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ON COMPUTING RATIONAL GAUSS-CHEBYSHEV
QUADRATURE FORMULAS

JORIS VAN DEUN, ADHEMAR BULTHEEL, AND PABLO GONZÁLEZ VERA

Abstract. We provide an algorithm to compute the nodes and weights for
Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational
functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational
quadrature formulas, the computational effort is very low, even for extremely
high degrees, and under certain conditions on the poles it can be shown that
the complexity is of order O(n). This method is based on the derivation of
explicit expressions for Chebyshev orthogonal rational functions, which are

(thus far) the only examples of explicitly known orthogonal rational functions
on [−1, 1] with arbitrary real poles outside this interval.

1. Introduction

Over the last few years, several generalizations of the classical Gauss quadrature
formulas have been studied, e.g., formulas which integrate exactly in spaces of
Laurent polynomials [1, 5, 6, 13] or more general rational functions [2, 3, 11, 12,
16, 17]. However, most of these formulas suffer from a serious drawback, i.e.,
the computational effort required to construct the formulas is so large that it is
usually not compensated for by their superior accuracy for specific integrands. The
same is true in the case of (polynomial) Gauss formulas for arbitrary measures,
whose computation was discussed in a series of articles by Gautschi [7, 8, 9, 10].
To construct these formulas, the general procedure is the same for polynomials,
Laurent polynomials or rational functions: one first has to compute the recurrence
coefficients, and then obtain the nodes and weights from these coefficients. If the
coefficients are not explicitly known, they can be computed evaluating the inner
products in the expressions for the coefficients, and this is where many of the
problems arise. Basically, to approximate a given integral, you want to use a
quadrature formula whose construction involves the evaluation of many very similar
integrals (inner products); you would need a very good reason to do things this
way. Some notable exceptions to all this are the (few) formulas which can be
computed from explicitly known modified moments [8], some of the formulas based
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on Laurent polynomials from [13] and of course the explicitly known formulas such
as the classical Chebyshev rule.

The main purpose of this paper is to present a class of gaussian quadrature for-
mulas on [−1, 1], based on orthogonal rational functions, which can be computed
fast and efficiently (even for very high degrees). They are rational generalizations
of the Gauss-Chebyshev formula, and are exact in a maximal space of rational func-
tions with arbitrary real poles outside [−1, 1], which are fixed in advance. Unlike
the polynomial case, the weights and nodes are not explicitly known, but are easy
to compute. In fact, the computations are simplified considerably by “translating”
them from the interval to the complex unit circle, as was done in [14]. To arrive at
these formulas, we first have to generalize the Chebyshev polynomials to the case
of orthogonal rational functions and thereby provide the only explicitly known ex-
amples of orthogonal rational functions on [−1, 1] with arbitrary real poles outside
this interval.

In the next section we present the basic theory of orthogonal rational functions
(ORF). The main ingredients here are the three-term recurrence relation and the
gaussian quadrature formulas. In Section 3 we specialize this theory to the case
of Chebyshev weight functions, using a theorem from Szegő’s book [15]. We give
explicit representations for the ORF and their recurrence coefficients. The com-
putation of the quadrature formula is discussed in Section 4, and in the Examples
section we look at the computation and accuracy of these formulas and compare
them to some alternatives.

2. Preliminaries

The complex plane is denoted by C, the Riemann sphere by C = C ∪ {∞}, the
real line by R and the extended real line by R = R ∪ {∞}. For the unit circle and
its interior we introduce the following notation:

T = {z : |z| = 1}, D = {z : |z| < 1}.

We will also use I = [−1, 1], R
I

= R \ I and C
I

= C \ I. Given a positive bounded
Borel measure µ on I whose support supp(µ) ⊂ I is an infinite set, the inner product
is defined as

(2.1) 〈f , g〉 =
∫ 1

−1

f(x)g(x)dµ(x).

Next we will introduce the spaces of rational functions with real poles. Let a
sequence A = {α1, α2, . . . } ⊂ R

I
be given. Define factors

Zn(x) =
x

1 − x/αn
, n = 1, 2, . . . ,

and basis functions

b0 = 1, bn(x) = bn−1(x)Zn(x), n = 1, 2, . . . .

Then the space of rational functions with poles in A is defined as

Ln = span{b0, . . . , bn}.
Let Pn denote the space of polynomials of degree at most n and define

πn(x) =
n∏

k=1

(1 − x/αk).
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Then we may write equivalently

Ln = {pn/πn, pn ∈ Pn}.

Note that Ln = Pn if all poles are at infinity. Orthonormalizing the canonical basis
{b0, . . . , bn} with respect to the orthogonality measure µ, we obtain orthogonal
rational functions {ϕ0, . . . , ϕn}. Regarding these orthonormal functions we have
the following important theorem from [2, p. 261], completely analogous to the
one for orthogonal polynomials. The regularity conditions mentioned in [2] are
automatically satisfied because of the assumption on the location of the poles.

Theorem 2.1. Put by convention α−1 = α0 = ∞. Then for n = 1, 2, . . . there
exist constants En, Fn such that the orthonormal rational functions ϕn satisfy the
following three-term recurrence relation:

(2.2) ϕn(x) =
(

EnZn(x) + Fn
Zn(x)

Zn−1(x)

)
ϕn−1(x) − En

En−1

Zn(x)
Zn−2(x)

ϕn−2(x).

