
On Computing Mobile Agent Routes
for Data Fusion in Distributed Sensor Networks
Qishi Wu, Member, IEEE, Nageswara S.V. Rao, Senior Member, IEEE, Jacob Barhen, Member, IEEE,

S. Sitharama Iyengar, Fellow, IEEE, Vijay K. Vaishnavi, Fellow, IEEE, Hairong Qi, Member, IEEE, and

Krishnendu Chakrabarty, Senior Member, IEEE

Abstract—The problem of computing a route for a mobile agent that incrementally fuses the data as it visits the nodes in a distributed

sensor network is considered. The order of nodes visited along the route has a significant impact on the quality and cost of fused data,

which, in turn, impacts the main objective of the sensor network, such as target classification or tracking. We present a simplified

analytical model for a distributed sensor network and formulate the route computation problem in terms of maximizing an objective

function, which is directly proportional to the received signal strength and inversely proportional to the path loss and energy

consumption. We show this problem to be NP-complete and propose a genetic algorithm to compute an approximate solution by

suitably employing a two-level encoding scheme and genetic operators tailored to the objective function. We present simulation results

for networks with different node sizes and sensor distributions, which demonstrate the superior performance of our algorithm over two

existing heuristics, namely, local closest first and global closest first methods.

Index Terms—Genetic algorithms, mobile agents, distributed sensor networks.

�

1 INTRODUCTION

MULTIPLE sensor systems have been the target of active
research since the early 1990s [1] with a particular

emphasis on the information fusion methods for distributed
sensor networks (DSNs) [2], [3], [4]. Recent developments in
the sensor, networking, and computing areas now make it
possible to deploy a large number of inexpensive and small
sensors to “achieve quality through quantity” in complex
applications. In an important subclass of DSNs that are
deployed for remote operations in large unstructured
geographical areas, wireless networks with low bandwidth
are usually the only means of communication among the
sensors. These sensors are typically lightweight with
limited processing power, battery capacity, and commu-
nication bandwidth. The communication tasks consume the
limited power available at such sensor nodes and, therefore,
in order to ensure their sustained operations, the power
consumption must be kept to a minimum. Furthermore, the
massively deployed sensors typically generate a huge

amount of data of various modalities, which makes it
critical to collect only the most important data and to collect
it efficiently. In addition, despite the abundance of
deployed sensors, not all sensor data is critical to ensuring
the quality of fused information such as adequate detection
energy for target detection or tracking.

In conventional fusion architectures, all the sensor data is
sent to a central location where it is fused. But, the
transmission of noncritical sensor data in military DSN
deployments increases the risk of being detected in addition
to consuming the scarce resources such as battery power
and network bandwidth. To meet these new challenges, the
concept of mobile agent-based distributed sensor networks
(MADSNs) has been proposed by Qi et al. [5] wherein a
mobile agent selectively visits the sensors and incrementally
fuses the appropriate measurement data. Mobile agents are
special programs that can be dispatched from a source node
to be executed at remote nodes. Upon arrival at a remote
node, a mobile agent presents its credentials, obtains access
to local services and data to collect needed information or
perform certain actions, and then departs with the results.
One of the most important aspects of mobile agents is the
security, which is not addressed here, but is being actively
investigated [6], [7]. The transfer of partial fusion results by
a mobile agent may still have the risk of being spied on with
hostile intent; the serial data collection process employed by
the mobile agent obviously decreases the chance of
exposing the individual raw data. Although there are
advantages and disadvantages of using mobile agents [8]
in a particular scenario, their successful applications range
from e-commerce [9] to military situation awareness [10].
They are found to be particularly useful for data fusion
tasks in DSN. The motivations for using mobile agents in
DSN have been extensively studied [5]. For a particular
multiresolution data integration application, it is shown

740 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

. Q. Wu, N.S.V. Rao, and J. Barhen are with the Center for Engineering
Science Advanced Research, Computer Science and Mathematics Division,
Oak Ridge National Laboratory, One Bethel Valley Road, PO Box 2008,
MS-6016, Oak Ridge, TN 37831-6016.
E-mail: {wuqn, raons, barhen}@ornl.gov.

. S.S. Iyengar is with the Department of Computer Science, Louisiana State
University, Baton Rouge, LA 70803. Email: iyengar@bit.csc.lsu.edu.

. V.K. Vaishnavi is with the Department of Computer Information Systems,
Georgia State University, PO Box 4015, Atlanta, GA 30302-4015.
E-mail: vvaishna@gsu.edu.

. H. Qi is with the Electrical and Computer Engineering Department,
University of Tennessee, Knoxville, TN 37996. E-mail: hqi@utk.edu.

. K. Chakrabarty is with the Department of Electrical and Computer
Engineering, Duke University, Box 90291, 130 Hudson Hall, Durham,
NC 27708. E-mail: krish@ee.duke.edu.

Manuscript received 11 June 2003; revised 4 Dec. 2003; accepted 16 Jan. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0092-0603.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

that a mobile-agent implementation saves up to 90 percent
of the data transfer time due to savings in avoiding the raw
data transfers. Also, the conditions under which an
MADSN performs better than a DSN are analyzed and
the conditions for an optimum performance of the former
are determined in [5]. In this paper, we direct our research
efforts to the networking aspects of MADSNs with a focus
on a new routing method for mobile agents.

The order and number of nodes on the route traversed
by a mobile agent determine the energy consumption, path
loss, and detection accuracy and, hence, have a significant
impact on the overall performance of a MADSN. Low
energy consumption, low path loss, and high detection
accuracy are always the main goals of a DSN. The
computation of a suitable route, in practice, involves a
trade off between the cost (energy consumption and path
loss) and the benefit (detection accuracy): Visiting more
sensors improves the quality of fused data, but also raises
the communication and computing overheads. Previously,
algorithms based on the local closest first (LCF) and global
closest first (GCF) heuristics have been used to compute
routes for mobile agents in MADSNs [5]. Their performance
has been quite satisfactory for small DSNs that are system-
atically deployed in simple environments. However, their
performance deteriorates as the network size grows and the
sensor distributions become more complicated. In some
practical DSNs deployed for target detection and tracking,
these two heuristics could generate particularly unsatisfac-
tory solutions since they only consider the spatial distances
between sensor nodes. In these applications, several other
factors, such as sensor detection signal levels and link
power consumption, play a very significant role and,
indeed, could be far more important than the physical
distance alone. It is very critical to consider all these factors
simultaneously in the data fusion process for computing a
satisfactory route of a mobile agent.

We consider DSNs with geographically distributed
sensors that are deployed for the purposes of target
classification and tracking, both of which require the
fusion of measurements from a number of sensors. The
measurements from the sensors that receive strong signals
from the target are often most useful in the fusion process
and, thus, the fusion step is preceded by identifying a
subset of sensor nodes that “strongly” indicate the
presence of a target. By identifying such sensor nodes,
the complexity and amount of sensor data for fusion
operation can be significantly reduced. Thus, we focus on
identifying a route for a mobile agent through such
sensor nodes by utilizing the signal strengths of the
sensor nodes. The mobile agent then visits these nodes
and performs the required fusion of the sensor informa-
tion available at these nodes. Each sensor can transmit
messages with certain energy costs, and the transmissions
are subject to wireless propagation losses. We formulate
the mobile agent routing problem (MARP) in an MADSN as
a combinatorial optimization problem involving the cost
of communication, path loss due to wireless propagation,
and signal energy received by the sensors. The overall
routing objective is to maximize the sum of the signal
energy received at the visited nodes while minimizing the

power needed for communication and the path losses. In
particular, the objective function is directly proportional
to the signal energy and inversely proportional to the
path loss and cost of communication. We show MARP to
be NP-complete by using a reduction from a variation of
the 3D traveling salesman problem. We then propose an
approximate solution based on a genetic algorithm (GA)
that employs a two-level encoding scheme and genetic
operators tailored to the objective function, which aims to
achieve the total signal energy equal to or above a given
level. Simulation results for networks with different node
sizes and sensor distributions show that our algorithm
has superior performances compared to LCF and GCF.

