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Abstract. Linear diagrams are an effective way to visualize set-based
data by representing elements as columns and sets as rows with one or
more horizontal line segments, whose vertical overlaps with other rows
indicate set intersections and their contained elements. The efficacy of
linear diagrams heavily depends on having few line segments. The un-
derlying minimization problem has already been explored heuristically,
but its computational complexity has yet to be classified. In this paper,
we show that minimizing line segments in linear diagrams is equivalent
to a well-studied NP-hard problem, and extend the NP-hardness to a
restricted setting. We develop new algorithms for computing linear dia-
grams with minimum number of line segments that build on a traveling
salesperson (TSP) formulation and allow constraints on the element or-
ders, namely, forcing two sets to be drawn as single line segments, giving
weights to sets, and allowing hierarchical constraints via PQ-trees. We
conduct an experimental evaluation and compare previous algorithms
for minimizing line segments with our TSP formulation, showing that a
state-of-the art TSP-solver can solve all considered instances optimally,
most of them within few milliseconds.

Keywords: Linear Diagrams · Consecutive Ones · TSP · NP-hardness·
Algorithm Benchmarking

1 Introduction

Many real-world datasets represent set systems, and there is a vast landscape of
different visualization techniques for set-based data. Two well-known techniques
are Euler and Venn Diagrams that draw sets as closed curves and set intersections
are represented by intersections of the boundaries of these curves. For a detailed
survey of these and other set visualizations we refer to Alsallakh et al. [1].

The set visualization that we study in this paper are linear diagrams. It
has been demonstrated that they are simple and effective, and have advantages
when compared with other set visualizations [8,23,31]. Linear diagrams represent
elements as columns and sets as rows of a matrix or table, where in each row there
are one or more horizontal line segments indicating which elements are contained
in a specific set. Vertical overlaps of these line segments in different rows show set
intersections, and the corresponding elements. Figure 1a shows a linear diagram
representing a Simpsons data set introduced by Jacobsen et al. [19]. For example,
the set Blue Hair contains the elements Jacquelin Bouvier, Marge, and Milhouse,
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(a) Random ordering of the overlaps.

(b) An overlap ordering that minimizes the total number of line segments.

Fig. 1: Linear diagrams representing the Simpsons.

and is drawn with three line segments. Mr. Burns is contained in the sets Evil,
Male, and Power Plant, as represented by the corresponding vertical overlap of
the line segments in these three rows with the column of Mr. Burns.

Linear diagrams can be drawn in many ways, e.g., by choosing different
permutations of the rows/sets and columns/overlaps. It has been shown that
there are several quality criteria for linear diagrams, while the most important
one is finding an ordering of the elements that minimizes the number of line
segments [28]. For example, the linear diagram depicted in Figure 1b shows the
same set system as before, but with an ordering of the overlaps that minimizes
the number of line segments, here using 8 segments instead of 23.

The underlying computational problem of finding an ordering of the overlaps
that minimizes line segments seems hard, as for n overlaps, there are n! different
orderings of these overlaps. Finding orderings that minimize line segments is
mainly done via heuristics in the literature [7, 18, 28]. The main topic of this
paper is computing optimal linear diagrams – those which realize the minimum
possible number of line segments that have to be drawn.

Related work. Several user studies were performed to compare the efficacy of
linear diagrams and other diagram types; they showed that linear diagrams per-
form equally well or better than other diagram types including Euler and Venn
diagrams [8, 23, 29]. Linear diagrams have then been used, e.g., to visualize sets
over time [26], and Lamy et al. [21] extended linear diagrams to allow multiple
sets per row.

Existing algorithms for minimizing line segments in linear diagrams are of
heuristic nature, i.e., they may often find good solutions, but do not provide
proven guarantees on the solution quality. Rodgers et al. [28] presented a simple
heuristic that first defines a pair-wise similarity between two overlaps based
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on the number of sets they have in common. Then, this heuristic iteratively
builds an overlap ordering aiming to group similar overlaps next to each other.
Chapman et al. [7] compared different heuristics based on simulated annealing,
a travelling salesperson (TSP) formulation, and other variants of the heuristic of
Rodgers et al. [28]. A GitHub project [18] provides an implementation of linear
diagrams in Python. The underlying algorithm tries to minimize the number
of line segments by applying multiple runs of an iterative greedy heuristic, each
with a different pair-wise similarity measure between overlaps that is augmented
by random seeds.

Contribution and structure. We further investigate the computational problem
of computing optimal linear diagrams. Section 2 defines general preliminaries
and notation for permutations, matrices, and graphs. In Section 3, we describe
how the problem of computing optimal linear diagrams can be modelled as a
known problem on binary matrices, thus bridging the gap missing in the liter-
ature1. This problem is known to be NP-complete; we further strengthen this
NP-completeness result by showing that computing optimal linear diagrams is
even NP-complete for set systems where each set contains exactly two elements
and each element is contained in exactly three sets. Moreover, we present further
literature on matrix problems that are relevant with regard to linear diagrams.

