clause belongs to the normal form; otherwise Sat is true. The
procedure combine{I,M) takes as input a set of literals I and a set of sets
of literals M and returns the set = W[JI, W € M}.

We group all the prepositional theories in classes 'fo, as follows:

• $ € ^0 iff nf{^) has no positive clauses or contains the empty clause.

• $ € ^it+|c| iff for each A that is a complete set of covers for C, where
C is the set of positive clauses in n/($), and for each S in A, $05
belongs to for some j < k.

Observation 4.1 If a theory has k non-Ham clauses it belongs to the class
for some j < k. Hence, Horn theories belong to $o-

We can show the following:

Lemma 4.2 Algorithm MinSAT is correct.

Proof: The proof goes by induction on the minimal k such that $ belongs
to

MinSAT($,M)

Input: A theory

Output: true if $ is satisfiable, false otherwise. In case $ is satisfiable, the
output variable M will contain a set of models for $ that is a superset
of all the minimal models of $.

1. $:=UnitInst($,/, 5at); If not Sat return false;

2. If $ contains no positive clauses then

begin

M := {/jJf-iPIF is a variable in $}}; return true;
(* Note that M is a set of sets *)
end.

3. M := 0; Let A be a complete set of covers for the set of all the positive
clauses in

For each 5 € A do:

If MinSAT($U5,M') then
M := M\J combine(/, M');

4. If M = 0 then return false else return true;

Figure 3: Algorithm MinSAT

case k = 0 U n/($) contains the empty clause then Unitlnst will return
false, andso MinSAT will returnfalse. Else if$ has no positive clause
then the model that assigns false to all the atoms is the minimal model
of $ and this is the model which the algorithm returns in Step 2.

Induction step Let $ belong to some such that k > 0. It is easy to
see that each minimal model of $ can be represented as a union of two
sets B and C, where B is a minimal cover of the positive clause of $
ajid C is a minimal model of the theory | P € B}. Hence the
result follows.

Proposition 4.3 //'$ ^ then MinSAT runs in time 0{nm''), where n is
the length of the input and m the maximum number of positive literals that

appear in any clause.

Proof: By induction on k. Case k = 0 — easy. Suppose $ € for some
k > 0, and let C be the set of positive clauses in Hence for every S which
is a cover of C $U*5' is in ^fc-|C|- So by the induction hypothesis each call to
MinSAT($U*S,M') takes steps. A complete set of covers for C
can be found in steps and there are at most covers in this set,
therefore the algorithm runs in 0{mn^) steps. •

This is also the worst case complexity for deciding satisfiability using
MinSAT. Since for every k the class is closed under instantiation, we can
use Theorem 3.3 to prove that:

Proposition 4.4 If a theory $ belongs to the class for some k, then an
X-minimal model for $ can be found in time 0(|A'|nm'').

Algorithm MinSAT returns a superset of all the minimal models. To identify
the set of all minimal models, we need to compare all the models generated.
Since there are at most m* models generated by MinSAT, each of size at
most n, the complexity of finding all minimal models for a theory in the
class is 0{nm^'').

4.2 Algorithms that exploit the interaction between

the positive literads of the theory

In this section we will identify tractable subsets for satisfiability and for
finding all minimal models by using topologicaJ analysis of the interactions
between the positive literals of the theory. The positive graph of a theory,
defined next, reflects on these interactions.

Definition 4.5 (positive graph of a theory) Let^ be a theory. Thepos
itive graph o/$ is an undirected graph {V,E) defined as foliows:

V= {P\P is a positive literal in some clause in

E= {(P, Q)| P and Q appear positive in the same clause}.

Note that $ is a Horn theory iff its positive graph has no edges.

Definition 4,6 (vertex cover) Let G = {V,E) be a graph. A vertex cover

of G is a set V C V such that for each e E E there is some v E V such that
V E e.

We take "vertex cover of the theory" to mean "vertex cover of the positive

graph of the theory".
An algorithm that computes a superset of all minimal models bcised on

a vertex cover of a theory can consider all possible instantiations of the

variables in the cover. Each such instantiation yields a Horn theory for

which we can find a minimal model (if there is one) in linear time. When we
combine the model for the Horn theory with the cover instantiation, a model

of the original theory results. We can show that a superset of all minimal

models of a theory can be generated in this way. If we are interested only in

deciding satisfiability, we can stop once the first model is found. Hence,

Theorem 4.7 If the positive graph of a theory $ has a vertex cover of car

dinality c, then the satisfiability of $ can be decided in time 0{n2'^), where
n is the size of the theory, and an X-minimal model for $ can be found in

time 0{\X\n2'^). The set of all minimal models of ^ can be found in time
0{n2^').

Proof: Let $ be a theory and V a vertex cover of the positive graph of $

such that IV| = c. $ is consistent iff there is an instantiation of the variables
in V such that the remaining Horn theory is consistent. Since there are 2'̂
instantiations of V, and since deciding consistency of a Horn theory is linear,
we get that satisfiability of $ can be decided in 0{n2'^) steps. Since the
set of all theories having a positive graph with a vertex cover of size c for
some c is closed under instantiation, By Theorem 3.3 we can find a minimal

model for in time 0{\X\n2'^). For the rest we will first show that every
minimal model M of $ can be represented as the union of I and H where
I = {P \ P E V,P was instantiated by some instantiation / to true} and
H is the minimal model of the Horn theory we get after the instantiation /.

Let I = {P \ P E V,M{P) = true}. Since M is minimal, H = M —I must
be a minimal model of $U^-

So a super set S of all the minimal models of $ can be found in time
0{n2'̂), ajid we have also |51 < 2*^. We then have to compare each 2 models
found to identify the minimal ones, and so the whole process takes 0(n2 '̂̂)
steps. •

VC-minSAT($, M,G)

Input: A theory $ and a positive graph of G.

Output: true if $ is satisfiable, otherwise false. If $ is satisfiable, Mcon
tains a superset of all minimal models for

1. ^ := Unitlnst{^, I, Sat);

2. If -i5at return false; G:= Update{^,G);

3. If G has no arcs then

begin M:= /U{-.P|P appears is a variable in $}; return true; end.