The rest of the paper is organized as follows: In Section 2,
models for sensor nodes and wireless communication links
are described and then the mobile agent routing problem is
formulated. The details of the genetic algorithm are
discussed in Section 3, including a two-level encoding
scheme, derivation of the objective function, and imple-
mentations of genetic operators. Simulation results are
presented and discussed in Section 4. Concluding remarks
are provided in Section 5.

2 MOBILE AGENT ROUTING PROBLEM

We now briefly describe the architecture of an MADSN to
motivate the formulation of the route optimization problem.
An MADSN typically consists of three types of components:
processing elements (PE), sensor nodes, and communication
network [11]. The processing elements and sensors are
usually interconnected via a wireless communication net-
work. A group of neighboring sensor nodes that are
commanded by a single PE forms a cluster.

2.1 Sensor Nodes

A sensor node, also referred to as a leaf node, is the basic
functional unit for data collection in an MADSN. A sensor
node may have several channels with different sensory
devices connected to each of them. Sensor nodes are
geographically distributed and collect measurements of
different modalities such as acoustic, seismic, and infrared
from the environment. The data acquisition is controlled by
a sampling subsystem, which provides the acquired data to
the main system processor [12]. The signal energy from
each channel can be detected individually and processed in
the analog front end. A mobile agent migrates among the
sensor nodes via the network, integrates local data with a
desired resolution sequentially, and carries the final result
to the originating PE. The fused data may be used to derive
appropriate inferences about the environment based on the
application. The setup time of a PE accounts for loading the
mobile agent code and performing other initialization tasks.

The amount of signal energy that reaches an individual
sensor is an effective indicator of how close the node is to a
potential target. Once the signal is captured and processed
by a sensor node, the strength level of the detected signal is
broadcast (through an omnidirectional antenna) to the
whole cluster so that a PE in any location has a knowledge
of various levels of signal energy detected by all active
sensor nodes within the coverage area. In target detection
applications, a leaf node with higher signal energy carries

WU ET AL.: ON COMPUTING MOBILE AGENT ROUTES FOR DATA FUSION IN DISTRIBUTED SENSOR NETWORKS 741

more information and should have higher priority of being

visited. To simplify computation, we use a quantitative

value to represent the level of signal energy detected by a
local sensor node.

2.2 Communication Links

Wireless communication links need to be established

between neighboring nodes as the mobile agent migrates
along a route. The embedded RF modems on sensor nodes

provide such a networking capability with low power
requirement. For example, on WINS NG 2.0 platform [12],

each node is equipped with two RF modems, both of which

support 2.4 GHz frequency-hopped spread spectrum (FHSS)
communication. The different clusters select different “net-

work numbers,” which correspond to separate hopping
pseudonoise sequences to avoid interferences. We define an

abstract link class with only the parameters we are

interested in. The detailed radio configuration and wireless
link establishment is beyond the scope of the paper.

It is worthwhile to note that the message transmission

time between two sensor nodes depends not only on the
physical distance between them, but also on the channel

bandwidth and the data packet loss rate as well as the size

of the message, which includes partially integrated data and
mobile agent code itself. In general, the electromagnetic

propagation time is almost negligible in short-range
wireless communication. Hence, the physical distance is

not explicitly considered in our model, but is incorporated
as a part of the path loss representing the signal attenuation.

The received signal strength below a certain level due to

path loss may not be acceptable. The system loss factor is a
parameter of the free space propagation model, which is not

necessarily related to the physical propagation [13].

2.3 Mobile Agent Routing

A mobile agent is dispatched from a processing element and
is expected to visit a subset of sensors within the cluster to

fuse data collected in the coverage area. Generally, the more
sensors visited, the higher the accuracy achieved using any

reasonable data fusion algorithm will be [14]. But, it is

important to select an appropriate route so that the required
signal energy level can be achieved with a low cost in terms

of total energy consumption and path loss.

An MADSN with a simple configuration is shown in
Fig. 1 for illustrative purposes. The sensor network
contains one PE, labeled as S0, and N ¼ 10 leaf nodes,
labeled Si; i ¼ 1; 2; . . . ; N , one of which is down. The
sensor nodes are spatially distributed in a surveillance
region of interest, each of which is responsible for
collecting measurements in the environment. The signal
energy detected by sensor node Si is denoted by
si; i ¼ 1; 2; . . . ; N . Sensor node Si takes time ti;acq for data
acquisition and time ti;proc for data processing. The
wireless communication link with physical distance di;j
between sensor node Si and Sj has channel width W bits
and operates at frequency B Hz. Some sensor nodes may
be down temporarily due to intermittent failures, as sensor
S9 in Fig 1.

The routing objective is to find a path for a mobile agent
that satisfies the desired detection accuracy while minimiz-
ing the energy consumption and path loss. The required
path is computed based on the current state of DSN and the
mobile agent traverses the nodes along the path while
performing the fusion operation. The energy consumption
depends on the processor operational power and computa-
tion time and the path loss is directly related to the physical
length of the selected path. We define these quantities in the
next section.

2.4 Objective Function

The objective function for the mobile agent routing problem
is based on three aspects of a routing path: energy
consumption, path loss, and detected signal energy:

1. Energy consumption. The energy consumption at
a sensor node is determined by the processing
speed and the computation time. If an energy-
driven Real-Time Operating System (RTOS) is
installed on the sensor node, the processor speed
can be dynamically scaled depending on workload
and task deadlines [15]. For wireless message
transmissions, the energy consumption depends
on the sensor’s transmission power and message
transmission time. We assume that the message
includes the mobile agent code of size M bits and
measured data of size D bits. For a given desired
resolution, a fixed data size D is used to store the

742 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 1. A simple MADSN with one PE and 10 leaf nodes.

partially integrated data at each sensor. The time
for the message to be transmitted over a wireless
channel of bandwidth BW bps is calculated as:

tmsg ¼
M þD

BW

� �

:

The energy consumption EC of path P , consisting of
nodes P ½0�; P ½1�; . . . ; P ½H � 1�, is defined as:

ECðP Þ ¼ a � ðt0;setup þ t0;procÞ � F
2
0 þ P0;t � tmsg

þ
X

H�1

k¼1

�

b �

�

ðtP ½k�:acq þ tP ½k�;procÞ � F
2
P ½k�

�

þ PP ½k�;t

� tmsg

�

;

where the kth leaf node SP ½k� on path P has data
acquisition time tP ½k�;acq, data processing time tP ½k�;proc,
operational level FP ½k�, transmitting power PP ½k�;t; and
node P ½0� ¼ 0 corresponds to the PE. Here, the
operational level refers to the processor operating
frequency, the square of which determines its
corresponding operating power level. Coefficients a

and b are suitably chosen to “normalize” the
operational level to its power level.