The initial conditions are ϕ−1(x) ≡ 0, ϕ0(x) ≡ 1/
√

µ(I), and the coefficients En

are nonzero.

Note that the coefficient E0 is never used and can be arbitrarily chosen. If
we take the coefficient En to be positive, then the functions ϕn will be uniquely
determined. In this case we have the following lemma which can be deduced from
[2].

Lemma 2.2. The orthonormal functions ϕn normalized with En > 0 have real
coefficients with respect to the basis {bk}.

It follows in particular that ϕn(x) is real for real x, and for any inner product
〈f , ϕn〉 we may omit the complex conjugate bar in (2.1).

The reproducing kernel kn(x, y) for the space Ln is defined by

kn(x, y) =
n∑

k=0

ϕk(x)ϕk(y),

and the orthogonal rational functions ϕn satisfy a Christoffel-Darboux relation,
which we will only need in its confluent form as given in the next theorem from [2,
Chap. 11].

Theorem 2.3. The following relation holds between reproducing kernel and or-
thonormal basis functions of Ln:

f ′
n(x)fn−1(x) − fn(x)f ′

n−1(x) = Enkn−1(x, x),

where

fk(x) =
(

1 − x

αk

)
ϕk(x)

and the prime means derivative.

Next we give the general theorem about rational gaussian quadrature formulas.
It can be found in [2, chapter 11.6], and in more detail in [17].

Theorem 2.4. 1. For each n = 1, 2, . . . , the function ϕn(z) has exactly n distinct
zeros on (−1, 1).
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2. Let {xnk}n
k=1 be the zeros of the n-th orthogonal rational function ϕn and let

{λnk}n
k=1 be defined by

λnk = kn−1(xnk, xnk)−1.

Then the quadrature formula for

Iµ(f) =
∫ 1

−1

f(x)dµ(x)

given by

In(f) =
n∑

k=1

λnkf(xnk)

is exact in Ln · Ln−1 = {gh : g ∈ Ln, h ∈ Ln−1}, i.e., In(f) = Iµ(f) for any f in
Ln · Ln−1.

It follows from [4] that the nodes can be found as the eigenvalues of a general-
ized eigenvalue problem and that the weights are defined by the first components
of the corresponding eigenvectors. The matrices involved contain the recurrence
coefficients and the poles.

We conclude this section with a theorem about the asymptotic zero distribution
of the functions ϕn(x). It can be found in [16]. We rephrase it according to our
discussion.

Theorem 2.5. Let µ be absolutely continuous, satisfying the Erdős-Turán condition
µ′ > 0 a.e. on I, and suppose that the asymptotic distribution of the poles A is given
by a measure ν on R\I, i.e., for every continuous function f on R\I which vanishes
at infinity, we have

lim
n→∞

1
n

n∑
j=1

f(αj) =
∫

R\I

f(x)dν(x).

If ν = pδ∞ + (1 − p)ν0, where δ∞ is a unit measure with all its mass concentrated
at infinity and 0 ≤ p ≤ 1 (note that p measures the ratio of the number of poles at
infinity to the total number of poles), and

(2.3)
∫

R\I

log |t|dν0(t) < ∞,

then the asymptotic distribution of the zeros of ϕn is given by an absolutely contin-
uous measure λ with weight function

λ′(x) =
1
π

1√
1 − x2

∫
R\I

√
1 − 1/t2

1 − x/t
dν(t).

3. Chebyshev ORF

Contrary to the polynomial case with its classical examples such as the Legendre
or Chebyshev polynomials, no explicit examples of orthogonal rational functions
on I are known for arbitrary poles. In fact, this lack of “classical” cases is one of
the most poignant problems in the computational theory of ORF. In this section
we derive explicit formulas for a rational generalization of the Chebyshev poly-
nomials, which is an important first step in this direction. In what follows, by a
Chebyshev weight function we mean a Jacobi weight function of the form w(x) =
(1 − x)α(1 + x)β with α and β belonging to {±1/2}. Furthermore, note that the
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case α = −1/2 and β = 1/2 reduces to the case α = 1/2 and β = −1/2 replacing x
by −x. The key to most results is a theorem which can be found in Szegő’s book
[15, p. 31]. Let ρ(x) be a polynomial of strict degree l and positive in [−1, 1]. Then
this theorem gives explicit representations for polynomials pn(x) orthogonal with
respect to the weight functions

w(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − x2)−1/2{ρ(x)}−1,

(1 − x2)1/2{ρ(x)}−1,(
1−x
1+x

)1/2

{ρ(x)}−1.

These orthogonal polynomials pn(x) are called Bernstein-Szegő polynomials and
can be given explicitly provided that l < 2n in the first case, l < 2(n + 1) in the
second case and l < 2n + 1 in the third. We give the theorem without proof.