In Section 4, we present a way to compute optimal linear diagrams by re-
ducing the problem to TSP, thus, completing the work of Chapman et al. [7].
They also presented an algorithm based on a TSP formulation, but this algo-
rithm sometimes produces non-optimal overlap orderings. We further expand on
this formulation, showing that we can model specific constraints on the overlap
orders. Namely, we can force up to two sets to be drawn as single line segments
while still minimizing the number of line segments. This is particularly inter-
esting for allowing interactivity in linear diagrams [5]. We also show how to
model constraints based on weighted sets and hierarchical ordering constraints
represented by PQ-trees, which is of interest for certain set visualization tasks.

In Section 5, we conduct an experimental evaluation of our algorithms from
Section 4, and compare them with the state-of-the art heuristics. We show that
a state-of-the-art TSP-solver can solve all considered instances optimally, most
of them within few milliseconds. We also verify that the considered heuristics
from the literature perform well with regard to the number of line segments,
where the average optimality gaps of the heuristics are less than ten percent.

2 Preliminaries

Let A be a matrix with m rows and n columns; we set nA = n and mA = m.
We write Ai,j with 1 ≤ i ≤ m and 1 ≤ j ≤ n for the entry of A at row i and
column j. Furthermore, by rAi and cAj we denote the i-th row and j-th column
of A, respectively. A matrix is a binary matrix if all its entries are either 0 or 1.
1 This observation has been made independently in a paper that was published after
the first version of our paper [6].
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If it is clear from the context, we might omit explicitly mentioning the matrix A
in the above notations.

We denote by [k] the set of elements {1, . . . , k}. A permutation π : [k] → X
is a bijective function from [k] to a set X. Sometimes we write permutations π
as sequences of elements, that is, π = (x1, . . . , xn) is the permutation such that
π(i) = xi for 1 ≤ i ≤ n. We denote by Πk the set of all permutations from [k]
to [k]. For two permutations π1 = (x1, . . . , xn) and π2 = (y1, . . . , ym), we denote
by π1 ?π2 their concatenation (x1, . . . xn, y1, . . . , ym). For two sets Π1 and Π2 of
permutations, we define Π1 ? Π2 = {π1 ? π2 | π1 ∈ Π1, π2 ∈ Π2}.

For a matrix A and a permutation π : [nA] → [nA] we denote by π(A) the
matrix such that π(A)i,j = Ai,π(j). Equivalently π(rAi ) = rAπ(i) for a row rAi .
By “a permutation of the columns of the matrix A” we mean a permutation
π : [nA]→ [nA].

A block of consecutive ones in a row rAi of a matrix A with n columns is a
maximal non-empty sequence Ai,p, Ai,p+1, . . . , Ai,q satisfying

– Ai,j = 1 for all p ≤ j ≤ q,
– p = 1 or Ai,p−1 = 0, and
– q = n or Ai,q+1 = 0.

For a row rAi , cons1(rAi ) is the number of blocks of consecutive ones in rAi .
Additionally, splits(rAi ) (the number of gaps between the blocks) is defined as
cons1(rAi ) − 1 if rAi contains a 1-entry, and 0 otherwise. We define cons1(A) =∑mA

i=1 cons1(r
A
i ) for a matrix A. Equivalently, splits(A) =

∑mA

i=1 splits(r
A
i ). Let cAi

and cAj be two columns of a binary matrix. By dh(cAi , cAj ) we denote the Hamming
distance between cAi and cAj , that is, the number of rows with different values.

In this paper we assume graphs G as simple and undirected. By V (G)
and E(G) we denote the vertex set and edge set of G, respectively. For a bi-
nary matrix A, let G(A) be the complete graph that consists of the vertices
V = {vi | cAi is a column in A}. If we talk about a vertex vi with index i in G(A),
we mean the vertex vi that corresponds to column cAi .

Sometimes we consider graphsG(A) obtained from a matrixA with a quadratic
and symmetric distance matrix D of size |V (G)| × |V (G)|, such that Di,j is the
length of the edge between vi and vj . A tour T in G(A) is a sequence of vertices
(vi1 , . . . , vin) that contains each vertex of G(A) exactly once. (We do not re-
quire adjacency, as G(A) is complete.) The length of T in G(A) under a distance
matrix D is Din,i1 +

∑n−1
k=1 Dik,ik+1

. Finding a tour of minimum length in G(A)
under a distance matrixD is known as the Travelling Salesperson Problem (TSP)
and is NP-complete [27].