4. P := MaxDegree{G); Sat := false; M = 0;

5. If VC-minSAT($UW,^+,G)then
M := combine{I, M"*");

6. If VC-minSAT($U{-iP}, AfG) then
M := A/Ucom6ine(/, A/~);

7. If M == 0 return false else return true.

Figure 4: Algorithm VC-minSAT

In general, the problem of finding a minimum-cardinality vertex cover of
a graph is NP-hard. Agreedy heuristic procedure for finding a vertex cover
could simply remove the node with maximum degree from the graph and
continue with the reduced graph until all nodes are disconnected. The set of
all nodes removed is a vertex cover.

Algorithm VC-minSAT (Figure 4) integrates the above heuristic into a
backtrack algorithm for finding the minimal models. MaxDegree takes the
positive graph as an input and returns an atom (node) that has a maximum
degree. If there is more than one such atom, it chooses the one that appears
m a maximum number of non-Horn clauses in the theory. Update{^,G)
returns the positive graph of $. We can show that algorithm VC-minSAT
produces a superset of all the minimal models.

Another approximation algorithm for finding a vertex cover is based on
the idea of "maximal matching" (see [Gav]). That approximation algorithm
is guaranteed to find a vertex cover that is at most twice as large as a mini
mum one, and it can be also combined with a backtrack algorithm for finding
the minimal models, similar to the way we combine two heuristics in Algo
rithm VC-minSAT.

We should mention here that the idea of initializing variables in a theory
until the remaining theory is Horn has been suggested, in the context of solv-
ing the satisfiability problem, by Gallo and Scutella [GS88] and was recently
extended by Dalai and Etherington [DE92]. The advantages of our approach
are that we provide an intuitive criteria for how the variables to be instan
tiated are selected ajid we classify the performance of the algorithm using a
well-understood and largely explored graphical property, vertex cover.

Also note that we could define the negative graph of a theory just as
we defined the positive graph. We could then write an algorithm that is
analogous to VC-minSAT and isefficient for deciding satisfiability of theories
for which the negative graph has a small vertex cover. Clearly, algorithm
minSAT has also an analogous algorithm that considers negative instead of
positive clauses.

Comment 4.8 To clarify the difference between algorithm VC-minSAT and
algorithm MinSAT, consider the following classes of theories Ti and r2.
Class Fx is the class of all theories of the form

{Ai VD,-Ax y A^y D, -^2 VA3 VD,..., -iA„ VA„+x VD)

and class r2 is the class of all theories of the form

{Ax y Bi,^Dy Aiy Bi,..., -D VA,„ V5„,}

where n and m are arbitrary positive integers, and D and all A,- 's and B, 's
are atoms. An arbitrary theory in Fx has a positive graph with a vertex
cover of size 1 (take {D} as a vertex cover), but might belong to for
some k > n. On the other hand, an arbitrary theory from F2 belongs to ^2
but might have a minimum vertex cover of size m. Therefore, in general
algorithm MinSAT is better than algorithm VC-minSAT for the class F2, but
algorithm VC-minSAT is better than MinSATfor the class Fx.

5 Computing minimal models on acyclic net
works of relations

In this section we provide efficient algorithms for theories that can be rep
resented as acyclic relations of low arity. We next define the notions of
constraint networks and relations and show how they can represent preposi
tional theories and their satisfying models. We chose to switch to the lan
guage of relations and constraint networks since the notions of acyclicity and
topological-based tractability was developed primarily within this framework
[Mai83, Dec92].

Definition 5.1 (relations, networks, schemes) Given a set ofvariables
^ •••5 ^n], each associated with a domain of discrete values Di,Dn,
respectively, a relation (or, alternatively, aconstraintj /) = p{Yi,Yk) is any
subset

p C Di X D2 X ... X Dk.

where k < n and for each 1 < i < k Yi e X and Di is the domain ofYi.
The projection of p onto a subset of variables R, denoted n/i(p) or pn, is
the set of tuples defined on the variables in R that can be extended to a tuple
in p. A constraint network N over X is a set p-i,...,pt of such relations.
Each relation p, is defined on a subset of variables Si ^ X. We also denote
by p{Si) the relation specified over Si. The set of subsets S = is
called the scheme of N. The network N represents a unique relation rel{^iV)
defined over X, which stands for all consistent assignments (or all solutions)^
namely,

rel{N) = {x = (a:i,...,x„)| V5.- e S,Us,{x) € pi}.

A partial assignment T = t is a value assignment to a subset of variables
T C X. The operator is the join operator in relational databases defined
as follows. Let pi and p^ be two relations defined over the variable sets Si
and 82, then pi Mp^ is a relation over Si\JS2, and t e pi ^ p2 iff ts^ € pi
and ts^ C P2'

Any prepositional theory can be viewed as a special kind of constraint net
work, where the domain of each variable is {0,1} (corresponding to {false,true}

and where each clause specifies a constraint (in other words, a relation) on
its propositional atoms. The scheme of a prepositional theory is accordingly
defined as the scheme of its corresponding constraint network, and the set
of all models of the theory is the set of all solutions of its corresponding
constraint network.

Example 5.2 Consider the theory $ = {-"AV ->5,-<5 V-C,CVD}. This
theory can be viewed as a constraint network over the variables {A, B, C,D},
where the corresponding relations are the truth tables of each clause, that is,
/)(A5) = {00,01,10}, p(5C) = {00,01,10}, andpiCD) = {01,10,11}. The
scheme of the theory $ is {AB,BC,CD}. The set of all solutions to this
network (and hence the set of models of is

p{ABCD) = {0001,0010,0011,0101,1001,1010,1011}.

Note that $ has two minimal models: {0001,0010}.

Thescheme ofa theory can be associated with a constraint graph (also called
a dual constraint graph [DP89] or an intersection graph [Mai83]) where each
relation in the schemeis a node in the graph and two nodes are connected iff
the corresponding relations have variables in common. The arcs are labeled
by the common variables. For example, the constraint graph of the theory
$ of Example 5.2 is as follows:

BC

/\

B / \ C

/ \

AB CD

In general, theories that correspond to a constraint graph that is a tree
are called acyclic theories, and their corresponding tree-like constraint graph
is called a join tree. In the following we make these notions more precise.

