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Abstract. We propose a new computational approach
based on descriptor state space algorithms to compute
normalized coprime factorizations of rational matrices.

1 Introduction

Let G = (E, A, B,C, D) be a minimal order linear time-
invariant continuous- or discrete-time regular descrip-

tor system, denoted also G =
[

A− λE B
C D

]
with

the rational transfer function matrix (TFM) G(λ) =
C(λE−A)−1B+D, where λ = s or λ = z, in accordance
with the type of the system. We denote with G∼ the
conjugate TFM, where G∼(s) = GT (−s) in continuous-
time and G∼(z) = GT (1/z) in discrete-time. A right
coprime factorization (RCF) G = NM−1 with N and
M coprime stable rational matrices satisfying the ad-
ditional condition M∼M + N∼N = I, is called a nor-
malized right coprime factorization (NRCF).

The computation of NRCF of non-proper TFMs has
been considered for continuous-time systems in [1]. The
proposed procedure relies on a particular descriptor
representation with E = diag (I, 0) and D = 0 and
involves the solution of two standard Riccati equations.
Since the initial reduction can lead to unnecessary ac-
curacy loss, this approach raises serious concerns from
numerical point of view. For discrete-time systems, ap-
parently there are no results for non-proper TFMs.

In this paper we propose a completely general method
to compute NRCFs of arbitrary continuous- or discrete-
time TFMs. The procedure given below can be seen as
a constructive proof of the following main result.

Theorem. An arbitrary rational matrix G(λ) can be
always represented as a NRCF G = NM−1, where N
and M are proper rational matrices.

NRCF Procedure.
1. Compute a RCF G = N1M

−1
1 such that both N1 and

M1 are proper TFMs.
2. Solve the spectral factorization problem M∼

1 M1 +
N∼

1 N1 = G∼o Go.
3. Compute M = M1G

−1
o and N = N1G

−1
o .

Step 1 reduces essentially the NRCF problem to one for
a proper TFM. This step can be performed by using an
algorithm proposed in [2]. The NRCF is computed at
steps 2 and 3 by solving a spectral factorization prob-
lem for a proper system in a descriptor representation
with nonsingular E. This can be done by solving ap-
propriate descriptor Riccati equations arising from the
descriptor variants of standard spectral factorization al-
gorithms. From numerical point of view, the proposed
approach represents a completely satisfactory computa-
tional solution to determine NRCFs. Applied to GT , it
can be equally used to compute normalized left coprime
factorizations too.

2 Proper rational factorization

In this section we consider the problem at step 1 of the
NRCF Procedure to compute a RCF G = N1M

−1
1

such that N1 and M1 are proper. For a given minimal
descriptor represention G = (E, A, B,C, D), a general
algorithm for this computation has been proposed in [2].
Here we need only the first part of this algorithm, which
determines a state feedback matrix F to eliminate the
impulsive behavior of the system. With the determined
F , the proper factors result as [3]:

[
N1

M1

]
=




A + BF − λE B
C + DF D

F I


 .

By applying an appropriate orthogonal similarity trans-
formation, the given system matrices can be put in a
SVD-like coordinate form

G =




A11 − λE11 A12 B1

A21 A22 B2

C1 C2 D


 ,

where E11 ∈ IRr×r is nonsingular. Because of mini-
mality assumption, rank B2 = n − r and we can take
F = [ 0 F2 ], where F2 is chosen such that the matrix
A22 + B2F2 is non-singular and well-conditioned. By
this choice the pair (E,A+BF ) is regular and has r fi-
nite eigenvalues and n−r simple eigenvalues at infinity.



The resulting factors, obtained after eliminating the
non-dynamic modes with the help of well-known resid-

ualization formulas, are
[

N1

M1

]
= (E, A, B, C, D),

where A = A11 − (A12 + B1F2)(A22 + B2F2)−1A21,
E = E11, B = B1 − (A12 + B1F2)(A22 + B2F2)−1B2,

C =
[
C1

C2

]
=

[
C1 − (C2 + DF2)(A22 + B2F2)−1A21

−F2(A22 + B2F2)−1A21

]

D =
[
D1

D2

]
=

[
D − (C2 + DF2)(A22 + B2F2)−1B2

I − F2(A22 + B2F2)−1B2

]

For a proper system F2 = 0 and if E is nonsingular
then we can simply take N1 = G and M1 = I.

3 The computation of NRCF

Starting with the proper factorization G = N1M
−1
1

computed above, we derive the formulas to compute
the NRCF to perform the steps 2 and 3 of the NRCF
Procedure. If the original system is proper, then the
following result is a straightforward extension of [4] and
[5] for descriptor representations.

Proposition 1. Let X be the symmetric stabilizing so-
lution of the generalized continuous-time algebraic Ric-
cati equation (GCARE)

0 = E
T
X A + A

T
X E + C

T
C

−(E
T
X B + C

T
D)R

−1
(B

T
X E + D

T
C), (1)

where R = D
T
D, or of the generalized discrete-time

algebraic Riccati equation (GDARE)

E
T
X E = A

T
X A + C

T
C

−(A
T
X B + C

T
D)R

−1
(B

T
X A + D

T
C), (2)

where R = D
T
D+B

T
X B. Let F be the corresponding

stabilizing feedback matrix computed in continuous-time
as

F = −R
−1

(B
T
X E + D

T
C) (3)

or in discrete-time as

F = −R
−1

(B
T
X A + D

T
C). (4)

Then Go = (E, A, B,−HF, H) with H
T
H = R, satis-

fies N∼
1 N1 + M∼

1 M1 = G∼o Go. The factors M = G−1
o

and N = N1G
−1
o of the NRCF can be expressed as

[
N
M

]
=




A + B F − λE B H
−1

C1 + D1 F D1H
−1

F H
−1


 .

For the numerical solution of GCARE and GDARE,
consider the extended Hamiltonian pencil (EHP)

L− λP :=




A− λE 0 B

−C
T
C −A

T − λE
T −C

T
D

D
T
C B

T
D

T
D


 (5)

and, respectively, the extended simplectic pencil (ESP)

L− λP :=




A− λE 0 B

−C
T
C E

T − λA
T −C

T
D

D
T
C λB

T
D

T
D


. (6)

The following result allow to compute the solution of
GCARE and GDARE by solving an appropriate gener-
alized eigenvalue problems [6, 7].

Proposition 2. Let V be a basis matrix for the maxi-
mal dimension stable deflating subspace V of the EHP
(5) or ESP (6) and let V = [ V T

1 V T
2 V T

3 ]T be parti-
tioned in accordance with L and P in (5) or (6). Then
V1 ∈ IRn×n is nonsingular, and the stabilizing solution
X of the GCARE (1) or GDARE (2), and the corre-
sponding stabilizing feedback F in (3) and (4) respec-
tively, can be computed as

X = V2(EV1)−1, F = V3V
−1
1 .

Both the EHP and ESP being regular, standard numer-
ical techniques can be employed to compute V [8].
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