2. Path loss. The power received by sensor Sj has the
following relation with the power transmitted by
sensor Si according to the Friis free space propaga-
tion model [13]:

Pj;rðdi;jÞ ¼ Pi;t �
Gi;tGj;r�

2

ð4�Þ2d2i;j�
;

where Gi;t is the gain of sensor Si as a transmitter
and Gj;r is the gain of sensor Sj as a receiver.
Wavelength � is the ratio of speed of light c and
carrier frequency f and � is the system loss factor.
The physical distance di;j between Si and Sj is
computed from their spatial locations. Path loss (PL)
represents the signal attenuation as a positive
quantity measured in dB and is defined as the
difference (in dB) between the effective transmitted
power and the received power:

PLðdi;jÞ ¼ 10 log
Pi;t

Pj;r
¼ 10 log

ð4�Þ2�

Gi;tGj;r�2
� d2i;j

" #

:

Therefore, the total path loss along path P can be
calculated as:

PLðP Þ ¼
X

H�1

k¼0

�

10 log

�

ð4�Þ2�

GP ½k�;tGP ½ðkþ1Þ mod H�;r�2

� d2P ½k�;P ½ðkþ1Þ mod H�

��

:

3. Signal energy. A sensor node detects a certain
amount of energy emitted by the potential target,
which may be used by a mobile agent for data
integration. A mobile agent always tries to accumu-
late as much signal energy as possible for accurate

decision in target detection. The sum of the detected
signal energy SE along path P is defined as:

SEðP Þ ¼
X

H�1

k¼1

sP ½k�;

where sP ½k� is the signal energy detected by the
kth sensor node on path P .

By combining the above three aspects of a routing path,
we consider an objective function as follows:

OðP Þ ¼ SEðP Þ
1

ECðP Þ
þ

1

PLðP Þ

� �

;

wherein the terms SEðP Þ, ECðP Þ, and PLðP Þ are assumed
to be “normalized” to appropriately reflect the contribution
by various loss terms. Intuitively, this objective function
prefers paths with higher signal energies by penalizing
those with high path losses and energy consumption. For
the detection applications, we are interested in concluding
the presence of a target in the monitoring area, which is
determined by a threshold level of detected energy. For
example, this threshold can be determined to maximize the
probability of detection while keeping the false alarm rate
below a specified quantity. In particular, a path providing
high signal energy at the expense of a considerable amount
of energy consumption and path loss may not be preferable.
Note that alternative objective functions may be used as
long as they correctly reflect the trade off between detected
signal energy, energy consumption, and path loss.

To facilitate the design of the genetic algorithm in
Section 3, we define a fitness function based on the above
objective function as follows:

fðP Þ ¼ OðP Þ þ g;

where g is the penalty function for overrunning the
constraint and is defined by:

g ¼
0; SEðP Þ � E
� � ðSEðP Þ �EÞ=E SEðP Þ < E;

�

where E is the desired detection accuracy or signal energy
level and � is a properly selected penalty coefficient.

2.5 NP-Completeness of Mobile Agent Routing
Problem

An MADSN can be represented by a completely connected
graph G ¼ ðV ;EÞ, where each node corresponds to a sensor
node specified by its location in plane and each edge
corresponds to a communication link. In addition, each
node is associated with two parameters representing signal
level and energy consumption and the path loss is
associated with each edge.

The mobile agent routing problem (MARP) is to compute a
path P in a MADSN such that OðP Þ > � and the k-hop mobile
agent routing problem (k-MARP) additionally requires that
the path P has exactly k edges. We first show that MARP
and k-MARP are polynomially equivalent and then show
that the latter is NP-complete by reducing the 3D Maximum
Traveling Salesman Problem (3MTSP) to it (thus establishing
the NP-completeness of MARP).

WU ET AL.: ON COMPUTING MOBILE AGENT ROUTES FOR DATA FUSION IN DISTRIBUTED SENSOR NETWORKS 743

An instance of MARP can be reduced to n instances of

k-MARP, namely, 1-MARP; 2-MARP; . . . ; n-MARP, such

that the answer to the former is obtained by simply OR-

ing those from all n instances. A solution to the former

exists if and only one of the instances yields a solution and,

thus, MARP is polynomially reducible to k-MARP. To show

the equivalence, we also need to show the reverse. Given an

instance of k-MARP, we generate an instance of MARP by

defining its parameters as follows:

EC1ðP Þ ¼ ECðP Þ þ k�1; PL1ðP Þ ¼ PL� k�2;

and SE1ðP Þ ¼ ðk�2 þ PLminÞ;

where �1 and �2 satisfy the following conditions:

�1 ¼ ðECmin � SEmax=�Þ=k

�2 ¼ ðPLmax � SEmin=�Þ=k;

k�2 þ PLmin > 1;

where

ECmin ¼ min
e2E

ECðeÞ;

PLmax ¼ max
e2E

PLðeÞ;

SEmax ¼ max
v2V

SEðvÞ;

and SEmin ¼ min
v2V

SEðvÞ.

These conditions ensure that a solution of MARP yields a

path P with k edges and satisfies the condition OðP Þ > � if

and only if k-MARP has a solution. This establishes the

polynomial equivalence of MARP and k-MARP.
We now show the polynomial reduction from k-MARP

to MTSP. The definition of MTSP is as follows: Given a

completely connected graph G ¼ ðV ;EÞ and a nonnega-

tive real number �, does there exist a closed-loop path P ,

with nodes P ½0�; P ½1�; . . . ; P ½n� 1�; P ½n� ¼ P ½0� such that
Pn�1

i¼0 l3ðP ½i�; P ½ðiþ 1Þ mod n�Þ � �? Here, each vertex cor-

responds to a point in three-dimensional Euclidean space

R3. The starting point vP ½0� and ending point vP ½n� in the

space refer to the same vertex in the graph.
The quantity

l3ðP ½i�; P ½iþ 1�Þ ¼
ffi

ðxP ½i� � xP ½iþ1�Þ
2 þ ðyP ½i� � yP ½iþ1�Þ

2 þ ðzP ½i� � zP ½iþ1�Þ
2

q

is the Euclidean distance between two adjacent vertices P ½i�

and P ½iþ 1� on path P . The MTSP under Euclidean

distances in Rd for any fixed d � 3 is proven to be NP-hard

in [16]. The conventional traveling salesman problem

requires that path length be minimized and the cities are

defined for dimension d ¼ 2. On the contrary, 3MTSP

requires maximization of path length and is known to be

intractable only in three or higher dimensions. Note that

k-MARP requires the maximization of OðP Þ, but is defined

for d ¼ 2, which makes a direct reduction from 3MTSP

somewhat nontrivial.
Given an instance of 3MTSP, we generate an instance of

k-MARP as follows: We create a graph for the k-MARP with

k ¼ n using only the x and y coordinates of the vertices of

MTSP (without the loss of generality, we assume that all
coordinate values are distinct). We consider the objective

OðP Þ ¼
SEðP Þ

PLðP Þ
¼

Pk�1
i¼0 sP ½i�

PLðP Þ

by ignoring the energy consumption component. Recall that
the path loss is given by

PLðP Þ ¼
X

k�1

i¼0

10 � logðA � d2P ½i�;P ½ðiþ1Þ mod k�Þ:

Let eP ½i� represent the edge between vertices P ½i� and
P ½iþ 1� on path P . We define

sP ½i� ¼ sðeP ½i�Þ

¼ l3ðP ½i�; P ½iþ 1�Þ þ �

10 � logðA � d2P ½i�;P ½ðiþ1Þ mod k�Þ
�

�
�

k
:

A solution to the k-MARP is a path P with k hops such that

OðP Þ ¼

Pk�1
i¼0 sP ½i�

Pk�1
i¼0 dðvP ½i�; vP ½iþ1�Þ

� �;

� is a given nonnegative real number. After reorganizing,
the objective function can be rewritten as:

X

k�1

i¼0

ðsðeP ½i� � � � dðeP ½i�ÞÞ ¼

X

k�1

i¼0

ðl3ðP ½i�; P ½ðiþ 1Þ mod k�Þ � �=kÞ > 0;

which guarantees the condition

X

n�1

i¼0

ðl3ðP ½i�; P ½ðiþ 1Þ mod n�Þ � �

necessary for a solution to the corresponding MTSP
instance.