3 Complexity of Linear Diagrams

The most important quality aspect supporting the cognitive effectiveness of lin-
ear diagrams is the number of line segments [28]. To minimize the number of line
segments that have to be drawn, we have to find an appropriate horizontal order-
ing of the overlaps. There is a one-to-one correspondence between linear diagrams
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and binary matrices: Let (S,U) be a set system with universe U = {u1, . . . , un}
and sets S = {S1, . . . , Sm}, hence, for all i ∈ [m], Si ⊆ U . The system S can be
represented by a binary matrix A s.t. Ai,j = 1 if and only if element uj belongs
to set Si. The rows and columns of A are exactly the rows and columns of the
linear diagram, respectively. Line segments in the linear diagram correspond to
blocks of consecutive ones in the matrix A. The problem of finding a horizontal
ordering of the overlaps that minimizes the number of line segments is equivalent
to the problem of finding a permutation π ∈ Πn that minimizes cons1(π(A)).

A matrix A is said to have the consecutive ones property (C1P) if there
is a permutation π ∈ ΠnA

with splits(π(A)) = 0. There are several linear-
time algorithms for testing if a matrix has the C1P and for computing the
corresponding permutation, the first due to Booth and Lueker [3]. Thus, we can
decide in linear time if a linear diagram can be drawn such that each set is
represented by exactly one line segment.

Most of the time though, linear diagrams cannot be drawn in this way. In
this case we want to minimize the number of required line segments. The corre-
sponding binary matrix problem is known as consecutive block minimization in
the literature, its decision problem is given below.

Consecutive Block Minimization
Instance: A binary matrix A and a non-negative integer k.
Question: Does there exist a permutation π ∈ ΠnA

such that
cons1(π(A)) ≤ k?

The problem has been shown to be NP-complete [20], even if each row contains
exactly two ones [14]. We give here an alternative proof of NP-completeness for
binary matrices with two ones per row and three ones per column, thus further
strengthening the NP-completeness result.

Theorem 1. Consecutive Block Minimization is NP-complete for matri-
ces with two ones per row and three ones per column.

Proof. Membership in NP is evident. For hardness, we give a reduction from
Hamiltonian Path on graphs of degree 3, which is NP-complete [12]. Hamil-
tonian Path asks for a given graph G, if there is a path in G that visits every
vertex exactly once. Let G be an instance of Hamiltonian Path such that
E(G) = {e1, . . . , em} and V (G) = {v1, . . . , vn} and G has degree 3. We construct
an instance (A, k) of Consecutive Block Minimization as follows. Let A be
the incidence matrix of G, which has nA = |V (G)| columns and mA = |E(G)|
rows with Ai,j = 1 if and only if vi ∈ ej . Clearly, this matrix has two ones per
row, as each edge contains two vertices and 3 ones per column, as G has degree
3. We show that G contains a Hamiltonian path if and only if there exists a
permutation π of the columns of A such that cons1(π(A)) ≤ 2 ·m− (n− 1).

“⇒”: Let P = (v`1 , v`2 , . . . , v`n) be a Hamiltonian path in G. We claim that
π = (`1, `2, . . . , `n) satisfies cons1(π(A)) ≤ 2 ·m − (n − 1). Consider the edges
{v`i , v`i+1

} for 1 ≤ i ≤ n− 1, which exist because P is a path. As v`i and v`i+1

are consecutive in P , the columns cA`i and cA`i+1
are consecutive in π(A). Thus,
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the row in A corresponding to the edge {v`i , v`i+1
} contributes to exactly one

block of consecutive ones. The remaining m − (n − 1) rows can contribute to
at most two blocks of consecutive ones as they only contain two 1-entries each.
Together, there are at most n− 1 + 2 · (m− (n− 1)) = 2 ·m− (n− 1) blocks of
consecutive ones in π(A).

“⇐”: Let π = (`1, `2, . . . , `n) be a permutation of the columns of A that
satisfies cons1(π(A)) ≤ 2 ·m − (n − 1). We claim that P = (v`1 , v`2 , . . . , v`n) is
a Hamiltonian path in G. There are at least n− 1 blocks of consecutive ones of
size two in π(A) as otherwise cons1(π(A)) > 2 ·m − (n − 1). As G is a simple
graph, no two rows of A contain ones in the same columns and thus each of these
blocks of consecutive ones has to start at a different column. By the pigeonhole
principle, for each 1 ≤ i ≤ n − 1, there exists such a block of consecutive ones
that starts at the i-th column of π(A). Hence, {v`i , v`i+1

} is an edge in G for all
1 ≤ i ≤ n− 1, and P is a Hamiltonian path. ut

We have been made aware of the fact that this result has been proved indepen-
dently previously, using the same reduction [16].

Consecutive Block Minimization has been further studied from an al-
gorithmic view. Several heuristic methods for finding permutations π with small
cons1(π(A)) have been given [15,16,30]. Haddadi and Layouni [17] transformed
Consecutive Block Minimization to a travelling salesperson problem, we
will go into more details on their results in Section 4.