Sometimes a constraint network looks cyclic while, by removing some of
its redundant arcs it will becomeacyclic. Removing redundant arcs does not
change the problem, and identifying such arcs can be done in linear time in
the size of the network [Mai83].

If by eliminating some redundant arcs from its intersection graph the
constraint graph becomes a tree, then we say that the network is acyclic,

and call the resulting tree a join-tree. An acyclic network may have more
than one join-tree. Here is a formal definition.

Definition 5.3 [Mai83]
Given aset of relations pi,..., pp having the scheme {^i,..., ^p}, ajoin-graph
IS an arc-subgraph^ of the constraint graph over Si,...,Sp (called intersection
graph in [Mai83]), satisfying that ifX € 5,- n Sj then there exist a path
between Si and Sj whose all labeled arcs contain X. Ajoin tree is a join
graph that is a tree. A network of relations is acyclic if it has a join-tree.

We next define the concept ofpair-wise consistency.

Definition 5.4 (pair-wise consistency [Mai83]) Apair of relations pi, p2
are pair-wise consistent iff every tuple in pi can be consistently extended by
a tuple in p2 and vice-versa. Formally, iff

Pi = ^Siipi P2), and p2 = n5j(/>i MP2).

It was shown that testing or enforcing pair-wise consistency can be done
in polynomial time [Mai83]. Pair-wise consistency parallels the notion of arc-
consistency developed in the context of binary constraint networks [Mac85]!

We next present two algorithms for computing minimal models for acyclic
theories. These algorithms will be extended to arbitrary theories via a proce
dure known as tree-clustering [DP89], which compiles any theory into a join
tree of relations. The tree-clustering algorithm is reviewed in Appendix A.

Consequently, given a general theory, the algorithms presented next work
in two steps: First, a join-tree is computed by tree-clustering, and then a
specialized tree-algorithm for computing the minimal models is applied. The
complexity of tree-clustering is exponential in the size of the maximal arity
of the generated relations, and hence our algorithms are efficient for theories
that can be compiled into networks of low-arity relations. We should note,
however, that even in the cases where tree-clustering is time expensive, it
might still be useful since it offers a systematic way of representing the models
of the theory in a hierarchical structure capable of supporting information
retrieval without backtracking. We say that an ordering of a variables is

^An arc-subgraph ofa graph is a graph that contains a subset ofthe arcs but all the
nodes.

backtrack free relative to a given set of relations iff the variables can be
instantiated to a solution ofthenetwork with no dead ends, while at each step
consulting those constraints defined over the relevant variables. The notion
of backtrack-free search is identical to monotonicity ofjoin plans [Mai83].

5.1 Finding a subset of all minimal models

For the rest of Section 5, we will assume that we are dealing with constraint
networks that correspond to propositional theories, and hence the domain of
each variable is {0,1} and we have the ordering 1 ^ 0. We will also assume
that we are looking for models that are minimal over all the atoms in the
language of the theory, namely, X-minimal models where X is the set of all
atoms in the theory.

Definition 5.5 Given a relation p defined on a set ofvariables X, andgiven
two tuples r and t in p, we say that t y r, ijff for some Xq in X, txo >- rxg
and, for all Xi ^ X, tx, >- rx^ or txi = VXi- We say that t and r agree on a
subset of variables S C X ijff rs = ts.

Definition 5.6 (conditional minimal models) Given a relation p over
X and a subset of variables S C X, a tuple t E p is conditionally minimal
w.r.t. S iff there does not exist rep such that r agrees with t on S and

tx-s y fx-s- The set of all conditional minimal models (tuples) ofp w.r.t.
S = s is denoted by min{p\S = s). The set of all conditional minimal models
(tuples) of p w.r.t. S is denoted min{p\S) and is defined as the union over
all possible assignments s to S of min{p\S = s). mm(/)10) is abbreviated to
min{p).

Example 5.7 Consider the relation

p{ABCD) = {0111,1011,1010,0101,0001}.

In this case, we havemin{p) = {1010,0001}, min{p\{C,D]) = {0111,1011,1010,0001},
and min{p\{A]) = {0001,1010}.

One can verify that: (1) any minimal tuple of a projection n5(/9) can be
extended to a minimal tuple of p, but not vice versa, namely a minimal mod
els of p may not be minimal model of n5(/>); (2) a conditionally minimal

tuple is not necessarily a minimal tuple; and (3) a minimal tuple is a condi
tional minimal tuple w.r.t. to all subsets. The following lemma justify our
forthcoming algorithms.

Lemma 5.8 Let py and pz be two relations over Y and Z, respectively, let
X = Y \J Z and let T = Y f\ Z. Let p —py N pz. then,

1. For every t e pr, min{p\T = t) = min(pyjT = t) tx min(pzlT = t)

2. min{p) C min{py\T) N min{pz\T)

3- If T —t is minimal over pr then min{p) D min{p\T = t). Conse
quently,

min{p) Dmin{py\T = f) Mmin{pz\T = i).

Proof: 1. It is clear that min{p\T = t) Dmin{py\T = t) tX min{pz\T =
t). We will show the other direction. Let tf e min{p\T = t). By definition,
tfj = t. Clearly, tty € min{py\T = t) or else, there is an extension of tfr to
variables in Ythat is smaller than tt, contradicting its conditional minimality.
The argument for Z is identical. 2. Follows immediately from the fact that a
minimal model is always a conditional minimal model relative to any subset.
Thus, i7iin[p) C min(^p\T = t) and from part 1 the claim follows. 3. Assume
t is a minimalmodel of px and let t/ be a conditional minimalmodel relative
to t, namely t! € mzn(p|T = t). We claim that tt € rnini^p). Else, there is
another tuple that is smaller than tt in p. It cannot be the case that t'̂ j is
smaller than t since t is minimal relative to T. Consequently, t°T = tfr = t.
The extension of t^x fo Ycannot be smaller than t/'s since tt is conditionally
minimal relative to T = t, yielding a contradiction. •.