On the other hand, if there exists a solution to the MTSP,
i.e., a closed-loop path P consisting of n edges such that
Pn�1

i¼0 ðl3ðP ½i�; P ½ðiþ 1Þ mod k�Þ � �, this path can be used to
solve the corresponding n-MARP such that OðP Þ � � . Note
that the above reduction from MTSP to n-MARP is
polynomial-time computable and, hence, NP-completeness
of the latter follows from that of the former.

The restriction of n-MARP is studied in [5], where two
heuristics LCF and GCF are proposed. In the next section,
we propose a genetic algorithm method for MARP and
empirically show that it outperforms LCF and GCF.

3 GENETIC ALGORITHM FOR MOBILE AGENT

ROUTING PROBLEM

3.1 Introduction to Genetic Algorithm

A genetic algorithm is a computational mechanism that
“simulates” the process of genetic selection and natural
elimination in biological evolution. Pioneering work in
this field was conducted by Holland in the 1960s [17],
[18]. Compared to traditional search algorithms in
artificial intelligence (AI), a genetic algorithm is often able
to automatically acquire and accumulate implicit knowl-
edge about the search space during its search process and

744 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

self-adaptively control the search process through a
random optimization technique. It is often able to yield
the global optimal solution and avoid the combinatorial
explosion which may occur if the inherent knowledge
within the search space is ignored. It has been frequently
used to solve combinatorial optimization problems and
nonlinear problems with complicated constraints or
nondifferentiable objective functions.

3.2 Adaptive Routing Strategy Based on Genetic
Algorithm

Mobile agent routing algorithms can be classified as
dynamic or static routing according to the place where
routing decisions are made. A dynamic method determines
the route locally on the fly at each hop of the migration of a
mobile agent among sensor nodes, while a static method
uses centralized routing, which computes the route at the PE
node in advance of mobile agent migration. For a sensor
network application at hand, one has to judiciously choose
between the dynamic and static methods. For example, it
might be sufficient to use a static routing for target
classification, but a target tracking task might require a
dynamic routing to follow a moving target. In this paper, we
propose an event-driven adaptive method to implement a
semidynamic routing strategy based on a two-level genetic
algorithm whose activity diagram is illustrated in Fig 2.

The fitness function constructed earlier is intended to
meet the desired detection accuracy while minimizing the
energy consumptions and path losses in a global sense.
Consequently, a genetic algorithm needs to gather the
relevant system-wide information to perform the route
computation. Since a mobile agent always starts its data
collection journey from the PE node, which can usually be
equipped with more powerful computing resources than
regular sensor nodes, it is reasonable to compute the route
at the PE node. The mobile agent simply follows the route
computed by the genetic algorithm according to the fitness
function. The PE node has the predetermined knowledge
necessary for performing the global optimization, such as
the geographical locations (through GPS interfaces) and
transmitting/receiving parameters of sensor nodes. Once a
sensor node has acquired some measurements, it broadcasts
the detected signal level (not the raw measurement data
with the highest resolution) within the coverage area so that
the PE node is able to construct a global energy map based
on the broadcast signal level information.

In this scheme, the routing code resides exclusively on
the PE node in order to keep the mobile agent code as

compact as possible. The mobile agent carries the pre-
computed route that determines the order of sensor nodes
to be visited. However, if the network system is notified of
some events (for example, some nodes are shut down or
activated, do not have enough remaining energy to transmit
the signal along the previously designated link, or the
detected signal levels vary due to target movements), which
cause the previously computed route to be invalid, the
routing code is rerun at the PE node and the new route is
transmitted to the mobile agent.

3.3 Two-Level Genetic Encoding

We convert the problem parameters into the individuals
made up of genes in the genetic domain. Such mapping is
known as genetic encoding. Here, the problem domain means
the space made up of phenotype individuals, i.e., effective
candidate solutions, while the genetic domain is the space
made up of genotype individuals of the genetic algorithm.
Due to the robustness of a genetic algorithm, it does not
impose critical requirements on encoding technique as long
as a minimum of three encoding criteria, i.e., completeness,
soundness, and nonredundancy, are satisfied [19].

We employ a two-level encoding to adapt the genetic
algorithm for the mobile agent routing problem in MADSN.
The first level is a numerical encoding of the sensor (ID)
label sequence L in the order of sensor nodes being visited
by mobile agent. For the MADSN shown in Fig. 1, the
sensor label sequence L has the following contents:

The first element is always set to be “0” for the reason that a
mobile agent starts from the PE S0. The mobile agent
returns to S0 from the last visited sensor node, which is not
necessarily the last element of the label sequence if there
exist inactive sensor nodes in the network. This sequence
consists of a complete set of sensor labels because it takes
part in the production of a new generation of solutions
through the genetic operations. It is desired to inherit as
much information as possible in the new generation from
the old one. For example, in Fig. 1, although nodes 3, 6, 8,
and 9 are not visited in the given solution (the second-level
sequence is designed to do so), they or some of them may
likely make up a segment of a better solution than the
current one in the new generation.

The second level is a binary encoding of the visit status
sequence V in the same visiting order. For the MADSN in
Fig. 1, the visit status sequence V contains the following
binary codes:

WU ET AL.: ON COMPUTING MOBILE AGENT ROUTES FOR DATA FUSION IN DISTRIBUTED SENSOR NETWORKS 745

Fig 2. Activity diagram of the adaptive semidynamic routing method.

where “1” indicates “visited” and “0” indicates “unvisited.”
The first bit corresponds to the PE and is always set to be
“1” because the PE is the starting point of the itinerary. If a
sensor is inactive, its corresponding bit remains “0” until it
is reactivated and visited.

Masking the first level of numerical sensor label
sequence L by the second level of binary visit status
sequence V results in a candidate path P for mobile agent.
In the above example, the path P is obtained as:

These two levels of sequences are arranged in the same
visiting order for the purpose of convenient manipulations
of visited/unvisited and active/inactive status in the
implementation of the genetic algorithm. The number of
hops H in a path P can be easily calculated from the second
level of binary sequence as follows:

H ¼
X

N

i¼0

V ½i�;
V ½i� ¼ 1; sensor Si is active and visited
V ½i� ¼ 0; sensor Si is inactive or unvisited:

�

3.4 Implementations of Genetic Operators

We now describe the genetic operators. These operators are
similar to those used in the conventional solution to
Traveling Salesman Problem. However, we incorporate the
details corresponding to the current routing problem.

3.4.1 Selection Operator

The purpose of the selection operation is to select good
individuals and, at the same time, eliminate bad individuals
from the population based on the evaluation of individual
fitness. It is also called reproduction operation. Its aim is to
inherit good individuals directly from last generation or
indirectly from the new individuals produced by mating
the old individuals. In our implementation, each pair of
individuals is selected randomly from the old generation to
perform the crossover, mutation, and inversion operations.
The fitness is computed for every newly generated child for
evaluation. To maintain the same population sizes for each
generation, the fitness of every newly generated child is
compared with the minimum fitness of the whole popula-
tion. If it is bigger than the minimum fitness value, then this
child is added to the population and the individual with the
minimum fitness is removed; otherwise, the new child is
discarded.

3.4.2 Crossover Operator

Similar to gene recombination, which plays an essential role
during the process of natural biological evolution, crossover
is the most significant operation in the genetic search
strategy. It determines the major behavior of optimization
process. Several crossover schemes are used in the
literature, such as one-point crossover, two-point crossover,
and multipoint crossover. However, as a common criterion,
any crossover operator should ensure that the proper genes
of good individuals be inherited by the new individuals of
the next generation. A big crossover probability may

improve a genetic algorithm’s capability to search new
solution space, while increasing the probability of under-
mining the combination of good genes. If the crossover
probability is set too small, the search process may be
trapped in a dull status and is prone to ceasing.

In our implementation, a two-point crossover is applied
to both levels of sequences. These two crossover points are
selected randomly. Given two parents as follows:

. Parent 1: First level sequence: 0-2-7-3-/-5-1-6-/-4-9-8
and second level sequence: 1-0-1-1-/-1-0-0-/-1-1-1.