Theorem 3.1. Let ρ(x) be a polynomial of strict degree l and positive in [−1, 1].
Let ρ(cos θ) = |h(eiθ)|2 be the normalized representation of ρ(cos θ) such that h(z)
is a polynomial of degree l, with h(z) 
= 0 in D and h(0) > 0. Then we have the
following formulas for the orthonormal polynomials pn(x), orthogonal in the sense
that

∫ 1

−1
pk(x)pl(x)w(x)dx = δkl:

pn(cos θ) = (2/π)1/2�{einθh(eiθ)},
w(x) = (1 − x2)−1/2{ρ(x)}−1, l < 2n;

pn(cos θ) = (2/π)1/2(sin θ)−1�{ei(n+1)θh(eiθ)},
w(x) = (1 − x2)1/2{ρ(x)}−1, l < 2(n + 1);

pn(cos θ) = π−1/2(sin(θ/2))−1�{ei(n+1/2)θh(eiθ)},

w(x) =
(

1 − x

1 + x

)1/2

{ρ(x)}−1, l < 2n + 1.

The connection with orthogonal rational functions is as follows. If we denote as
usual the orthonormal rational functions with respect to µ by ϕn(x), then writing
ϕn(x) = pn(x)/πn(x), it follows that pn(x) is a polynomial orthogonal (not or-
thonormal) to the varying measure dµ(x)/(πn(x)πn−1(x)). As pointed out by Van
Assche in [16], when dµ(x) = w(x)dx with

(3.1) w(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − x2)−1/2,

(1 − x2)1/2,(
1−x
1+x

)1/2

,

then we can use the previous theorem to compute the polynomials pn (and thus
also the rational functions ϕn).

Before we can proceed with our discussion, some lemmas are needed which sim-
plify the computations. In the rest of this chapter we will use the following definition
for Blaschke factors ζk(z) and the corresponding Blaschke product Bn(z). Let there
be given a sequence of real numbers B = {β1, β2, . . . } ⊂ I. Then define

ζk(z) =
z − βk

1 − βkz
, k = 1, 2, . . . ,

Bn(z) = Bn−1(z)ζn(z), B0(z) = 1, n = 1, 2, . . . .

The first lemma computes an integral that we will encounter later on.
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Lemma 3.2. With the previous definition of the Blaschke product Bn(z) we have∫ 2π

0

[zkBn(z)Bn−1(z) ± 1]2

(z − βn)2B2
n−1(z)zk−1

dθ = ± 4π

1 − β2
n

(z = eiθ)

for every k = 1, 2, . . . .

Proof. First expand the square in the numerator to get∫ 2π

0

[zkBn(z)Bn−1(z) ± 1]2

(z − βn)2B2
n−1(z)zk−1

dθ =
∫ 2π

0

zk+1B2
n(z)

(z − βn)2
dθ

± 2
∫ 2π

0

z

(z − βn)(1 − βnz)
dθ +

∫ 2π

0

1
(z − βn)2B2

n−1(z)zk−1
dθ.

Note that the last integral in this expression is the complex conjugate of the first
one, so we may write∫ 2π

0

[zkBn(z)Bn−1(z) ± 1]2

(z − βn)2B2
n−1(z)zk−1

dθ

= 2�
{

1
i

∮
T

zkB2
n(z)

(z − βn)2
dz

}
± 2

i

∮
T

1
(z − βn)(1 − βnz)

dz.

The first integrand is analytic in D ∪ T, and the second one has a simple pole in
z = βn. The result now follows from the residue theorem. �

As indicated by this lemma, Blaschke products have a peculiar behaviour when
z is on the unit circle. For example, in the proof we used the fact that Bn(z) =
1/Bn(z) when z ∈ T. The next lemma gives an interesting expression for the
derivative of a Blaschke product on the unit circle.

Lemma 3.3. With the definition of the Poisson kernel

P (z, t) =
1 − |t|2
|z − t|2 , z ∈ T, t /∈ T,

the derivative B′
n(z) can be written

B′
n(z) =

1
z
Bn(z)

n∑
k=1

P (z, βk)

whenever z ∈ T.

Proof. Note that with z ∈ T we have

ζ ′n(z) =
1
z
ζn(z)P (z, βn).

The result is now immediate using the definition of the Blaschke product. �

We denote the Joukowski transform x = 1
2 (z + z−1) by x = J(z), mapping the

open unit disc D to the cut Riemann sphere C
I

and the unit circle T to the interval
I. The inverse mapping is denoted by z = J−1(x) and is chosen so that z ∈ D if
x ∈ C

I
. Given a weight function w(x) on I, define the weight ẘ(θ) on [0, 2π) as

follows:
ẘ(θ) = w(cos θ)| sin θ|.
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This implies that for an arbitrary function f we have

(3.2)
∫ 1

−1

f(x)w(x)dx =
1
2

∫ 2π

0

f(cos θ)ẘ(θ)dθ.

Now we are ready to give explicit expressions for orthogonal rational functions
with respect to the weights in (3.1). Assume as before that we have arbitrary real
poles αk outside I. We use the notation ϕ

(i)
n , i = 1, 2, 3, to denote the orthogonal

rational functions with respect to the i-th weight in (3.1), so, e.g., ϕ
(1)
n denotes the

rational generalization of the classical Chebyshev polynomials. However, we will
use the name “Chebyshev orthogonal rational functions” for all three cases. They
are given in the next theorem.