Further variations of consecutive-ones problems that could be interesting for
linear diagrams have been studied, mostly giving hardness results or polynomial
algorithms assuming that some underlying parameters of the problems are con-
stant: It has been shown that the problem of finding a permutation π of the
columns of a binary matrix A such that for all i ∈ [mA], cons1(rAi ) ≤ k ∈ N
is NP-complete [13], which translates to the problem of having at most k line
segments per set in a linear diagram. Another more involved problem has been
studied, called Gapped Consecutive Ones, in which we are given a binary
matrix A and want to find a permutation π of the columns of A such that for
all i ∈ [mA], cons1(rAi ) ≤ k ∈ N, and the gaps between two consecutive blocks
of ones in a row of π(A) is at most some maximum gap parameter δ [9, 24, 25].
Here gaps refer to maximal blocks of zeros between two blocks of ones.

Furthermore, there is literature devoted to turning a binary matrix into a
binary matrix that has the C1P by deleting rows, deleting columns, or flipping
entries (turning 1-entries into 0-entries and/or turning 0-entries into 1-entries).
Dom et al. [11] give a summary of results.

Consecutive Block Minimization is also related to a variant of database
compression. Given a database consisting of m rows and n columns, one wants
to permute the rows of the database such that the number of runs is minimized.
Runs are essentially consecutive elements in a column that have the same value.
When compressing the database, such runs can be saved using constant memory
by only saving the start, end, and value of the run. The main difference to
our application is that databases are normally comprised of a huge number
of rows, sometimes in the millions. Thus, mainly heuristics have been studied,
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in particular, heuristics that take less than quadratic time in the number of
rows. In our context of linear diagrams, algorithms and heuristics consuming
quadratic time in the input are no problem. Some algorithms for minimizing
runs in databases are for example described in [22].

4 TSP Model

In this section, we describe the procedure of minimizing the number of line
segments in a linear diagram by using a TSP model, and give a runtime opti-
mization. We also show how to incorporate further constraints into this model.

4.1 Solving Linear Diagrams with TSP

We now present how to solve the task of minimizing the number of line segments
drawn in a linear diagram. Let us start with the key lemma for our model.

Lemma 1 ([17]). Let A be a binary matrix with n columns and let A′ be the
binary matrix obtained from A by appending a column of zeros to the right of A.
Let (vi1 , vi2 , . . . , vin+1) be a tour of length L in G(A′) under distance matrix
Di,j = dh(c

A′

i , c
A′

j ). Assume that vik = vn+1, corresponding to the appended col-
umn of zeros, and let π = (ik+1, . . . in+1, i1, . . . , ik−1). Then L = 2 ·cons1(π(A)).

As discussed in Section 3, the task of minimizing line segments in linear
diagrams is the same as finding a permutation π of the columns of a binary
matrix A that minimizes cons1(π(A)). One way to find such a permutation is
with a TSP-model as outlined by Lemma 1: Let A be a binary matrix with n
columns. We construct the binary matrix A′ by appending a column of zeros
to the right of A. From the matrix A′, we construct the complete graph G(A′),
such that vertices correspond to columns in A′. A distance matrix D for G(A′)
is constructed such that Di,j is the Hamming distance dh(cA

′

i , c
A′

j ). We then
compute a TSP tour (vi1 , vi2 , . . . , vin+1

) of minimal length in G(A′). Assume
that vik is the vertex corresponding to the column cA

′

nA′ . Then, by Lemma 1,
π = (ik+1, . . . , in+1, i1, . . . , ik−1) is the permutation with minimal cons1(π(A)).
The intuition for this is that choosing an edge {vi, vj} of small length in G(A′)
is the same as starting or ending few consecutive blocks of ones (corresponding
to line segments in a linear diagram) when going from the column ci to cj . With
this argumentation each block of consecutive ones is started and ended exactly
once, and the length of the tour is 2 · cons1(π(A)). Note that adding the extra
column at the end is necessary, as otherwise it could be that some consecutive
blocks of ones, those that start at the first column or end at the last column, are
“not counted in the tour”.

There is a small runtime optimization that can be applied to decrease the size
of the graph G(A′). Columns of A that have ones in the same rows, their Ham-
ming distance being zero, can be collapsed into a single column. The above pro-
cedure may be applied to compute the desired permutation of columns, and then
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the collapsed columns can be expanded again to appear consecutively. Clearly,
this does not influence the number consecutive blocks of ones in the resulting
matrix. In terms of set systems, this corresponds to collapsing multiple over-
laps that contain the same sets into a single representative. In an optimal linear
diagram, such overlaps would never be separated.

We tested this method of computing optimal column orderings by applying a
state-of-the art TSP-solver. We will report on experimental results for real-world
and previously considered set visualization instances in Section 5. Note that the
same procedure has already been applied to instances from consecutive block
minimization [30].

