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Abstract. We propose a new computational approach
based on descriptor state space algorithms to compute
normalized coprime factorizations of rational matrices.

1 Introduction

Let G = (E, A, B,C, D) be a minimal order linear time-
invariant continuous- or discrete-time regular descrip-
tor system, denoted also G = AN | B with
’ C D

the rational transfer function matriz (TFM) G(\) =
C(AE—A)"'B+D, where A = sor A = z, in accordance
with the type of the system. We denote with G™ the
conjugate TFM, where G~ (s) = GT(—s) in continuous-
time and G~ (z) = GT(1/z) in discrete-time. A right
coprime factorization (RCF) G = NM~! with N and
M coprime stable rational matrices satisfying the ad-
ditional condition M~M + N~ N = I, is called a nor-
malized right coprime factorization (NRCF).

The computation of NRCF of non-proper TFMs has
been considered for continuous-time systems in [1]. The
proposed procedure relies on a particular descriptor
representation with E = diag(/,0) and D = 0 and
involves the solution of two standard Riccati equations.
Since the initial reduction can lead to unnecessary ac-
curacy loss, this approach raises serious concerns from
numerical point of view. For discrete-time systems, ap-
parently there are no results for non-proper TFMs.

In this paper we propose a completely general method
to compute NRCFs of arbitrary continuous- or discrete-

time TFMs. The procedure given below can be seen as
a constructive proof of the following main result.

Theorem. An arbitrary rational matriz G(\) can be
always represented as a NRCF G = NM~', where N
and M are proper rational matrices.

NRCF Procedure.

1. Compute a RCF G = NlMl_1 such that both N7 and
M are proper TFMs.

2. Solve the spectral factorization problem M7 M; +
NNy = G7 G,

3. Compute M = MG, and N = N;G; .

Step 1 reduces essentially the NRCF problem to one for
a proper TFM. This step can be performed by using an
algorithm proposed in [2]. The NRCF is computed at
steps 2 and 3 by solving a spectral factorization prob-
lem for a proper system in a descriptor representation
with nonsingular E. This can be done by solving ap-
propriate descriptor Riccati equations arising from the
descriptor variants of standard spectral factorization al-
gorithms. From numerical point of view, the proposed
approach represents a completely satisfactory computa-
tional solution to determine NRCFs. Applied to G7, it
can be equally used to compute normalized left coprime
factorizations too.

2 Proper rational factorization

In this section we consider the problem at step 1 of the
NRCF Procedure to compute a RCF G = N, M; !
such that N7 and M; are proper. For a given minimal
descriptor represention G = (E, A, B,C, D), a general
algorithm for this computation has been proposed in [2].
Here we need only the first part of this algorithm, which
determines a state feedback matrix F' to eliminate the
impulsive behavior of the system. With the determined
F, the proper factors result as [3]:

N A+BF - )\E | B
{Ml}z C + DF D
! F I

By applying an appropriate orthogonal similarity trans-
formation, the given system matrices can be put in a
SVD-like coordinate form

A —AEn Ap | By
G = Aoy Ay | By |,
¢ G| D

where Ey; € R™ " is nonsingular. Because of mini-
mality assumption, rank Bo = n — r and we can take
F = [0 Fy], where F, is chosen such that the matrix
Aoy + By Fy is non-singular and well-conditioned. By
this choice the pair (E, A+ BF) is regular and has r fi-
nite eigenvalues and n —r simple eigenvalues at infinity.



The resulting factors, obtained after eliminating the

non-dynamic modes with the help of well-known resid-

ualization formulas, are { ]\]\471 } = (E,A,B,C,D),
1

where A = Ay — (A1 + B1F2) (A + BaFy) ' Agy,

E = FEy, B =By — (A12 + B1F>)(Asz + BaFs) ™' By,

o [Cl] _ |:Cl — (Ca+ DF5)(Aag + BQF2)1A21]
Cs —Fy(Agg + BoFy) 1 Ag

D= Dy] _ [D—(Cy+ DFy)(A2s + B2F2) ' By
D, I — F3(Ass + BoF2) ™' By

For a proper system Fy, = 0 and if F is nonsingular
then we can simply take Ny = G and M; = I.

3 The computation of NRCF

Starting with the proper factorization G = NlMl_1
computed above, we derive the formulas to compute
the NRCF to perform the steps 2 and 3 of the NRCF
Procedure. If the original system is proper, then the
following result is a straightforward extension of [4] and
[5] for descriptor representations.

Proposition 1. Let X be the symmetric stabilizing so-
lution of the generalized continuous-time algebraic Ric-
cati equation (GCARE)

0=E XA+A XE+C'C
(E'XB+C' DR 'B'XE+D'0), ()

where R = ﬁTﬁ, or of the generalized discrete-time
algebraic Riccati equation (GDARE)

E'XE=A'XA+C'C
_A'XB+C'DR'B'XA+D0), (2
where R = 5Tﬁ+§TY§. Let F be the corresponding

stabilizing feedback matrix computed in continuous-time
as

F=-FR 'BXE+D'0) (3)
or in discrete-time as

— —1 =T —T—

F=-R (B XA+D C). (4)

Then G, = (E, A, B, —~HF, H) with ' H = R, satis-
fies Ny'Ny + MMy = Gy G,. The factors M = G;!
and N = NlGO_1 of the NRCF can be expressed as

A+BF-)E| BH
N — = ==
|:M = 01+D1F DlH

F "'

1

For the numerical solution of GCARE and GDARE,
consider the extended Hamiltonian pencil (EHP)

A—\E 0 B
_0'c —A"-\E" "D (5)
D'C B D'D

L— )P =

and, respectively, the extended simplectic pencil (ESP)

A—-\E 0 B

C'CE -)A" -0'D|. (6
D'C B DD

L —)\P:=

The following result allow to compute the solution of
GCARE and GDARE by solving an appropriate gener-
alized eigenvalue problems [6, 7].

Proposition 2. Let V' be a basis matrix for the maxi-
mal dimension stable deflating subspace V of the EHP
(5) or ESP (6) and let V = [VT VI ViI'|T be parti-
tioned in accordance with L and P in (5) or (6). Then
Vi € R™" is nonsingular, and the stabilizing solution
X of the GCARE (1) or GDARE (2), and the corre-
sponding stabilizing feedback F in (3) and (4) respec-
tively, can be computed as

X =W(EW)™, F=Wwyh

Both the EHP and ESP being regular, standard numer-
ical techniques can be employed to compute V [8].
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