We are now ready to show that given a join-tree, a subset of all minimal
models can be computed in output linear time. The idea is as follows: Once
we have a rooted join-tree which is pair-wise consistent we can take all the
minimal tuples in the relation of the root node and extend them (via the
join operation) with the matching conditional minimal tuples of the child
node, conditioned on variables common to both. This can be continued until
we reach the leaves. It can be shown that all the models computed in this
way are minimal and that they are generated in a backtrack-free manner;
however, not all minimal models will be generated. In order to enlarge the
set of minimal models captured, we can re-apply the procedure where each

node serves as a root. The following notations will be used in the rest of the
sections:

N is an input network of constraints

p is the relation associated with N.

Tiv is a compiled join-tree of N.
X is the set of variables Xi,Xn, of N.

d is the maximal size of a variable domain.

S = {5i,...,5r} is the scheme of the join-tree.
Pi is the relation associated with 5,.

n is the number of variables in N.

r is the number of relations in the join-tree, Ts (r < n)
p is the maximal arity of each relation in the join-tree.
k is the maximal number of tuples in each relation of Tn- {k < (f).
t is the overall number of tuples in the join-tree {t <r •k).

Definition 5.9 (parents of S) Given a scheme S = {5o,...,5,} ofa rooted
join-tree, Tff, Sp(i) will denote the parent subset of Si in the tree. We call
an ordering d = So, ..,Sr a tree-ordering iff a parent node always precedes its
child nodes.

Definition 5.10 Let T be a rooted join-tree with So at the root. Let pi be
the relation associated with Si and let So,S\,...,Sr be a tree-ordering. We
define

p^{T) =N,=o...r (mi»2(/0,|5'p(,))).

Theorem 5.11 LetT be a rooted join-tree with a tree-ordering So, Si,..., Sr,
then 1. p^{T) is a subset of all the minimal models ofT, and 2. p^{T) can
be computed in 0{l • k •r r •p •k^) steps where I is the number of minimal
models in the output.

Proof: 1. By induction on r. For r = 0 the claim clearly holds. Sup
pose r > 0. Let T* be join-tree rooted at So that includes all the subsets

So,..., Sr-i- By the induction hypothesis,

p°{T') =N,-^o..r-i (mm(/9,|S'p(j)))

is a subset of all minimal models of the rooted join tree T*. Let S* =
Assume t is in /?°(r) but it is not minimal. So, there must be a tuple t'

in the relation described by T such that t y t'. It cannot be the Ccise that

ts* y t's* because this will be a contradiction to the induction hypothesis,
hence, it must be the case that

ts' = t's', (1)

therefore, in order for t' to be smaller it must obey <5^ x t's^- However, from
(1) it follows that Consequently, since ts^ y t's^, it must be
that ts^ ^ mm(/7r|5p(r)), a contradiction to the way p°{T) is defined.

To show that p'{T) is polynomially computable observe that a join tree
can be made backtrack-freeby enforcing pair-wise consistency between adja
cent relations. This operation can be accomplished in 0{k-logk) comparisons
steps between the tuples of the two relations. Each comparison is 0(p), yield
ing 0(p • k • logk) steps, overall.

The conditional minimalsubsets can be computed in 0{p-k^) steps. After
that, the resulting relation can be computed in a backtrack-free manner from
root to leaves, yielding an overall bound of 0{r •pk^ + l-k-r), where I is the
number of the minimal models in the output. •

Example 5.12 Consider the join-tree of the theory $ in Example 5.2. As
suming BC is the root, we can use the tree-ordering d = EC, AB, CD. Since
tuple {BC = 00) is the only minimal model of p{BC), it is selected. This
tuple can be extended by A = 0 and by D = I, resulting in one minimal model
of p, namely the tuple {ABCD = 0001). If AB plays the role of a root, we
will still be computing the same minimal model. However, when CD plays
the role of a root, we will compute the tuple {ABCD = 0010), which is also
a minimal model of p.

From Theorem 5.11, it follows that, given an acyclic network or any general
backtrack-free network relative to an ordering d, one minimal model can be
computed in time that is linear in the size of the network, and the total
subset of minimal models p°(T) can be computed in time proportional to the
size of the set. We summarize this in algorithm mini, given in Figure 5. By
adding the complexity of generating a join-tree (See Appendix A) to that of
generating the minimal models we get:

Theorem 5.13 (complexity of mini)
The complexity of mini is 0{r • (P + r'̂ I • k), where I is the

tninl($)
Input: A theory

Output: A subset of all the minimal models of

1. Apply tree-clustering to If the theory is not satisfiable, stop and
exit. Else, generate join-tree T. Apply pair-wise consistency to T.

2. For each node R in T and for the join tree T' rooted at R compute
P°{T').

3. Output the union of all models computed.

Figure 5: Algorithm mini

number of minimal models in the output. For near-tree networks that can
be embedded in trees whose relation's arity p satisfies p = 0{logdn) mini's
complexity is 0(n'* • logn + n^ • I).

Proof: 1. We obtain this bound by adding together the cost of tree clus
tering (0(r •d^)) and the cost of computing p°{T) multiplied by r, since the
process is restarted from any node in the tree as a root. 2. Clearly, since
p = 0{logdn), k = 0{n) and since r < n we can substitute n for r, n for k,
and logdn for p, yielding an overall complexity of 0{l • + n* •logn) •

Algorithm mini does not necessarily produce all minimal models as the
following example shows.

Example 5.14 Consider the join-tree where the variables are {A, B,C, Z), E, F, G},
the scheme is a tree {ABC, BCDEF, EEC}, and the corresponding relations
are p{ABC) = {011,110,000}, p{BCDEF) = (11011,10100,00010), and
p{EFG) = {110,000,101}. The reader can verify that the tuple {0110110}
is a minimal model for this network, but its projection relative to any of the
relations is not minimal.

We can characterize the models generated by mini as follows:

Proposition 5.15 A minimal model t ^ T will be generated by algorithm
mini iff there is a tree ordering {S":,..., S'r} ofT such that for each 0 < i <r
tsi € min{p{Si)\Sp^i)).