4.2 Priorities for Sets

In some contexts certain sets in a linear diagram might be considered more
important than others. We would want to compute a linear diagram, in which
these sets are drawn with a single line segment, but the other sets should be
drawn with as few line segments as possible. It is clear that forcing more than
two sets to be drawn as one line segment is not always possible, as there are
binary matrices with three rows that do not have the C1P. We can solve the
problem on binary matrices as a TSP model due to the following result.

Lemma 2. Let A be a binary matrix with n columns and exactly p 1-entries
and let C1, . . . , Cq ⊆ {c1, . . . , cnA

} be a family of non-empty sets of columns
of A satisfying

∃π ∈ Πn∀k ∈ [q] : the columns in Ck appear consecutively in π(A).

Let A′ be the matrix obtained from A by appending a column of zeros. We con-
sider the graph G(A′) with distance matrix D s.t.

Di,j = dh(ci, cj) + (2p+ 1) ·
q∑

k=1

|1Ck
(ci)− 1Ck

(cj)|,

where 1Ck
is the indicator function for set Ck. Let T = (vi1 , vi2 , . . . , vin+1

) be
a tour of minimal length in G(A′) under distance matrix D. Let vik = vn+1,
corresponding to the appended column of zeros. Then the permutation π =
(ik+1, . . . , in+1, i1, . . . , ik−1) has the following properties

(1) For all k ∈ [q] the columns in Ck appear consecutively in π(A).
(2) Of all π′ ∈ Πn that satisfy (1), π is the one with minimum cons1(π(A)).

Proof. Let π be the permutation as defined above. We first show by contradic-
tion that π satisfies (1). Assume to the contrary that π does not satisfy (1) and
consider any permutation π′ of the columns of A that satisfies (1). This per-
mutation exists by assumption. Consider the tour T ′ = (vn+1) ? π. The length
of T ′ is at most 2q(2p+1)+ 2p, as there can be at most p consecutive blocks of
ones in π′(A), each contributing two to the length of T ′. The value 2q(2p + 1)
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is due to the fact that we “leave” or “enter” vertices corresponding to the set of
columns Ck, 1 ≤ k ≤ q, exactly twice. To the contrary, the length of T is at
least 2(q + 1)(2p+ 1). Hence, T cannot be a tour of minimal length, yielding a
contradiction. It is clear that π also satisfies (2), as increases in the length of the
tour T , also increases the number of consecutive ones of the matrix π(A) due to
the same reasoning as in Lemma 1. ut

We can directly apply the above lemma to find a permutation of the columns of
a matrix A with minimum blocks of consecutive ones among the permutations π
that have cons1(r

π(A)
i1

)) = cons1(r
π(A)
i1

) = 1 for i1, i2 ∈ mA: We simply define
C1 = {j ∈ [nA] | Ai1,j = 1} and C2 = {j ∈ [nA] | Ai2,j = 1}, and apply
the reduction to TSP as outlined in Lemma 2. Clearly, C1 and C2 satisfy the
requirements of Lemma 2, as a matrix with two rows always has the C1P. In our
experiments we show how adding these constraints affects the runtime and the
number of blocks of consecutive ones. Note, however, that the result of Lemma 2
allows us to constrain column orders of a matrix in far more general ways.

4.3 A Weighted Version

The shortcoming of the approach described in Section 4.2 is that we can only
restrict two sets to be drawn in one line segment. If we want to involve more sets
in this, we can use a model with weighted sets (corresponding to rows in a binary
matrix A). Then, if a weight of row rAi is bigger than a weight of rAj , it is “worse”
to have more blocks of consecutive ones for rAi than it is for rAj . Formally, we are
given a binary matrix A and a weight function f : [mA] → N, and we want to
find a permutation π of the columns of A that minimizes

∑mA

i=1 f(i)cons1(r
π(A)
i ).

Solving this problem is straight-forward with a TSP-model: We construct the
matrix A′ by appending a column of zeros to the right of A. We then create
a distance matrix D for G(A′) such that Di,j =

∑mA

k=1 f(k)|A′k,i − A′k,j |. This
distance matrix corresponds to weighted Hamming distances. Then, we simply
find the tour T of minimal total distance in G(A′) under D, and obtain the
desired permutation π from T as in Lemma 1. We conduct experiments for this
weighted version of consecutive block minimization in Section 5.

4.4 Hierarchical Constraints

We now to present an algorithm that allows for more general constraints on
the allowed column orders of a binary matrix, restricting column orders by PQ-
trees. We adopt the definition of PQ-trees of Burkard et al. [4], as our algorithm
directly applies their results. A PQ-tree T over the set [n] is a rooted, ordered
tree whose leaves are pairwise distinct elements of [n] and whose internal nodes
are distinguished as either P -nodes or Q-nodes. The set leaf(T ) denotes the
leaves of T .