. Parent 2: First level sequence: 0-3-5-2-/-9-6-4-/-1-7-8
and second level sequence: 1-0-0-0-/-1-0-1-/-1-0-1,

where “/” represents the crossover points, the crossover
operator produces two children

. Child 1: First level sequence: 0-9-6-4-2-7-3-5-1-8 and
second level sequence: 1-0-1-1-/-1-0-1-/-1-1-1.

. Child 2: First level sequence: 0-5-1-6-3-2-9-4-7-8 and
second level sequence: 1-0-0-0-/-1-0-0-/-1-0-1.

For the first level of label sequence, the crossover portion
(between the two crossover points) of one individual is
copied and inserted at the front of the other individual
(immediately after label 0). All the duplicate genes in the
resulting individual are removed to guarantee that each
node appears exactly once in that individual. For the second
level of visit status binary sequence, the crossover portions
are simply exchanged between two individuals.

3.4.3 Mutation Operator

The main purpose of the mutation operation is to prevent
losing any single important gene segment and, thus, to
maintain the variety of the solution population. Because the
frequent use of the mutation operation may tend to make
the genetic algorithm conduct a random search, a relatively
small probability for mutation operation is favorable. To
perform the mutation operation, two mutation points are
selected randomly and the values of these two points are
exchanged. As an example, consider the following parent
individual:

The mutation operator produces the following child:

. First level sequence: 0-2-9-3-8-1-4-5-7-6 and

. Second level sequence: 1-0-1-1-1-1-0-0-0-1.

3.4.4 Inversion Operator

The crossover operator has a wide span of activity in the
feasible solution space, while, due to the pressure of genetic
selection and natural elimination, the mutation operation
also has difficulty in carrying out local search activity
(especially at the late stage of computation when the genetic
algorithm tends to converge). The inversion operation is a
special form of mutation which is designed to carry out a
reordering operation and improve the local search for the
genetic algorithm.

746 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

At any time, two inversion points are selected randomly
to determine the inversion portion of the individual. The
inversion operation is executed by reversing the order of the
inversion portion of the original individual. Given one
parent as follows:

. First level sequence: 0-5-7-/-1-2-8-9-/-6-3-4 and

. second level sequence: 1-0-1-/-1-0-1-1-/-0-0-1,

where the inversion portions are enclosed by two “/” signs,
the inversion operator produces the following child:

. First level sequence: 0-5-7-/-9-8-2-1-/-6-3-4 and

. second level sequence: 1-0-1-/-1-1-0-1-/-0-0-1.

3.5 Parameter Selection for Genetic Algorithm

We usually select a high probability value above 0.9 for a
genetic operator like crossover, which controls the main
direction of the evolution process. A low probability value
below 0.1 is appropriate for genetic operators like mutation
or inversion to reduce the risk of destroying the good gene
segments in later generations. Observed from the experi-
mental data, a small variation of these probabilities does not
have a significant impact on the performance of genetic
algorithm. With respect to the maximum generation
number, we select different values for different test
examples in order to ensure that the optimization process
approaches a steady state eventually. The difference of the
best fitness values between two adjacent generations may
be used as an alternative convergent indicator. In this case,
the genetic algorithm does not have to wait for a long time
to reach the prespecified maximum generation number if
the optimization process converges quickly. Its disadvan-
tage is that the program may prematurely terminate if the
optimization process does not converge quickly.

4 ALGORITHM EVALUATION

4.1 Simulation Results

We compare the search results of the genetic algorithm with
those computed by the LCF and GCF methods. In most
cases, LCF is able to deliver a satisfactory route, hence it is
comparable to GA. GCF may find a path with less number
of hops than LCF, but it usually has significantly longer
path length, which results in unacceptable path loss levels.
A series of experimental networks of different sensor node
sizes and distribution patterns are created. The spatial
locations of all the nodes are randomly selected. About 1-
10 percent of the sensors are shut down uniformly over the
surveillance region. The center node is selected as the PE
node, i.e., the starting point of the route traversed by the
mobile agent. All sensor parameters of data acquisition and
wireless channel in the MADSN use the real-life data of the
field demo listed in Table 1. The carrier frequency band
used by sensor nodes with Hitachi SuperH processor SH-4
architecture to transmit their data is 2.4 GHz.

In order to make a visual comparison of the search
performances, we plot the routes computed by GA, LCF,
and GCF for the first experimental sensor network in Figs. 3,
4, and 5, respectively. This relatively small network consists
of 200 sensor nodes, eight of which are put in the sleep state.
A quantified amount of signal energy associated with each
active sensor ranging from 0 to 64 is marked under the
corresponding circle-shaped node. The PE node located in

the center of the region particularly possesses a rectangular
shape to differentiate from the regular leaf nodes. The
minimum acceptable amount of signal energy detected by
an individual sensor node is five and inactive nodes in the
sleep state do not detect any signal energy. A single target is
arbitrarily placed in this surveillance region. The area of
elliptic shape encompassing the target represents the
sensing zone within which the sensor nodes usually detect
higher signal energy than others far away from the target.
The total signal energy detected by all sensor nodes in this
network is 1,467 units and the acceptable signal level
adequate for inferring correct information about the
environment is set to be 1,200 units. In other words, the
mobile agent may return to the PE node immediately once
the amount of measurement data it collects has reached
1,200 units.

For the GA-based routing method, we set the maximum
generation number to be 200 as the convergent indicator,
which informs the program when to stop its search process.
It has been observed that the optimization process of the
genetic algorithm moves forward rapidly in the beginning
and becomes slow and stable in the later stages of
computation, especially after the generation number
reaches 100. The search result visualized in Fig. 3 shows
that the GA has successfully discovered a clean route that
goes through every node within the sensing zone of the
target while avoiding the nodes in sleep state. The global
random optimization strategy makes GA capable of explor-
ing any potential sensing zones and visiting nodes in the
target neighborhoods with the highest priority for an
optimal detection performance in addition to preserving
an energy-saving route. This salient feature of the GA-based
routing method is evident in the search results for all
experimental sensor networks we tested.

Starting from the PE node, the LCF algorithm selects the
neighbor node closest to the current location as the next-hop
destination. The search result visualized in Fig. 4 shows that
the LCF algorithm is also able to obtain a relatively orderly
route for the mobile agent. However, since LCF is based
entirely on local information, it lacks the capability of
identifying sensing zones in a global manner. The mobile
agent that follows the route displayed in Fig. 4 reaches the
sensing zone, but returns to the PE node, leaving out some
nodes with high signal levels in the sensing zone. In some
extreme cases, the mobile agent may have to visit all the rest
of the nodes with low signal levels in the network before it
reaches the sensing zone.

WU ET AL.: ON COMPUTING MOBILE AGENT ROUTES FOR DATA FUSION IN DISTRIBUTED SENSOR NETWORKS 747

TABLE 1
Parameters of the MADSN

The GCF algorithm also starts its route search process

from the PE node and selects the node closest to the center

of the region as the next-hop destination. GCF is a global

search algorithm making use of only the geographical

information. Consequently, similarly to LCF, GCF is also

not able to recognize sensing zones of potential targets. It is

an interesting observation that, in most cases we studied,

GCF produced messier routes than GA and LCF, which

resulted in much higher path losses. Moreover, since the

GCF algorithm moves its search process from the center to

the edge of the network, it often exhibits undesirable

performance when the targets are located in a remote

portion of the surveillance region.
The simulation results computed by GA, LCF, and GCF

for all experimental sensor networks are tabulated in

Table 2, which consists of three parts. The upper part of

Table 2 contains the general information about network

configurations, such as node size, number of dead or

inactive sensors, number of potential targets in the region,

total detected signal energy, and acceptable signal energy

level for correct environmental inferences. Note that the

total detected signal energy refers to the sum of the energy

748 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 3. Visualization of the search results computed by GA for an MADSN with 200 nodes.