Theorem 3.4. The orthonormal functions ϕ
(i)
n are given by

ϕ(1)
n (x) =

1√
2π

√
1 − β2

n

(
zBn−1(z)
1 − βnz

+
1

(z − βn)Bn−1(z)

)
,

ϕ(2)
n (x) =

√
2
π

√
1 − β2

n

z

z2 − 1

(
z2Bn−1(z)
1 − βnz

− 1
zBn−1(z)(z − βn)

)
,

ϕ(3)
n (x) =

1√
π

1
z − 1

√
1 − β2

n

(
z2Bn−1(z)
1 − βnz

− 1
(z − βn)Bn−1(z)

)
,

where x = J(z) ∈ C and αk = J(βk).

Proof. From the definition of πn(x) at the beginning of Section 2 we see that

(3.3) πn(cos θ) =

∣∣∣∣∣
n∏

k=1

1 − βkz√
1 + β2

k

∣∣∣∣∣
2

, z = eiθ.

The polynomial between the absolute value signs obviously satisfies the conditions
for the normalized representation of πn as mentioned in Theorem 3.1. Using that
theorem and the remark following it, we then find that

p(1)
n (x) = c(1)

n

√
2
π
�

{
z−n+1

n−1∏
k=1

(z − βk)2

1 + β2
k

(z − βn)√
1 + β2

n

}
,

where ϕ
(1)
n (x) = p

(1)
n (x)/πn(x) and c

(1)
n is a normalization constant such that

(3.4)
∫ 1

−1

(ϕ(1)
n (x))2√
1 − x2

dx = 1.

Dividing by πn(x) as given in (3.3) and using the definition of the Blaschke products
yields

ϕ(1)
n (x) = c(1)

n

√
2
π
�

{
zBn−1(z)
1 − βnz

√
1 + β2

n

}
(x = cos θ, z = eiθ)

= c(1)
n

1√
2π

√
1 + β2

n

(
zBn−1(z)
1 − βnz

+
1

(z − βn)Bn−1(z)

)
.

The second equation holds for x anywhere in the complex plane and not just on
I. To find the constant c

(1)
n , use equations (3.4) and (3.2) and Lemma 3.2. This

completes the proof for ϕ
(1)
n (x). The other two cases are proved in a completely

analogous way. �
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Using the explicit expressions we can derive many other formulas, e.g., for the
nodes and weights in the quadrature formulas. This will be done in the next section.
First we look at the recurrence coefficients.

Theorem 3.5. For n > 1 the recurrence coefficients as for the ϕ
(i)
n (x) are the same

as for the three different cases and are given by

En = 2

√
(1 − β2

n−1)(1 − β2
n)(1 − βn−1βn)

(1 + β2
n−1)(1 + β2

n)
,(3.5)

Fn = −
√

1 − β2
n

1 − β2
n−1

(1 − β2
n−1)(βn + βn−2) + 2βn−1(1 − βnβn−2)

(1 + β2
n)(1 − βn−1βn−2)

,(3.6)

where βk = J−1(αk). For n = 1 we have

E
(1)
1 =

√
2c, E

(2)
1 = 2c, E

(3)
1 = 2c,

F
(1)
1 = −

√
2β1c, F

(2)
1 = −β1c, F

(3)
1 = (1 − β1)c,

where

c =

√
1 − β2

1

1 + β2
1

.

For n = 2 the formula for F2 holds with the convention that β0 = 0.

Proof. The coefficients can be computed using the formulas

En = lim
x→αn−1

ϕn(x)
ϕn−1(x)Zn(x)

,

Fn = lim
x→αn−2

(
ϕn(x)

ϕn−1(x)
Zn−1(x)
Zn(x)

− EnZn−1(x)
)

.

These formulas are valid for n ≥ 1 (with the usual convention that α−1 = α0 = ∞),
but the case n = 1 has to be treated separately because the expressions for ϕ

(i)
n (x)

as given by Theorem 3.4 do not include ϕ
(i)
0 . For the case n > 1 equations (3.5)

and (3.6) can easily be verified. If n = 1, then use the fact that ϕ
(i)
0 ≡ 1/

√
µi(I),

where µi refers to the corresponding weight function. To compute F
(i)
1 the simpler

formula

F
(i)
1 =

ϕ
(i)
1 (0)

ϕ
(i)
0

can be used. Some computations now finish the proof. �
Remark 3.6. Note that we get the recurrence coefficients for the Chebyshev poly-
nomials if we take all poles at infinity (which corresponds to taking all βk’s equal
to zero). Furthermore, the values given by (3.5) and (3.6) are exactly the asymp-
totic values from Theorem 7 in [18]. In this sense, Chebyshev ORF are indeed
a natural generalization of Chebyshev polynomials. It is a well-known fact that
the recurrence coefficients for general orthogonal polynomials on I with respect to
a measure µ satisfying µ′ > 0 a.e. behave asymptotically like the coefficients of
Chebyshev polynomials.

Once the recurrence coefficients are known, we can use the generalized eigenvalue
problem mentioned in the previous section to compute the nodes and weights in the
gaussian quadrature formulas. However, next we derive alternative expressions to
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compute these values, which are far more efficient, especially for very large values
of n. Several examples in Section 5 will illustrate this.