Every PQ-tree T represents a setΠ(T ) of permutations of leaf(T ) as follows.
If T consists of a single leaf i ∈ [n], then Π(T ) = {(i)}. Otherwise, the root r(T )
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nA + 1

T

P

Fig. 2: Construction of PQ-tree in Theorem 2.

of T is a P -node or a Q-node. Let v1, . . . , vm denote the children of r(T ), ordered
from left to right, and let Ti denote the maximal subtrees rooted at vi, 1 ≤ i ≤ m.
If r(T ) is a P -node, then

Π(T ) =
⋃

ψ∈Πm

Π(Tψ(1)) ? Π(Tψ(2)) ? · · · ? Π(Tψ(m)),

and if r(T ) is a Q-node, then

Π(T ) = Π(T1) ? Π(T2) ? · · · ? Π(Tm) ∪Π(Tm) ? Π(Tm−1) ? · · · ? Π(T1).

Informally, children of P -nodes can be permuted arbitrarily, while children of Q-
nodes can only be reversed.

For applications of PQ-trees we refer to Booth and Lueker [3]. They can be
used to model allowed column orders of a binary matrix or, equivalently, the
orders of overlaps in a linear diagram; for example, if overlaps illustrated by a
linear diagram have some hierarchical relations between them and should not
be permuted arbitrarily, then we might represent this by a PQ-tree accordingly.
If the maximum degree of the PQ-tree T that represents column orders of a
binary matrix A has small maximum degree, then the permutation π ∈ Π(T )
that minimizes cons1(π(A)) can be computed efficiently.

Theorem 2. Let A be a binary matrix and let T be a PQ-tree of maximum
degree d such that Π(T ) ⊆ ΠnA

. The permutation π ∈ Π(T ) that minimizes
cons1(π(A)) can be found in time O(max(mA · n2A, 2d · n3A)).

Proof. We apply a result of Burkard et al. [4] that states that for a PQ-tree T
with maximum degree d, and an n×n distance matrix D, the shortest TSP tour
for the matrix D contained in Π(T ) can be computed in O(2d ·n3) overall time.

Let A be a binary matrix and let T be a PQ-tree of maximum degree d such
that Π(T ) ⊆ ΠnA

. Let A′ be the binary matrix obtained from A by appending a
column of zeros to the right of A. We construct a PQ-tree T ′ such that Π(T ′) ⊆
ΠnA+1. The PQ-tree T ′ consists of a P -node that has two children: The leaf
nA + 1 and the tree T rooted at r(T ) (see Figure 2). Notice that the maximum
degree of T ′ is at most d + 1. Let D be the distance matrix corresponding to
edge weights Di,j = dh(c

A′

i , c
A′

j ) in G(A′). Due to the result of Burkard et al. we
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can find in time O(2d ·n3A) a tour of minimum length in G(A′) that is contained
in Π(T ′). By Lemma 1 and the construction of T ′, we can obtain from this tour
a permutation π ∈ Π(T ) that minimizes cons1(π(A)). We need mA · n2A time
to construct the distance matrix D, thus we need to account for the possibility
that mA · n2A > 2d · n3A, taking the maximum of both. ut

5 Experiments

In this section, we present an experimental evaluation of the algorithms proposed
in Section 4, comparing them with state-of-the art heuristics.

5.1 Setup and Test Data

Setup. All experiments were performed on a desktop machine with an Intel i7-
8700K processor. The implementations of algorithms were done in Python 3.7.
To solve our TSP models, we used the Concorde TSP solver2 with the QSopt
linear programming solver3. The code is available online [10].

Test data. We consider binary matrices from two different sources. The first
set of instances, referred to as T1, is taken from Chapman et al. [7] and is
available online4. These instances consist of 440 binary matrices with 5 sets and
10 overlaps up to 50 sets and 70 overlaps. Chapman et al. [7] provide results of
their algorithms for minimizing line segments for these instances.

The second set of instances, referred to as T2, comes from a work by Jacobsen
et al. [19] and is available online5. The set systems represented by these instances
are taken out from a large real-world dataset coming from the Kaggle “What’s
Cooking” competition [2]. The sizes of these instances range from 20 overlaps
and 6 sets to 160 overlaps and 20 sets. Overall, there are a total of 4060 instances.

5.2 Computing Optimal Linear Diagrams

The first set of experiments considers the task of computing optimal linear dia-
grams, or equivalently, finding column orderings of the instances that minimize
the number of blocks of consecutive ones.

Algorithms. We include comparisons of the following algorithms.

– TSPConcorde: This algorithm from Section 4.1uses our TSP model and the
Concorde TSP solver to solve the problem optimally. The reported runtimes
include generating input files for the Concorde solver and reading its output.