Fig. 4. Visualization of the search result computed by LCF for an MADSN with 200 nodes.

detected by all active sensors deployed in the region under
surveillance, while the acceptable signal energy level is a
given value desired for a specific application. The middle
part of Table 2 keeps track of four quality components of a
route computed by each algorithm, i.e., number of hops,
path loss, energy consumption, and achieved signal energy.
For instance, with regard to the first network of 200 nodes,
GA uses 140 hops to achieve the acceptable signal level,
while LCF uses 168 hops and GCF uses 147 hops,
respectively; the path losses of GA, LCF, and GCF are
22,919 units, 26,864 units, and 28,748 units, respectively; the
migration of mobile agent along the path computed by GA
consumes 407 units of energy, while LCF consumes
489 units of energy, and GCF consumes 428 units of energy.
The bottom part of Table 2 is used to compare the overall
performance of GA, LCF, and GCF in terms of the same
objective function as defined in Section 2.4.

In order to make a more straightforward performance
comparison between these three methods, the data in the
middle and bottom parts of Table 2 is plotted in Figs. 6, 7, 8,
and 9, illustrating the corresponding curves of node sizes
versus number of hops, node sizes versus path loss, node
sizes versus energy consumption, and node sizes versus
objective values, respectively. Since the routing criteria such
as energy consumption, path loss, and detection accuracy
considered in the GA fitness function are closely related to
the number of hops of a route, which is, in general,
determined by the node size of a network, the advantages of
the GA-based method become more evident as the node
size increases.

Fig. 6 shows that the routes computed by GA have the
smallest number of hops, except for the networks with
small node sizes, and LCF has a larger number of hops than
GCF. Fig. 7 shows that GCF experiences much higher path
losses than GA and LCF, especially when the node size
increases. This trend is consistent with the observation

made in the first experimental network. Fig. 8 shows that
GA often finds the most energy-saving route, while LCF
incurs the highest energy consumption. The curves illu-
strated in Figs. 6, 7, and 8 clearly justify that in most cases,
GA is able to find a satisfying path with fewer hops, less
energy consumption, and less path loss than LCF and GCF.
Fig. 9 also shows that the GA has a superior overall
performance over the two algorithms in terms of the
objective function defined in this implementation.

The current GA program was implemented in C++ using
MFC with GUI and per-generation result display. The GA-
based routing code takes a few seconds to run the first
100 generations for a network of hundreds of nodes. GA runs
much faster and its executable code size decreases signifi-
cantly when GUI is not implemented. In such cases, the GA
runtime may not be a serious problem for semidynamic
routing, as further discussed in the next section.

4.2 Computational Paradigm Using Mobile Agent

The new emerging technology of agent programming has
provided a flexible and complementary way of managing
resources of distributed systems. Although the computa-
tional paradigm using mobile agent has not yet matured to
be a proper area in computer science, it has attracted a great
deal of attention from many researchers and an increasing
amount of related works have been found in the literature.
The general advantages of using a mobile agent, such as
reducing network load, overcoming network latency,
achieving robust and fault-tolerant performance, are sum-
marized in [20].

The mobile agent programming, however, has been
mainly technology driven so far with a focus on the
implementation of mobile agent runtime platforms and
practical applications including electronic commerce, tele-
communications services, network management, group
work, and work flow management. Papavassiliou et al.
[21] presents an implementation framework for the devel-
opment of effective market-based routes for brokering

WU ET AL.: ON COMPUTING MOBILE AGENT ROUTES FOR DATA FUSION IN DISTRIBUTED SENSOR NETWORKS 749

Fig. 5. Visualization of the search result computed by GCF for an MADSN with 200 nodes.

purposes in the future multioperator network marketplace.
On this platform, a genetic algorithm is used to identify
optimal resource allocation strategies and the agent-based
network management approach is used to represent an
underlying structure for the multioperator network model
and facilitate the collection and dissemination of the
required management data. The ant routing mechanism, a
routing method in the agent technology, is described in [22],
which conducted an analysis on the growing and jumping
behaviors of an agent-based routing algorithm. Some
analytical results are presented such as the maximum
number of agents in a node and the maximum number of
jumps of an agent. Umezawa et al. [23] describe the
architecture of a mobile agent-based framework and the
implementation of its prototype for self-configurable sensor
networks that enables sensor networks to be dynamically

reconfigured to suit the requirements of applications and

changes in the environments. This mobile agent-based

framework provides an approach to the easy development

of adaptive and application-specific software for sensor

nodes.
The MADSN proposed in [5] is used to perform

multiresolution data integration and fusion. The mobile

agent moves the processing code to leaf sensor nodes from a

central processing site. The distributed computation avoids

transferring a large set of raw data for each leaf node and,

therefore, saves limited bandwidth and prolongs battery

life. Furthermore, the agent-based communication models

show great promise to operate in unpredictable, harsh, and

even adversarial environments.

750 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

TABLE 2
Comparisons of Search Results of GA, LCF, and GCF for Networks of Different Node Sizes and Distribution Patterns

4.3 Discussion on Routing Algorithms Using LCF,
GCF, and GA

GCF is relatively simple and fast but suffers from poor

performance in terms of path loss. GCF essentially utilizes

sorting to compute the path. Its computational complexity is

OðN logNÞ if using a comparison based sorting algorithm.

LCF has the computation complexity of OðN2Þ if the closest
neighbor node is obtained by simple comparison in each
step. The analysis for the computation complexity of the
genetic algorithm is more complicated. After making some
simplifications on its implementation, the computational
complexity for the genetic algorithm is OðNMGÞ, where N
is the number of nodes in the network, M is the initial
population size, and G is the maximum generation number
used to indicate the end of the computation.

As is the case for GCF, the performance of LCF also
depends significantly on the network structure [5]. In some
bad cases, it may end up with unacceptable results.
Comparatively, the network structure has much less
influence on the performance of the genetic algorithm due
to its random search technique.

Unlike LCF and GCF, it is not necessary to specify a
starting node for the implementation of the genetic
algorithm. Actually, any active sensor node can be
designated as a starting node in the genetic algorithm,
while the performances of LCF and GCF are crucially
dependent on the location of its starting node. In addition,
no matter in what order the nodes are visited, the genetic
algorithm always comes up with a closed route for the
mobile agent to come back to its starting node.

LCF is suitable for carrying out dynamic routing because
each step of its computation depends only on the location of
the current node, while GCF is in favor of static routing,
whose computation can be carried out offline based on the
global network structure. Both LCF and GCF are determi-
nistic routing algorithms, which always supply the same
path between a source/destination pair in a given network.
The genetic algorithm collects information about the net-
work status from all sensor nodes so that it is able to
conduct adaptive routing. However, broadcasting the
detected signal energy produces extra communication
overhead.

The adaptive semidynamic routing scheme is supported
by the robustness of a sensor network. According to the
experience from the field demo, sensor nodes usually
function well once brought up and the network may
remain stable continuously for 1-2 hours of sessions. The
time taken for the proposed routing method based on the
two-level genetic algorithm to compute a satisfactory route
is always in the order of seconds for a typical network and
rarely goes beyond one minute, even for networks with
large node sizes. Consequently, there is adequate time for
the PE node to rerun the GA routing code to produce a new
route for mobile agent in the case of relatively infrequent
occurrences of system events.