4. Quadrature formulas

We finally arrive at the main purpose of this paper, which is the construction of
rational Gauss-Chebyshev quadrature formulas. The nodes in these formulas are
the zeros of ϕ

(i)
n (x). In the polynomial case, these zeros can easily be expressed in

closed form. Thus, for instance, the zeros of the n-th Chebyshev polynomial of the
first kind (α = β = 1/2) are given by

xnk = cos
(

π
2k − 1

2n

)
, k = 1, 2, . . . , n.

It is difficult (or even impossible) to give similar explicit representations for the zeros
of Chebyshev ORF, but we can derive formulas which allow an efficient computation
of these zeros, as shown in the next theorem.

Theorem 4.1. Let x
(i)
nk denote the zeros of ϕ

(i)
n (x) and put x

(i)
nk = cos θ

(i)
nk. Then

they satisfy the equations

fn(θ(1)
nk ) − (n − 1)θ(1)

nk =
π

2
(2k − 1),

fn(θ(2)
nk ) − (n − 2)θ(2)

nk = πk,

fn(θ(3)
nk ) − (n − 3/2)θ(3)

nk = πk,

for k = 1, 2, . . . , n, where

fn(θ) = 2
n−1∑
j=1

arctan
sin θ

cos θ − βj
+ arctan

sin θ

cos θ − βn
,

and arctan(y/x) refers to the argument of the complex number x + iy.

Proof. Again we only prove the theorem for the first case. From the expression for
ϕ

(1)
n (x) we get that the zeros satisfy

z
(1)
nk Bn(z(1)

nk )Bn−1(z
(1)
nk ) = −1 = eiπ(2k−1), k ∈ Z,

where z
(1)
nk = J−1(x(1)

nk ). So we see that the function zBn(z)Bn−1(z)+1 should have
its 2n zeros on T. Furthermore, they are pairwise complex conjugates. Taking the
real parts gives us the n zeros of ϕ

(1)
n (x). Note that ζn(z) may be written as

ζn(z) = exp
{

2i arctan
sin θ

cos θ − βn
− iθ

}
, z = eiθ.

Some computations complete the proof. Note that for the second case the function
z3Bn(z)Bn−1(z) − 1 has zeros at −1 and 1 which cancel against the same zeros
in the denominator of ϕ

(2)
n (x) and which therefore have to be ignored. The same

occurs in the third case for z = 1. �

In general, the equations from this theorem cannot be solved analytically. It is
possible, however, to calculate the nodes in the quadrature formulas numerically
using Newton’s method, as described below. First we need the following simple
lemma.
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Lemma 4.2. The functions fn(θ)− (n− c)θ from Theorem 4.1 with c ∈ {1, 3/2, 2}
are strictly increasing for 0 ≤ θ ≤ π. Furthermore, if all poles have equal sign,
these functions are concave (positive poles) or convex (negative poles) on (0, π). In
general there can be at most one interior inflection point.

Proof. The first statement follows from the fact that

d

dθ

(
arctan

sin θ

cos θ − β

)
=

1 − β cos θ

1 − 2β cos θ + β2
≥ 1

1 + |β| >
1
2

for |β| < 1. This means that f ′
n(θ) − (n − c) > c − 1/2, which is strictly positive

for all three cases. To prove the second statement, note that

d2

dθ2

(
arctan

sin θ

cos θ − β

)
= sin θ

β(β2 − 1)
(1 − 2β cos θ + β2)2

.

This means that f ′′
n (θ) = sin θf̃n(θ), where f̃n(θ) ≤ 0 on [0, π] for positive poles or

f̃n(θ) ≥ 0 on [0, π] for negative poles. If there are both positive and negative poles,
differentiating once more shows that f̃n(θ) is a monotonic function on (0, π), which
means that it can have at most one zero there. �

To illustrate this lemma, Figure 1 shows the function fn(θ) − (n − 1)θ for the
case where β2k−1 = 0.9 and β2k = −0.8 for k = 1, 2, . . . , and n = 100.

Newton’s method for finding zeros works particularly well for monotonic func-
tions, especially if the initial values are not too far from the exact solutions. Next
we discuss two different methods for determining these initial values.

The first method is based on linear extrapolation. Let {θnk}n
k=1 denote the n

exact zeros. For the case where all poles are positive, the initial value θ0
n,k+1 for

the zero θn,k+1 is determined from the previous two zeros as

θ0
n,k+1 = θnk + (θnk − θn,k−1).

0 π 

nπ 

Figure 1. The function fn(θ) − (n − 1)θ.
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We work from left to right taking θ0
n1 = θn0 = 0. For a strictly increasing concave

function, Newton’s method converges monotonically (i.e., the successive iterations
form an increasing sequence) if θ0

n,k+1 < θn,k+1. This condition is satisfied because
of the linear extrapolation and Lemma 4.2. The monotonic convergence guarantees
that the iterations cannot fall outside the interval [0, π], so we do not have to check
this, which may save some time.

If all poles are negative, the procedure is similar, but now we take

θ0
n,k−1 = θnk + (θnk − θn,k+1),

working from right to left with θ0
nn = θn,n+1 = π.

In general, when there are both positive and negative poles, either of the above
procedures can be used. Of course, one could devise a strategy taking into account
the number of positive and negative poles respectively, but we do not do this.