2 https://www.math.uwaterloo.ca/tsp/concorde.html
3 http://www.math.uwaterloo.ca/~bico/qsopt/
4 https://doi.org/10.17869/enu.2021.2748170
5 https://osf.io/nvd8e/

https://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/~bico/qsopt/
https://doi.org/10.17869/enu.2021.2748170
https://osf.io/nvd8e/
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– HeuristicRodgers: This algorithm is a python implementation of a greedy
algorithm by Rodgers et al. [28]. A pairwise similarity measure between
overlaps is defined, and then an overlap order is computed iteratively, trying
to place similar overlaps next to each other. Rodgers et al. provide an online
demo that implements this algorithm6.

– Supervenn: This algorithm is from a recent GitHub project [18]. For a set
of 10000 seeds it defines a pairwise similarity measure between overlaps and
then applies a heuristic to compute an overlap order.

– BestChapman: Chapman et al. [7] compare several heuristic methods to
compute overlap orderings of linear diagrams that minimize the drawn line
segments. They report the number of line segments of overlap orders com-
puted by their algorithms for test set T1. As they do not provide the code
for all algorithms, and the explanation of the remaining algorithms is incom-
plete, we had to restrict the evaluation of their approaches to test set T1. For
an instance of T1, we assume that the algorithm BestChapman is any algo-
rithm of Chapman et al. that computes an overlap ordering with the least
amount of blocks of consecutive ones. They do not provide the runtimes of
their algorithms in their abstract [7], so we cannot either.

Comparison. TSPConcorde by design computes optimal column orderings. Hence,
we report the relative and absolute optimality gaps for the other algorithms.
That is, let blocks(A, I) be the number of blocks of consecutive ones of a column
ordering computed by algorithm A for instance I. Then the relative optimality
gap in percent is 100 · ( blocks(A,I)

blocks(TSPConcorde,I) − 1) and the absolute optimality gap
is blocks(A, I)−blocks(TSPConcorde, I). For a set of instances, we report these
value averaged. For TSPConcorde we provide the average number of consecutive
blocks of ones per row, as the optimality gap is always zero. We also provide
the mean runtime for the same set of instances. Results are broken down by the
number of columns, as the factorial of the number of columns determines the
size of the possible search space for an algorithm.

Test set T1. Table 1 shows the results for test set T1. The simple heuristic of
Rodgers et al. [28] has the smallest runtimes, while also performing worst with
regard to optimality gaps. The runtimes of Supervenn are rather high, while the
optimality gaps are lower when compared to HeuristicRodgers, resulting from
the 10000 runs of a heuristic, each skewed with a different seed value. While the
problem of consecutive block minimization is NP-complete, TSPConcorde solved
all instances optimally. The average runtime for the largest class of instances
from T1 is still less than a second. It is worth mentioning that optimality gaps
of mostly under 10% indicate that the heuristics are quite good.

The heuristics of Chapman et al. [7] solved 340 of the 440 instances optimally.
For the remaining instances, the maximum difference between the optimal num-
ber of consecutive blocks and their best solution is 3. This yields the fairly small
optimality gaps for BestChapman, while we expect that these values would in-
crease for larger instances, a pattern that just starts to appear in Table 1.
6 http://www.eulerdiagrams.com/linear/generator/

http://www.eulerdiagrams.com/linear/generator/
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Table 1: Results for test set T1. White columns depict the mean relative/absolute
optimality gaps (except TSPConcorde); gray columns depict the mean runtimes.
For the algorithms of Chapman we do not know the runtimes.

#columns

TSPConcorde HeuristicRodgers Supervenn Best
Chapman

blocks / t gap t gap t gap
row [ms] [rel./abs.] [ms] [rel./abs.] [ms] [rel./abs.]

10 1.7 7 3.3/0.9 0 1.6/0.8 853 0.0/0.0
20 2.8 13 6.0/3.0 1 3.3/1.8 1360 0.0/0.0
30 4.0 22 6.0/5.2 1 3.4/3.1 1861 0.2/0.3
50 6.0 69 6.9/9.3 4 3.7/5.6 2969 0.4/0.5
70 7.9 340 8.1/13.3 7 4.7/8.0 4192 0.5/0.8

Table 2: Results for test set T2. White columns depict the mean relative/absolute
optimality gaps (except TSPConcorde); gray columns depict the mean runtimes.

#columns
TSPConcorde HeuristicRodgers Supervenn

blocks / t gap t gap t
row [ms] [rel./abs.] [ms] [rel./abs.] [ms]

20-50 1.7 17 8.4/2.0 1 7.7/1.8 1949
55-80 1.8 23 10.0/2.5 2 8.4/2.2 3642
85-110 1.9 36 10.9/2.8 4 9.2/2.5 5408
115-140 2.0 82 11.1/3.1 6 9.8/2.8 7782
145-160 2.0 71 10.7/3.0 9 9.8/2.9 10133
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Fig. 3: Violin and box plot showing runtimes for all instances from T1 and T2.