5 CONCLUSIONS

We presented a mobile agent-based paradigm for data
fusion in distributed sensor networks. By utilizing a
simplified analytical model for a distributed sensor net-
work, we formulated a route computation problem for the
mobile agent in terms of maximizing the received signal
strength while keeping path loss and energy consumption
low. This route computation problem turned out to be
NP-hard thereby making it highly unlikely to develop a
polynomial-time algorithm to compute an optimal route.
Hence, we proposed a genetic algorithm to solve this
problem by employing a two-level genetic encoding and
suitable genetic operators. Simulation results are presented
for comparison between our GA and existing LCF and GCF

WU ET AL.: ON COMPUTING MOBILE AGENT ROUTES FOR DATA FUSION IN DISTRIBUTED SENSOR NETWORKS 751

Fig. 7. Node sizes versus path loss for the three algorithms.

Fig. 8. Node sizes versus energy consumption for the three algorithms.

Fig. 9. Node sizes versus objective values for the three algorithms.

Fig. 6. Node sizes versus number of hops for the three algorithms.

heuristics. Various aspects of the proposed algorithm such
as computational complexity, impact of network structure
and starting node, and dynamic and static routing, are
discussed.

Future research work may be focused on exploring more
complex routing models with more general objective func-
tions. For example, in the current model, we assume that the
sensor locations are fixed once they are manually deployed,
which is the case in the field demo. However, in a real-world
sensor network, sensors could be airborne or mounted on
vehicles or robots. The mobility of sensors brings new
challenges to the design of dynamic routing algorithms for
the mobile agent. Besides, instead of using the simple free
space propagation model to compute path loss, more
complex empirical propagation models may be studied and
applied in the construction of objective function.

ACKNOWLEDGMENTS

The authors would like to thank four anonymous reviewers

for their insightful suggestions and constructive comments

that greatly improved the presentation of the revised paper.

This research was supported in part by the US Defense

Advanced Research Projects Agency under grants No.

N66001-00-C-8046 and No. K153, US Office of Naval

Research under grant No. N000140110712, and by Engineer-

ing Research Program, US Department of Energy under

contract No. DE-AC0500OR22725 with UT-Batelle, LLC.

REFERENCES

[1] A.K. Hyder, E. Shahbazian, and E. Waltz, Multisensor Fusion.
Kluwer Academic, 2002.

[2] D.N. Jayasimha and S.S. Iyengar, “Information Integration and
Synchronization in Distributed Sensor Networks,” IEEE Trans.
Systems, Man, and Cybernetics, vol. 21, no. 5, pp. 1032-1043, Sept./
Oct. 1991.

[3] Y.F. Zheng, “Integration of Multiple Sensors into a Robotics
System and Its Performance Evaluation,” IEEE Trans. Robotic
Automation, vol. 5, pp. 658-669, Oct. 1989.

[4] R.C. Luo and M.G. Kay, “Multisensor Integration and Fusion in
Intelligent Systems,” IEEE Trans. System, Man, and Cybernetics,
vol. 19, pp. 901-931, 1989.

[5] H. Qi, S.S. Iyengar, and K. Chakrabarty, “Multi-Resolution Data
Integration Using Mobile Agents in Distributed Sensor Net-
works,” IEEE Trans. Systems, Man, and Cybernetics Part C:
Applications and Rev., vol. 31, no. 3, pp. 383-391, Aug. 2001.

[6] T. Sander and C. Tschudin, “Protecting Mobile Agents against
Malicious Hosts,” Mobile Agent and Security, G. Vigna, ed., pp. 44-
60, Springer-Verlag, 1998.

[7] S. Berkovits, J.D. Guttman, and V. Swarup, “Authentication for
Mobile Agents,” Mobile Agents and Security, G. Vigna, ed., pp. 114-
136, Springer-Verlag, 1998.

[8] C.G. Harrison and D.M. Chess, “Mobile Agents: Are They a Good
Idea?” Technical Report RC 1987, IBM T.J. Watson Research
Center, Mar. 1995, http://www.research.ibm.com/massive/
mobag.ps.

[9] P. Dasgupta and N. Narasimhan, “Magnet: Mobile Agents for
Networked Electronic Trading,” IEEE Trans. Knowledge and Data
Eng., vol. 11, no. 4, pp. 509-525, July/Aug. 1999.

[10] K.N. Ross and R.D. Chaney, “Mobile Agents in Adaptive
Hierarchical Bayesian Networks for Global Awareness,” Proc.
IEEE Int’l Conf. Systems, Man, and Cybernetics, pp. 2207-2212, 1998.

[11] S.S. Iyengar, D.N. Jayasimha, and D. Nadig, “A Versatile
Architecture for the Distributed Sensor Integration Problem,”
IEEE Trans. Computers, vol. 43, no. 2, pp. 175-185, Feb. 1994.

[12] Revision A, WINS NG 2.0 User’s Manual and API Specification,
Sensoria Corp., 30 May 2002.

[13] T.S. Rappaport, Wireless Communications Principles and Practice,
second ed. Prentice Hall PTR, 2002.

[14] N.S.V. Rao, “Multisensor Fusion Under Unknown Distributions:
Finite Sample Performance Guarantees,” Multisensor Fusion,
A.K. Hyder, E. Shahbazian, and E. Waltz, eds., 2002.

[15] V. Swaminathan and K. Chakrabarty, “Real-Time Task Scheduling
for Energy-Aware Embedded Systems,” Proc. IEEE Real-Time
Systems Symp. (Work-In-Progress Sessions), Nov. 2000.

[16] A. Barvinok et al. “The Geometric Maximum Traveling Salesman
Problem,” J. ACM, combined journal version of previous paper
and Fekete’s 1999 SODA paper on the maximum TSP, including a
faster algorithm for arbitrary polyhedral metrics, submitted for
publication in 2002.

[17] J.H. Holland, Adaptation in Nature and Artificial Systems. Univ. of
Michigan Press, reprinted by MIT Press, 1992.

[18] D.A. Coley, An Introduction to Genetic Algorithms for Scientists and
Engineers. World Scientific, 1999.

[19] D.E. Goldberg, Genetic Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley, 1989.

[20] D.B. Lange and M. Oshima, “Seven Good Reasons for Mobile
Agents,” Comm. ACM, vol. 42, no. 3, pp. 88-89, Mar. 1999.

[21] S. Papavassiliou, A. Puliafito, O. Tomarchio, and J. Ye, “Mobile
Agent-Based Approach for Efficient Network Management and
Resource Allocation: Framework and Applications,” IEEE J.
Selected Areas in Comm., vol. 20, no. 4, pp. 858-872, May 2002.

[22] J. Sum, H. Shen, C.S. Leung, and G. Young, “Analysis on a Mobile
Agent-Based Algorithm for Network Routing and Management,”
IEEE Trans. Parallel and Distributed Systems, vol. 14, no. 3, pp. 193-
202, Mar. 2003.

[23] T. Umezawa, I. Satoh, and Y. Anzai, “A Mobile Agent-Based
Framework for Configurable Sensor Networks,” Proc. Fourth Int’l
Workshop Mobile Agent for Telecomm. Applications, pp. 128-140, Oct.
2002.

Qishi Wu received the BS degree in remote
sensing and GIS from Zhejiang University,
People’s Republic of China in 1995, the MS
degree in geomatics from Purdue University in
2000, and the PhD degree in computer science
from Louisiana State University in 2003. He is
currently a postdoctoral research fellow in the
Computer Science and Mathematics Division at
Oak Ridge National Laboratory. His research
interests include computer networks, distributed

sensor networks, algorithms, and artificial intelligence. He is a member
of the IEEE and IEEE Computer Society.

Nageswara S.V. Rao received the BTech
degree in electronics and communications en-
gineering from the Regional Engineering Col-
lege, Warangal, India, in 1982, the ME degree
from the School of Automation, Indian Institute
of Science, Bangalore in 1984, and the PhD
degree in computer science from Louisiana
State University in 1988. He is currently a
distinguished research staff member at Oak
Ridge National Laboratory, where he has

worked since 1993. He was an assistant professor of computer science
at Old Dominion University during 1988-1993. His research interests
include network transport dynamics, statistical approaches to transport
control, information and sensor fusion, robot navigation, and fault
diagnosis. He is a senior member of the IEEE and the IEEE Computer
Society.