Proof: The proof follows immediately from the definition of p°{T). •
Clearly, if all minimal models of a network have the property specified

in Proposition 5.15, all will be generated by mini. This condition has a
limited use in general since it is not identifiable from the network's input.
Since mini returns at least one model (if thenetwork is consistent), it returns
all minimal models of networks having just one unique minimal model. The
following theorem shows that networks having unique minimal models can
be identified in linear time.

Theorem 5.16 A tree-network has a unique minimal model iff every rela
tion in the network has a unique minimal tuple. In this case the minimal
model can be generated by joining all the minimal tuples of all the relations.^

Proof: Clearly, if t is a unique minimal model of the tree network, its
projection on each relation in the tree is a unique minimal model in that
relation.

The other direction is proved by induction on the number of relations
in the tree p{Si),p{Sn) (assume this is a tree ordering). Suppose each
relation 5, has a unique minimal tuple. By induction, p{Si),p{Sn-i) has
a unique minimal model m obtained by joining those tuples. Take t to be the
projection of m on 5„_i, and P = Sn-if\Sn- By induction, t is the minimal
tuple of p{Sn-i), and so there is no tuple in Sn which is smaller than t when
both are projected on P. Let t' be the unique minimal tuple ofp{Sn). Since
the network is pair-wise consistent and t' is unique, it must be the case that
tp = t'p. Moreover, since t' is a unique minimal model in p{Sn), t' must be
the only tuple that extends t to get a minimal model. So the whole tree has
a unique minimal model. •

5.2 Listing all minimal models

As we noted above, algorithm mini does not necessarily produce all minimal
models. We now present a second algorithm, min2 , that computes all the
minimal models. More accurately, the algorithm computes all conditional
minimal models of the network, when conditioning is with respect to the
variables that are common to each node and its neighbors in the tree. Once
all conditional minimal models of the root node are available the set of all

^remember that we assume pair-wise consistency all along.

minimal models can be generated by minimizing over their union. We will
show that the algorithm is output polynomial (almost linear) w.r.t. the set
of all conditional minimal models^ but may not be optimal relative to the
overall set of minimal models. The reason is that the set of all conditional

minimal models associated with the root node might be quite large and may
not be included in the final set of minimal models. It seems that the source

of complexity for this task even for trees is that the notion of minimal models

cannot be captured by a simple numerical function. In contrast, it was shown
that finding the minimal cardinality models, can be computed in linear time
for acyclic theories (see [DD88, FD94]).

In contrast to mini, algorithm min2 computes partial conditional min
imal models recursively while traversing the join-tree bottom up. When it
visits a node Si, and for each of its conditional minimal tuple s, (conditioned
on the variables common to the node and its neighbors), the algorithm prunes
partial models in the subtree rooted at Si that agree with Si and which cannot
be extended to a minimal model since they are not conditionally minimal.
Let Ti be the network rooted at node Si, let /, be the set of all variables
that Si shares with its parent node, and let F, be the set of all variables that
Si shares with its neighbors (i. e. children ajid parents). We associate each
node Si with two relations, 0,, and 0,. The relation 6i denotes the set of all
minimal models in T, conditioned on F,-. Namely,

0i = min{rel{Ti)\Fi).

The relation 0, denotes all minimal models conditioned on /j. Namely,

Qi = min{rel{Ti)\Ii).

Since /, C F,, 0, can be computed from 6i using;

0, = min{di\Ii) (2)

Note that for the root node. So, Oq is the set of all conditional minimal models
relative to the set of variables in Sq that appear in the children of Sq, while

00 is the set of all minimal models (conditioning is on the empty set).

Lemma 5.17 The relation 9i can be expressed recursively as a function of
0,0,(, where 5",,, ...,5,,, are Si's children in the tree:

9i = min{p{Si)\Fi) M0,,... N 0,j_. (3)

Proof: Assume 5, is the root uode and 5, S,. are its children. By
dehnition, for each 1 < j < 6

0-; = (4)
Suppose t e rnin{p{Si)\Fi) N0,^... M0-^ and we will show that t £ 6^ =
rmn{rel{Ti)\F,). Suppose by contradiction that there exist t' e rel{Ti) such
that =Jf. and t' x t. Since t and t' agree on either <'5. x ts„ which is
impossible because was computed by joining mm(/9(5.)|F,), or there must
be arelation rel{T) where Tis among {T,.,7;,} such that t's ~< ts, where
5 IS the set of variables in the subtree T. Since t and t' agree on Fi and
/i CFi, It must be the case that t'g-i, Xts-u, but that's a contradiction to
(4).

To prove the other direction, suppose t 6 rnin{rel{Ti)\Fi), we want to
show that t € mm(p(5.)|7'0 « ©u- ^ 0.v It is clear that

tsi € mm(/)(5,)|F,),

and it is also clear that for each in {T.i,

tsi^ € rnin{rel{Ti^)\Ii^)

where is the set of variables in the subtree T.v. Hence t is in 0.- and
hence in Oi as defined in (3). • '

Lemma 5.17 above allows abottom-up computation of 0,- starting at the
leaf nodes.

Algorithm min2 is summarized in Figure 6.

Example 5.18 Consider again the tree-network ofExample 5.12. Algorithm
min2 will perform the following computations:

Oab = Qab = rnin{p{AB)\{B}) = {00,01},
^CD = ©CD = rnin{p{CD)\{C}) = {01,10},
Obc = rnin{p{BC)\{BC}) 1X3 0^^ ^ Qcd =
{(ABCD) = 0001,0010,0101}.

0BC = mm({0001,0010,0101}) = {0010,0001}.

We see that although the theory has 7 models, only 3 intermediate models
were generated, each conditional minimal relative to one consistent tuple of
BC.

min2(r)
Input: A pair-wise consistent join tree Tn, and a tree ordering 5o,Sr.
Output: All minimal models of N, and all conditional minimal models, di.