Test set T2. Table 2 shows results for test set T2. TSPConcorde is able to solve
all instances optimally, the mean runtime still being well below 100ms, even
for instances with up to 160 columns. For Supervenn and HeuristicRodgers we
see similar results as in the previous test set. While Supervenn has slightly
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better optimality gaps, HeuristicRodgers takes only a thousandth of the time of
Supervenn. Again, optimality gaps increase with increasing number of columns
to about 10 percent compared to the optimal solutions.

Runtimes. Figure 3 shows a boxplot and violin plot of the runtimes of the three
algorithms HeuristicRodgers, Supervenn, and TSPConcorde for the combined
test set T1 ∪ T2. The y-axis is scaled logarithmically. It again reflects that Su-
pervenn takes much longer than HeuristicRodgers, while the runtimes for both
algorithms do not contain outliers as their runtime is rather “deterministic”, in
the sense that their runtime is accurately represented as a polynomial function
of the number of columns of an instance. On the contrary, the runtimes of TSP-
Concorde contain a multitude of outliers, while most runtimes are still below
100ms. Only two instances take more than 10 seconds to solve.

5.3 Constraints

Next, we present experiments on how constraints on the column order affect the
runtime and the number of blocks of TSPConcorde. Namely, we implemented
the constraints from Sections 4.2 and 4.3 that either specify that two sets/rows
have to be represented as a single line segment/consecutive blocks of ones, or
give specific weights to sets. The evaluation for both constraints works as follows.

– Two sets as single line segment: We pick uniformly at random for each in-
stance in our test set T1 ∪ T2 two sets that have to be drawn as a single line
segments, and then apply the reduction to TSP described in Section 4.2, and
solve the resulting TSP-instance with the Concorde TSP-solver. We identify
this approach by TSPConcordeFS for “f ixed sets”.

– Weighted sets: For each matrix A in the test set T1 ∪ T2 we specify a weight
function f : [mA] → N that assigns to each set a unique integer weight in
[mA] uniformly at random. Then, we apply the reduction to TSP as described
in Section 4.3 and solve the resulting TSP-instance with the Concorde TSP-
solver. We identify this approach by TSPConcordeW for “weighted”.

Table 3 shows runtimes and optimality gaps for test set T1. We observe that
adding constraints does not influence runtimes of the TSP solver significantly.
Furthermore, by adding constraints we may not be able to reach the optimal
number of line segments anymore and see a maximum optimality gap of 10%.
The results for test set T2 are similar and are given in Table 4.

Figure 4 shows a box and violin plot of runtimes for TSPConcorde and the
constrained versions thereof, further suggesting that adding constraints does not
significantly influence runtimes.

6 Conclusion

We have studied the algorithmic complexity of computing optimal linear dia-
grams and observed that it is equivalent to a related problem on binary matrices.
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Table 3: Results for test set T1 and constrained versions. White columns depict
mean relative/absolute optimality gaps (except TSPConcorde); gray columns
depict mean runtimes.

#columns

TSPConcorde TSPConcordeFS TSPConcordeW
blocks / t gap t gap t
row [ms] [rel./abs.] [ms] [rel./abs.] [ms]

10 1.7 7 4.1/1.7 8 2.6/0.9 7
20 2.8 13 4.8/3.7 17 4.5/3.0 11
30 4.0 22 6.2/6.7 37 6.5/5.9 25
50 6.0 69 6.4/10.2 104 8.7/12.1 61
70 7.9 340 7.0/14.8 210 9.4/16.7 84

Table 4: Results for test set T2 and constrained versions. White columns depict
the mean relative and absolute optimality gaps (except TSPConcorde); gray
columns depict the mean runtimes.

#columns
TSPConcorde TSPConcordeFS TSPConcordeW

blocks / t gap t gap t
row [ms] [rel./abs.] [ms] [rel./abs.] [ms]

20-50 1.7 17 3.6/0.9 28 4.0/0.9 16
55-80 1.8 23 3.1/0.8 36 4.8/1.2 27
85-110 1.9 36 3.0/0.8 57 5.2/1.4 30
115-140 2.0 82 3.2/0.9 79 6.0/1.7 40
145-160 2.0 71 3.1/0.8 99 6.2/1.7 38
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Fig. 4: Runtimes of constrained algorithms for all instances from T1 and T2.

Despite its NP-completeness, even in a restricted setting, we have formulated a
TSP model for solving the problem optimally. In an experimental study, we have
seen that a state-of-the-art TSP solver can in fact solve a large set of instances
obtained from our model optimally, most of them within few milliseconds. Hence



16 A. Dobler and M. Nöllenburg

it is feasible to strive for optimal linear diagrams in most practical settings and
thus reduce the number of line segments by up to 10% compared to the best
heuristics, which, otherwise, are faster by one to two orders of magnitude.
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