752 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Jacob Barhen received the DSc degree from
the Technion-Israel Institute of Technology,
Haifa, in 1978. He is the director of the Center
for Engineering Science Advanced Research
(CESAR) at the Oak Ridge National Laboratory
(ORNL). In March 1999, he was named Corpo-
rate Fellow. He is also a nonresident affiliate of
the California Institute of Technology’s Jet
Propulsion Laboratory (JPL) and an adjunct
professor in the Department of Computer

Science at the University of Tennessee, Knoxville. From 1987 to
1994, Dr. Barhen was the head of the Neural Computation and
Nonlinear Science Group at Caltech/JPL. He began his career at
ORNL, where he headed the Machine Intelligence Group from 1978 to
1987. At both institutions, he established world-class research groups in
artificial neural information processing and computational science. He
has been the principal investigator of numerous basic and applied
research projects funded by US Government agencies. Currently, the
Missile Defense Agency, the US Department of Energy’s Office of
Science, NASA, and the US Army support his work. Dr. Barhen’s
research interests include global optimization, neural networks, emer-
ging computational systems, sensitivity and uncertainty analysis, optical
information processing. He has authored more than 160 scientific
papers, and holds eight US patents. He has received three NASA Space
Act awards for major contributions to the National Space Program, 11
NASA awards for Technical Innovation, and a 1998 R&D_100 award, for
the invention of the TRUST global optimization method. He is a member
of the editorial boards of Neural Processing Letters (Kluwer Academic),
Neural Networks (Pergamon Press), Mathematical and Computer
Modeling (Pergamon Press), and Concurrency (J. Wiley). He is a
member of the AAAS, the IEEE, SPIE, the International Neural
Networks Society, and the Planetary Society.

S. Sitharama Iyengar is the chairman and Roy
Paul Daniels Chaired Professor of Computer
Science and is also Satish Dhawan Chaired
Professor at the Indian Institute of Science. He
has been awarded the Distinguished Alumnus
Award at the Indian Institute of Science in March
2003. He is the Distinguished Research Master
Award winning professor of the Computer
Science Department at Louisiana State Univer-
sity. He was involved with research in high-

performance algorithms, data structures, sensor fusion, data mining, and
intelligent systems since receiving his PhD degree (in 1974 at Mississippi
State University) and his MS degree from the Indian Institute of Science
(1970). He has served on several review panel committees and as a
principal investigator on research projects supported by various govern-
ment agencies. His publications include 13 books (authored or
coauthored textbooks; Prentice-Hall, CRC Press, IEEE CS Press, John
Wiley & Sons, etc.) and more than 280 research papers in refereed
journals and conference in areas of high-performance parallel and
distributed algorithms and data structures for image processing and
pattern recognition, and distributed data mining algorithms for biological
databases. His books have been used at Berkeley, Purdue, theUniversity
of Southern California, the University of New Mexico, etc. He was a
visiting professor at the Jet Propulsion Laboratory-Cal Tech, Oak Ridge
National Laboratory, the Indian Institute of Science, and the University of
Paris. Dr. Iyengar has served as an associate editor for the IEEE, as
guest editor for several publications, and as a series editor for Neuro-
Computing of Complex Systems for CRC Press. He has been on the
prestigious National Institute of Health-NLM Review Committee in the
area of medical informatics for four years. Dr. Iyengar has received
several awards including, in 1998, the prestigious IEEE CS Technical
Achievement Award for outstanding contributions to data structures and
algorithms in image processing and sensor fusion problems. He has been
a distinguished lecturer for several associations, and a member of the
ACM accreditation committee. He is also a fellow of the ACM, the IEEE,
the AAAS, a Williams Evans Fellow, an IEEE Distinguished Visitor, etc.,
and a member of the European Academy of Sciences and the New York
Academy of Sciences. He has given more than 50 plenary talks and
keynote lectures at numerous national and international conferences.

Vijay K. Vaishnavi received the BE degree (with
distinction) in electrical engineering from Jammu
and Kashmir University and the MTech and PhD
degrees in electrical engineering (with a major in
computer science) from the Indian Institute of
Technology, Kanpur. He has also done post-
doctoral work in computer science for two years
at McMaster University, Canada. He is currently
a professor of computer information systems and
computer science at Georgia State University.

His current areas of research interest include interorganizational systems
(semantic interoperability, directory services, Web-based virtual com-
munities, coordination, security), software development (object-oriented
metrics, software specifications and their maturity, object-oriented
modeling and design), and data structures and algorithms (multisensor
networks and fusion). The US National Science Foundation and private
organizations, including IBM, Nortel, and AT&T, have supported his
research. He has authored numerous papers in these and related areas.
His papers have appeared in the IEEE Transactions on Software
Engineering, IEEE Transactions on Knowledge and Data Engineering,
IEEE Transactions on Computers, SIAM Journal on Computing, Journal
of Algorithms, and several other major international journals and
conference proceedings. Dr. Vaishnavi is an IEEE Fellow. He is also
member of the IEEE Computer Society, the ACM, and the AIS.

Hairong Qi received the BS and MS degrees in
computer science from Northen JiaoTong Uni-
versity, Beijing, in 1992 and 1995, respectively,
and the PhD degree in computer engineering
from North Carolina State University in 1999.
She is now an assistant professor in the
Department of Electrical and Computer Engi-
neering at the University of Tennessee, Knox-
ville. Dr. Qi is a member of the IEEE and Sigma
Xi. Her current research interests are collabora-

tive signal and information processing in sensor networks, biomedical
imaging, and automatic target recognition.

Krishnendu Chakrabarty received the BTech
degree from the Indian Institute of Technology,
Kharagpur, in 1990 and the MSE and PhD
degrees from the University of Michigan, Ann
Arbor, in 1992 and 1995, respectively, all in
computer science and engineering. He is now an
associate professor of electrical and computer
engineering at Duke University. During 2000-
2002, he was also a Mercator Visiting Professor
at the University of Potsdam in Germany. He is a

recipient of the USNational Science Foundation Early Faculty (CAREER)
award and the US Office of Naval Research Young Investigator award.
His current research projects include: design and testing of system on-
chip integrated circuits, embedded real-time systems, distributed sensor
networks, modeling, simulation and optimization of microfluidic systems,
andmicrofluidics-based chip cooling. Dr. Chakrabarty is a coauthor of two
books: Microelectrofluidic Systems: Modeling and Simulation (CRC
Press, 2002) and Test Resource Partitioning for System-on-a-Chip
(Kluwer, 2002), and the editor of SOC (System-on-a-Chip) Testing for
Plug and Play Test Automation (Kluwer 2002). He has published more
than 150 papers in journals and refereed conference proceedings, and he
holds a US patent in built-in self-test. He is a recipient of a best paper
award at the 2001 Design, Automation, and Test in Europe (DATE)
Conference. He is also a recipient of the Humboldt Research Fellowship,
awarded by the Alexander von Humboldt Foundation, Germany. He is an
associate editor, editor, and editorial board member of several publica-
tions. He has also served as an associate editor IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing. He is a
member of the ACMandACMSIGDAand amember of SigmaXi and also
a senior member of the IEEE and the IEEE Computer Society. He serves
as vice chair of technical activities on IEEE’s Test Technology Technical
Council, and is a member of the program committees of several IEEE/
ACM conferences and workshops.

WU ET AL.: ON COMPUTING MOBILE AGENT ROUTES FOR DATA FUSION IN DISTRIBUTED SENSOR NETWORKS 753