1. For i = n to 1 traverse the tree bottom up. Lef 5„, be the child
nodes of 5, .

Si = min{p{Si)\Fi) 0,.^ (5)

0,- = min{9i\Ii)

2. Output: 00, the set of all minimal models.

Figure 6: Algorithm min2

Example 5.19 Consider the following network having 5 variables Xi,..., Xs,
with the relations:

piXiXi) = {01,10,11}
p{X2X3) = {00,01,11}

= {01,10,11}
piX^X^) = {00,01,11}
The network is clearly acyclic and we consider the join-tree in which X4X5
is the parent ofX3X5, and X3X5 is the parent of both X1X3 and X2X3. The
tree is rooted at node X4X5. For the leaf nodes X1X3 and X2X3 we have
that: (For abbreviation we use 9ij for 6x,x •)
^13 = 013 = rnin{p{XxX3)\{X3]) = {01,00}
^23 = 023 = rnin{plX2X3\{X3]) = {00,01}
035 = rnin{p{X3X5)\{X3,Xs]) N 0^3 N Ojs =
P{^zX^) M013 IX 023 =

{{XxX2X3X5) = {0010,1001,0011} }.
035 = mm(035|{A'5}) = {{X1X2X3XS) = {0010,1001,0011} }.
045 = min{p{X4X^)\{X5)) M035 = (A'iA:2X3A:4A'5) = {00100,10001,00101}.
045 = mm(045) = {00100,10001}.

We see that during computation we had at most 3 conditional minimal
models associated with each node, while this network has totally 19 models.

Theorem 5.20 Algorithm min2 computes all and only the minimal models
of its input theory.

Proof: We have shown that the algorithm compute the conditional min
imal models of the root relation. Since this is a superset of all the minimal
models, the minimization operation at the root ensure that all minimal mod
els be returned. •

We will bound the complexity of min2 (without the tree-clustering pre
processing step). First note that for each node Si there is a subset of tuples
of that node whose conditional minimal models will definitely be part of the
final set; those that are conditioned on minimal models within their own
relation.

Consider now those conditional minimal models that are conditioned on
non-minimal models in their own relations. Some of them will end up to be
globally minimal while others will be pruned. Can we bound the number of
these conditional minimal models that will be pruned? We conjecture that
the size of the pruned set can be bounded as a polynomial function of the
output. We summarize with the following theorem.

Theorem 5.21 Let m be a bound on the number of conditional minimal
models associated with any tuple in any node in the join-tree. Let s denotes
the amount ofspace used by min2. Then, the time complexity of the algo
rithm is O(s^) and its space complexity is s = 0{n •m•logm).

Proof: The time complexity of the algorithm can be bounded as follows.
Before computing a relation 9,, pair-wise consistency is applied implicitly
between 5, and each child node, requiring at most 0(3 • logs) steps® (each
relation size is bounded by s). Afterwards, the join operation is applied
starting from the parent relation p, and then joining with the 0jj of the
child node. This order of the join operations guarantees an output linear
performance. Thus, relation 0, is computed in linear time in its input and
output. The minimization operation applied when computing 0,- (equation
5) can be implemented in O(s^) when s bounds the size O,.

The space complexity of the algorithm is determined by the sizes of the
relations and 0^ in each node. Since for each Si 6i D 0,, the space

®Pair-wise consistency can be enforced in 0{r k logk), when k bounds the size ofeach
relation.

complexity is bounded by the space of^,'s which is 0{n •m). The parameter
m bounds the size of 0,, the set of all conditional minimal models of Si. •.

Corollary 5.22 Iffor every node S, the ratio between the number ofminimal
models, 0,, and the number of conditional minimal models 9i is bounded by
constant c, then the algorithm complexity is output polynomial.

Unfortunately, we do not have a way of determining in advance when
this condition will be satisfied. One possibility is to compute the number of
solutions associated with each tuple (which can be done in linear time for
trees) and use those numbers as bounds on the conditional minimal models.

We would like to argue at this point that the task of computing the
conditional minimal models as a primary task, is important for its own right.
When working in a distributed and dynamically changing environment, one
wish to keep around allconditional minimal models. Adding just one relation
to the join-tree or changing an existing one may make a complete set of
conditional minimal models, that were not globally minimal before, globally
minimal in the updated network.

6 Other related work

The idea of exploiting algorithms for Horn theories for doing inference was
already suggested in [Lov91] where it was shown how SLD resolution for
first-order Horn theories can be modified to be efficient for near-Horn the
ories. The virtue of our approach (relative to satisfiability solving) is that
it identifies parameters of the theories by which the worst-case complexity
can be bounded in advance. In [Cad92] there is a different partition of the
setofpropositionaJ theories into classes for which the problem offinding one
minimal model is tractable or NP-hard.

The properties of acyclic theories were also investigated in the past, pri
marily in relational databases [BFMY83] and in constraint networks [DP89].
It was shown that such theories are tractable for satisfiability and also for
the task offinding models with minimum number ofpositive literals [FD94].
A new tractable class for finding one minimal model, based on certain de
pendencies between positive and negative literals in each clause, was recently
introduced in [BEP94].

7 Conclusion

The task of finding all or some of the minimal models of a theory is at the
heart of many knowledge representation systems. This paper presents several
algorithms for this task and identifies new tractable classes. In particular,
it presents new algorithms for finding minimal models of a propositional
theory. The first group is effective for almost-Horn theories. In this group,
we have presented algorithm MinSAT which is efficient for theories with only
few non-Horn clauses, and algorithm VC-minSAT, which is efficient when
clauses in the theory are almost Horn — that is, have very few positive

literals. The second group of the algorithms is effective for theories that can
be represented as trees of small-arity relations. Algorithm mini is capable of
generating a subset of the minimal models, while algorithm min2 generates
all the minimal models.