The second method for determining the initial values is based on the asymptotic
zero distribution as given by Theorem 2.5. First we assume that the poles tend to
a fixed limit with increasing n, i.e., limn→∞ αn = α, so that the zero distribution
is given by a measure λ whose derivative is equal to

λ′(x) =
1
π

1√
1 − x2

√
1 − 1/α2

1 − x/α
.

The zero density on the interval [−1, x] equals

t(x) =
∫ x

−1

λ′(u)du =
1
π

arcsin
αx − 1
α − x

+
1
2
.

Solving for x gives

(4.1) x =
1 − α cos(πt)
α − cos(πt)

,

so if we take n equally distributed numbers tkn ∈ [0, 1] as

(4.2) tkn =
2k − 1

2n
, k = 1, . . . , n,

then we can estimate the zeros xkn by plugging the values tkn into equation (4.1).
Note that for α = ∞ this gives us exactly the zeros of the Chebyshev polynomial
Tn(x).

For the more general case of arbitrary poles, we cannot use this procedure. In
practice we are given only a finite number of poles, so we do not know anything
about the asymptotic behaviour of the poles. However, we can approximate the
zero density t(x) by the finite sum

tn(x) =
1

πn

n∑
j=1

arcsin
αjx − 1
αj − x

+
1
2
,

which, in fact, converges pointwise to the exact zero density t(x) if n → ∞. The
inverse function can no longer be found analytically, but we compute a spline ap-
proximation as follows. First, for a suitable value of m, we evaluate the function
tn(x) in the zeros

ξk = cos
(

π
2k − 1

2m

)
of the Chebyshev polynomial Tm(x). These zeros cluster near the endpoints of the
interval [−1, 1], where tn(x) is steep (especially if the poles are close to the interval).
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The function t−1
n (t) behaves more like a cosine than like a polynomial — in fact, for

all poles at infinity, we have t−1
n (t) = − cos πt — so to obtain an approximation to

t−1
n (t) we use a cubic interpolating spline s(t) through the points (tn(ξk), arccos ξk).

The initial values for the zeros θkn are then given by

θ0
kn = s(tkn),

where tkn are the points from equation (4.2). More details are given in the Examples
section.

The advantage of this method is that it gives us all initial values at the same
time, so we can apply Newton’s method to all zeros at once (at least if the imple-
mentation is done in a language which supports vector operations, such as Matlab
or Fortran). Depending on the hardware and the specific implementation, this can
save a considerable amount of time. Of course the estimates will be better for larger
n because the method is based on asymptotic behaviour.

Once the nodes have been computed, the weights can be found by evaluating the
kernel function as explained in Section 2. Since we have explicit formulas for the
orthogonal functions, this is a straightforward task. However, it is possible to give
much simpler expressions for the weights, as shown in the following theorem.

Theorem 4.3. The weights in the gaussian quadrature formulas based on the ϕ
(i)
n

can be given as functions of the nodes as

λ
(1)
nk = 2π

(
1 + gn(x(1)

nk )
)−1

,

λ
(2)
nk = 2π(1 − (x(2)

nk )2)
(
3 + gn(x(2)

nk )
)−1

,

λ
(3)
nk = 2π(1 − x

(3)
nk )

(
2 + gn(x(3)

nk )
)−1

for k = 1, 2, . . . , n, where

gn(x) = 2
n−1∑
k=1

√
1 − 1/α2

k

1 − x/αk
+

√
1 − 1/α2

n

1 − x/αn
.

Proof. We give the proof for the first case. To simplify the notation, we omit the
superscripts, so we write ϕn instead of ϕ

(1)
n and also we write xk instead of x

(1)
nk ,

etc. The proof is based on the confluent Christoffel-Darboux formula from Theorem
2.3. It follows from this theorem and the formula for the weights in the quadrature
formula that

(4.3)
(

1 − xk

αn

)
ϕ′

n(xk)ϕn−1(xk)
(

1 − xk

αn−1

)
=

En

λk
.

First note that for any x ∈ I,

(4.4)
(

1 − x

αn

) (
1 − x

αn−1

)
=

|1 − βnz|2
1 + β2

n

|1 − βn−1z|2
1 + β2

n−1

,

where x = J(z). Using the formula for ϕn from Theorem 3.4 and the chain rule for
differentiation gives

ϕ′
n(x) =

1√
2π

√
1 − β2

n

[
zBn(z)Bn−1(z) + 1
(z − βn)Bn−1(z)

]′ 2z2

z2 − 1
,
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which, using Lemma 3.3 and the fact that xk is a zero of ϕn, can be written as

ϕ′
n(xk) =

1
2π

√
1 − β2

n

Bn(zk)
(zk − βn)

×

⎡
⎣1 + 2

n−1∑
j=1

P (zk, βj) + P (zk, βn)

⎤
⎦ 2z2

k

z2
k − 1

.

(4.5)

It follows from the fact that zkBn(zk)Bn−1(zk) + 1 = 0 that

Bn(zk)
(zk − βn)

[
zkBn−2(zk)
1 − βn−1zk

+
1

(zk − βn−1)Bn−2(zk)

]

=
(z2

k − 1)(1 − βnβn−1)
z2
k|1 − βnzk|2|1 − βn−1zk|2

,

which gives

ϕn−1(xk)
Bn(zk)

(zk − βn)
=

1√
2π

√
1 − β2

n−1

(z2
k − 1)(1 − βnβn−1)

z2
k|1 − βnzk|2|1 − βn−1zk|2

.