Horn theories are used extensively in deductive databases and logic pro
grams (for surveys, see [GM92, KH92]). In disjunctive deductive databases,
we use rules of the form

Ai A... A V... V Bm (7)

where the A's and the B's are atoms in some first-order language. Disjunctive

databases permits disjunctive information and nondeterministic choices in
queries in a natural way (for examples, see [BEP94]). By most semantics it
is agreed that the set of all minimal models of a disjunctive database of the
form 7 above is the set of its intended models, and hence, for example, a clause

is entailed by a deductive database if it is true in all the minimal models of
the database [Min82]. Consequently, our almost Horn algorithms can be used
for query answering in deductive databases. Specifically, algorithm MinSAT
presented in Section 4.1, will be effective for deductive database having only
few disjunctive rules. Indeed, it is likely that only a small fraction of the
database will consist of disjunctive rules, since these rules are quite expressive
and are saved for raxe occasions (see also [RLS92]).

Acyclic networks aud almost tree networks are likely to appear when
the knowledge is relatively sparse or specially structured. Areas like model-
based circuit diagnosis or knowledge-bases involving temporal information
like planning and scheduling, are likely candidates. For instance, it was shown
that a theory describing an n-bit adder can be represented by a chain-tree
where each relation has arity at most 5. For more information see [FD94].

The algorithms outlined here and elsewhere provide the theoretical foun
dation for computing minimal models. The ultimate value of these algo
rithms should be evaluated empirically, on a set of real-world problems (e.g,
in diagnosis or logic programming).

Appendix

A Tree-clustering

Constraint-based reasoning is a paradigm for formulating knowledge in terms

of a set of constraints on some entities, without specifying methods for satis

fying such constraints. Some techniques for testing the satisfiability of such
constraints, and for finding a setting that will satisfy all the constraints spec
ified, exploit the structure of the problem through the notion of a constraint
graph.

The problem of the satisfiability of a propositional theory can be also
formulated as a constraint satisfaction problem (CSP). For a propositional
theory, the constraint graph associates a node with each propositional letter
and connects any two nodes whose associated letters appeax in the same
propositional sentence.

Various parameters of constraints graph were shown as crucially related to
the complexity of solving CSP and hence to solving the satisfiability problem.
These include the induced width, w*, the size of the cycle-cutset, the depth

of a depth-first-search spanning tree of this graph, and the size of the non-
separable components ([Fre85]),[DP88], [Dec90]). It can be shown that the
worst-case complexity of deciding consistency is polynomially bounded by
any one of these parameters. Since these parameters can be bounded easily
by a simple processing of the graph, they can be used for assessing complexity
ahead of time. For instance, when the constraint graph is a tree, satisfiability
can be answered in linear time.

The tree-clustering scheme has a tree-building phase and a query-processing
phase. The complexity of the former is exponentially dependent on the
sparsenessof the constraint graph, whilethe complexity of the latter is always
linear in the size of the database generated by the tree-building preprocessing
phase. Consequently, even when building the tree is computationally expen
sive, it may be justified when the size of the resulting tree is manageable and
many queries on the same theory are expected. The algorithm is summa
rized in Figure 7. It uses the triangulation algorithm, which transforms any
graph into a chordal® graph by adding edges to it [TY84]. The triangulation

®A graph is chordal if every cycle of length at least four has a chord.

Tree building(T', G)

input: A prepositional theory T and its constraint graph G.

output: A tree representation of all the models of T.

1. Use the triangulation algorithm to generate a chordal constraint graph.

2. Identify all the maximal cliques in the graph. Let Ci,...,C*t be all such
cliques indexed by the rank of their highest nodes.

3. Connect each C, to an ancestor Cj {j < i) with whom it shares the
largest set of letters. The resulting graph is called a join tree.

4. Compute Mi, the set of models over Ci that satisfy the set of all sen
tences from T composed only of letters in C,.

5. For each Ci and for each Cj adjacent to Ci in the join tree, delete from
Mi every model M that has no model in Mj that agrees with it on the
set of their common letters (this amounts to performing arc consistency
on the join tree). •

Figure 7: Propositional-tree-clustering:Tree-building phase

algorithm consists of two steps:

1. Select an ordering for the nodes (various heuristics for good orderings
are available).

2. Fill in edges recursively between any two nonadjacent nodes that are
connected via nodes higher up in the ordering.

Since the most costly operation within the tree-building algorithm is gen
erating all the submodels of each clique (step 5), the time and space com
plexity of this preliminary phase is 0(|T| *n *21 '̂), where \C\ is the size of
the largest clique, |r| the size of the theory and n is the number of letters
used in T. It can be shown that |C| = u;* -|- 1, where w* is the width of

^The width ofa node inanordered graph is the number ofedges connecting it to nodes

the ordered chordal graph (also called induced width). As a result, for classes
having a bounded induced width., this method is tractable.

Once the tree is built it always allows an efficient query-answering process,
that is, the cost of answering many types of queries is linear in the size of the
tree generated. The query-processing phase is described below (m bounds
the number of submodels for each clique):

Prepositional Tree-Clustering - Query Processing

1. r is satisfiable if none of its Ad.'s is empty, a property that can be
checked in 0{n).

2. To see whether there is a model in which some letter P is true (false),
we arbitrarily select a clique containing P and test whether one of
its models satisfies (does not satisfy) P. This amounts to scanning a
column in a table, and thus will be linear in tn. To check whether a
set of letters A is satisfied by some common model, we test whether all
the letters belong to one cluster Ci. If so, we check whether there is
a model in Mi that satisfies A. Otherwise, if the letters are scattered
over several cliques, we temporarily eliminate from each such clique
all models that disagree with A, and then re-apply arc consistency. A
model satisfying Aexists iff none of the resulting Af,''s becomes empty.
The complexity of this step is 0{n *m* logm). •

lower in the ordering. The width of an ordering is the maximum width of nodes in that
ordering, and the width ofa graph is the minimal width ofall its orderings

Acknowledgments

We thank Yousri El Fattah, Itay Meiri, and Judea Pearl for useful discussions
and helpful commentson earlier drafts of this paper. We have benefited from
discussions with Adam Grove and Daphne Roller. Thanks also to Michelle
Bonnice for editing, and to one anonymous referee for detailed and helpful
comments. In particular, the example in comment 4.8 is due to that referee.
The first author also wishes to thank the computer science department at
Tel-Aviv University, Israel for allowing her to use its resources while staying
in Tel-Aviv.