Combining this formula with equations (4.3)–(4.5) and the formula for En gives,
after cancelling terms,

λk = 2π

⎡
⎣1 + 2

n−1∑
j=1

P (zk, βj) + P (zk, βn)

⎤
⎦
−1

.

Transforming back to xk and αj then proves the theorem for the first case. The
other two cases are proved in the same way. �

To conclude this section we look at the computational complexity of constructing
these quadrature formulas.

Theorem 4.4. Let there be m different poles among the first n poles. Then it will
take O(mn) operations to compute the nodes and weights in the quadrature formulas
of this section. In particular, if all poles are different, the complexity is of order
O(n2), while if there is only a finite number of different poles (m does not depend
on n for large n), then the complexity is of order O(n).

Proof. If there are only m different poles among the first n, then evaluating the
functions fn, f ′

n and gn from Theorems 4.1 and 4.3 takes O(m) operations (we have
to sum over m different values instead of n). Determining the initial values using
the asymptotic zero distribution is also of order O(m), for the same reason and
using linear extrapolation is O(1). This must be done for each of the n different
quadrature nodes and weights, which shows that the total amount of operations is
of order O(mn). �

Remark 4.5. Although the total order of operations does not depend on how the
initial values are obtained, the constant in the O(mn) expression can be quite
different. As shown in the Examples section, the method based on the asymptotic
zero distribution is considerably faster than the one based on linear extrapolation
when there are only a finite number of different poles.
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5. Examples

In this section we give several examples to illustrate the construction and use of
rational Gauss-Chebyshev quadrature formulas. First we look at the cost of com-
puting the nodes and weights, and compare the two methods based on Newton iter-
ation and the method using the generalized eigenvalue problem (GEP) mentioned
in Section 2. Then we look at how our quadrature formulas perform compared to
some alternative formulas. All of the computations were done in Matlab 6.5 on a
Pentium III (Coppermine) with a CPU speed of 733 MHz.

The following examples give timings for computing the nodes and weights up to
machine precision, for several values of n and different locations of the poles. For
the two methods based on Newton iteration, we also give the maximum number
of iterations required and the maximal distance between the initial values and the
exact solutions, maxk |θ0

kn−θkn|. Note that for large n, these initial values are very
close to the actual zeros. The spline approximation is computed with the Matlab
function spline. The generalized eigenvalue problem is solved with polyeig, which
seems to be of order O(n3). However, taking into account the special structure of
the matrices involved, this can probably be reduced to O(n2) using a suitable
implementation. Since the computations are almost identical for the three different
weight functions in (3.1), we limit our attention to the first case. The notation in
the tables is as follows: T refers to the time (in seconds), ∆ is the maximal distance
between initial values and exact zeros, and i is the maximum number of iterations.
Subscripts refer to the method: LE is the method based on linear extrapolation,
ZD the one based on asymptotic zero distribution, and GEP is the generalized
eigenvalue problem.

Example 5.1. The first example illustrates the simplest situation where all poles
are equal to each other. In this case we can use the exact asymptotic zero distribu-
tion to obtain the initial values. First we take αk = α = 10. The results are shown
in Table 1. Note how this table clearly shows that the complexity in the first two
cases is O(n), but the method based on the asymptotic zero distribution is more
than ten times faster than the one based on linear extrapolation, even though the
latter provides far more accurate initial values for the Newton iterations. The GEP
was not solved for n > 1600, because this was taking too long.

Next we take α = 1.01, so we have a multiple pole very close to the interval.
Table 2 shows the results. Note that we need more iterations to converge to the
exact values of the nodes, although this does not substantially influence the timings.

Table 1. Multiple pole in α = 10

n TLE ∆LE iLE TZD ∆ZD iZD TGEP

100 4.26e − 02 9.96e − 05 3 5.40e − 03 5.04e − 04 3 3.69e − 01
200 7.88e − 02 2.50e − 05 3 3.16e − 03 2.52e − 04 3 2.84e + 00
400 1.33e − 01 6.25e − 06 3 4.63e − 03 1.26e − 04 3 2.70e + 01
800 2.71e − 01 1.56e − 06 3 7.74e − 03 6.30e − 05 3 3.51e + 02
1600 5.68e − 01 3.91e − 07 2 1.17e − 02 3.15e − 05 3 3.08e + 03
3200 1.55e + 00 9.78e − 08 2 2.44e − 02 1.57e − 05 2 −
6400 4.03e + 00 2.45e − 08 2 5.32e − 02 7.87e − 06 2 −
12800 1.56e + 01 6.11e − 09 2 9.71e − 02 3.94e − 06 2 −
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Table 2. Multiple pole in α = 1.01

n TLE ∆LE iLE TZD ∆ZD iZD TGEP

100 4.81e − 02 5.37e − 02 4 3.63e − 03 5.27e − 02 4 5.77e − 01
200 1.04e − 01 1.49e − 02 4 3.60e − 03 2.65e − 02 4 2.46e + 00
400 1.68e − 01 3.86e − 03 3 5.05e − 03 1.34e − 02 4 2.40e + 01
800 3.07e − 01 9.84e − 04 3 8.61e − 03 6.70e − 03 4 3.10e + 02
1600 6.05e − 01 2.48e − 04 3 1.20e − 02 3.35e − 03 3 3.05e + 03
3200 1.55e + 00 6.24e − 05 3 2.68e − 02 1.68e − 03 3 −
6400 4.02e + 00 1.56e − 05 2 5.70e − 02 8.39e − 04 3 −
12800 1.54e + 01 3.91e − 06 2 1.20e − 01 4.20e − 04 3 −