References

[BEP94] Rachel Ben-Eliyahu and Luigi Palopoli. Reasoning with minimal
models: Efficient algorithms and applications. In Jon Doyle,
Erik Sandewall, and Pietro Torasso, editors, KR-94: Proceedings
of the fourth international conference on principles of knowledge
representation and reasoning, pages 39-50, San Francisco, CA,
1994. Morgan Kaufmann.

[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the de
sirability of acyclic database schemes. J. ACM, 30(3):479-513,
1983.

[BNNS91] C. Bell, A. Nerode, R.T. Ng, and V.S. Subrahmajiian. Computa
tion and implementation of non-monotonic deductive databases.

Technical Report CS-TR-2801, University of Maryland, 1991.

[Cad92] Marco Cadoli. On the complexity of model finding for nonmono
tonic propositional logics. In A. Marchetti Spaccamela, P. Men-
trasti, and M. Venturini Zilli, editors. Proceedings of the 4th Ital
ian conference on theoretical computer science, pages 125-139.
World Scientific Publishing Co., October 1992.

[DD88] R. Dechter and A. Dechter. Beleif maintenance in dynamic con
straint networks. In AAAI-88: Proceedings of the 7th national

conference on artificial intelligence, pages 37-42, St. Paul, MN,
USA, August 1988.

Mukesh Dalai and David W. Etherington. A hierarchy of
tractable satisfiability problems. Information Processing Letters,
44:173-180, 1992.

Rina Dechter. Enhancement schemes for constraint processing:
Backjumping, learning, and cutset decomposition. Artificial In
telligence, 41:273-312, 1990.

Rina Dechter. Constraint networks. In Stuart C. Shapiro, edi
tor, Encyclopedia of Artificial Intelligence, pages 276-285. John
Wiley, 2nd edition, 1992.

William F. Dowling and Jean H. Gallier. Linear timealgorithms
for testing the satisfiability of propositional horn formulae. Jour
nal of Logic Programming, 3:267-284, 1984.

J. de Kleer, A.K. Mackworth, and R. Reiter. Chajacterizing
diagnosis and systems. Artificial Intelligence, 56:197-222, 1992.

A.K. Mackworth, and E. Freuder. The complexity of some poly-
nomilal network consistencyalgorithms for constraint satisfaction
problems. Artificial Intelligence, 25:65-74, 1985.

J. de Kleer and B.C. Williams. Diagnosis multiplefaults. Artifi
cial Intelligence, 32:97-130, 1987.

Rina Dechter and Judea Pearl. Network-based heuristics for

constraint satisfaction problems. Artificial Intelligence, 34:1-38,
1988.

Rina Dechter and Judea Pearl. Tree clustering for constraint
networks. Artificial Intelligence, 38:353-366, 1989.

Y. El Fattah and R. Dechter. Diagnosing tree-decomposable cir
cuits. Technical Report 94-18, University of California, Irvine,
April 1994. A preliminary version in DX-92: Proceedings of the
workshop on Principles of Diagnosis, October 1992.

E.C. Freuder. A sufficient condition for backtrack-bounded

search. Journal of the ACM, 32(4):755-761, 1985.

F. Gavril. See page 134 in Michael R. Garey and David S. John
son, "Computers and intractability, A guide to the theory of NP-
completeness", W. H. Freeman and Company, 1979.

Michael Gelfond and Vladimir Lifschitz. Clcissical negation in
logic programs and disjunctive databases. New Generation Com
puting, 9:365-385, 1991.

John Grant and Jack Minker. Deductive database systems. In
Stuart C. Shapiro, editor. Encyclopedia of Artificial Intelligence,
pages 320-328. John Wiley & Sons, 2nd edition, 1992.

Giorgio Gallo and Maria Grazia Scutella. Polynomially solvable
satisfiability problems. Information Processing Letters, 29:221-
227, 1988.

A. Itai and J. A. Makowsky. Unification as a complexity measure
for logic programming. JournalofLogic Programming, 4:105-117,
1987.

R. M. Karp. Reducibility among combinatorial problems. In
R. E. Miller and J. W. Thatcher, editors. Complexity of Computer
Computations. Plenum Press, New York, 1972.

R.A. Kowalski and C.J. Hogger. Logic programming. In Stuart C.
Shapiro, editor. Encyclopedia ofArtificial Intelligence, pages 873-
891. John Wiley & Sons, 2nd edition, 1992.

Vladimir Lifshitz. Computing circumscription. In IJCAI-85:
Proceedings of the international joint conference on AI, pages
121-127, 1985.

Donald W. Loveland. Neax-horn prolog and beyond. Journal of
Automated Reasoning, 7:1-26, 1991.

D. Maier. The Theory of Relational Databases. Computer Science
Press, Rockville, MD, 1983.

John McCarthy. Circumscription - a form of non-monotonic rea
soning. Artificial Intelligence, 13:27-39, 1980.

[McC86] John McCarthy. Application of circumscription to formaliz
ing common-sense knowledge. Artificial Intelligence, 28:89-116,
1986.

[Min82] Jack Minker. On indefinite databases and the closed world as
sumption. In Proceedings of the 6th conference on automated
deduction, Lecture Notes in Computer Science Vol. 138, pages
292-308. Springer-Verlag, 1982.

[Rei87] Raymond Reiter. Atheory of diagnosis from first principles. Ar
tificial Intelligence, 32:57-95, 1987.

[RLS92] David W. Reed, Donald W. Loveland, and Bruce T. Smith. The
near-horn approach to disjunctive logic programming. In Pro
ceedings ofthe 2nd workshop on extensions oflogic programming,
Lecture Notes in Artificial Intelligence Vol. 596. Springer-Verlag,
1992.

[SES76] A. Itai A. S. Even and A. Shamir. On the complexity of timetable
and multi-commodity flow. SIAM journal of Computing, 5:691-
703, 1976.

[TY84] Robert E. Tarjan and M. Yannakakis. Simple lineeir-time algo
rithms to test chordality ofgraphs, test acyclicity of hypergraphs
and selectively reduce acyclic hypergraphs. SIAM Journal on
Computing, 13(3):566-579, 1984.