Table 3. Two different poles α2k = 1.1 and α2k+1 = −5

n TLE ∆LE iLE TZD ∆ZD iZD TGEP

100 4.58e − 02 9.41e − 04 3 1.28e − 02 8.65e − 03 4 3.48e − 01
200 9.29e − 02 2.36e − 04 3 1.26e − 02 4.33e − 03 4 2.53e + 00
400 1.71e − 01 5.92e − 05 3 1.57e − 02 2.17e − 03 4 2.60e + 01
800 2.85e − 01 1.48e − 05 3 2.06e − 02 1.08e − 03 3 3.25e + 02
1600 6.05e − 01 3.71e − 06 3 3.47e − 02 5.42e − 04 3 3.01e + 03
3200 1.55e + 00 9.27e − 07 3 6.40e − 02 2.71e − 04 3 −
6400 4.20e + 00 2.32e − 07 2 1.12e − 01 1.35e − 04 3 −
12800 1.60e + 01 5.80e − 08 2 2.31e − 01 6.77e − 05 3 −

Example 5.2. Before we move to the most general case of arbitrary poles, we look
at the situation where there are only two different poles (which is essentially the
same as the case of any finite number of different poles). We can no longer use
the exact zero distribution, but must instead construct the spline approximation.
For the number of interpolation points we take m = 50 (increasing this number
to m = 500 did not make any difference at all). The poles are α2k = 1.1 and
α2k+1 = −5. The results are shown in Table 3.

Example 5.3. Table 4 gives some timings for computing the nodes and weights
in the case of arbitrary poles αk = 1/(2α̃k − 1), where the points α̃k are randomly
chosen from a uniform distribution on [0, 1]. In fact, with this knowledge we could
use the exact asymptotic zero distribution to obtain the initial values, but we do
not do this, and instead use the procedure based on the spline approximation. Note
that the algorithm in this case is of order O(n2). It is also interesting to note that
the method based on the asymptotic zero distribution is now slower than the one
based on linear extrapolation. This is probably due to the fact that we can no
longer use Matlab’s sum command to compute the functions fn and f ′

n, but instead
use a loop to compute this sum (otherwise the storage requirements would become
too large; we would have to store an n × n-matrix). Again this shows how much
these timings depend on the specific implementation.

In the remaining examples we shall be concerned with the accuracy of these
formulas and compare them to some alternative quadrature rules. We estimate

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



322 J. VAN DEUN, A. BULTHEEL, AND P. GONZÁLEZ VERA

Table 4. Random poles

n TLE ∆LE iLE TZD ∆ZD iZD TGEP

100 1.49e − 01 6.28e − 04 3 1.49e − 01 4.20e − 03 3 3.72e − 01
200 2.85e − 01 1.18e − 04 3 2.83e − 01 3.35e − 04 3 3.07e + 00
400 6.80e − 01 3.63e − 05 3 9.45e − 01 5.52e − 04 3 2.52e + 01
800 1.51e + 00 8.36e − 06 3 3.48e + 00 5.01e − 04 3 3.50e + 02
1600 5.10e + 00 1.98e − 06 3 1.34e + 01 4.34e − 04 3 3.22e + 03
3200 1.96e + 01 5.78e − 07 3 5.71e + 01 3.52e − 04 3 −
6400 8.64e + 01 1.37e − 07 3 2.25e + 02 1.27e − 04 3 −
12800 4.03e + 02 3.21e − 08 3 9.76e + 02 9.45e − 05 3 −

Table 5. Relative error for I(f1) with ω = 1.1

n ORF classical
2 1.42e − 02 3.81e − 01
4 7.68e − 05 7.41e − 02
8 1.24e − 12 2.19e − 03
16 2.45e − 16 1.82e − 06
32 3.68e − 16 1.24e − 12

integrals of the form

I(fi) =
∫ 1

−1

fi(x)√
1 − x2

dx

for different functions fi.

Example 5.4. The first function f1(x) to be considered is taken from [11, 12].
However, Gautschi computes the integral

∫ 1

−1
f1(x)dx, so we cannot compare our

results to his. In this case we have

f1(x) =
πx/ω

sin(πx/ω)
,

which has simple poles at the integer multiples of ω. First we take ω = 1.1 and set
A = {ω,−ω, 2ω,−2ω, . . . }. Table 5 gives the relative error for several values of n.
The left column shows the results for our quadrature formula, and the right column
corresponds to the classical Chebyshev rule∫ 1

−1

f(x)√
1 − x2

dx ≈ π

n

n∑
k=1

f(xnk),

where xnk are the zeros of Tn(x). Next we take ω = 1.001, so we have a pole very
close to the interval of integration. The results are shown in Table 6, which clearly
shows the advantage of using rational quadrature formulas.

Example 5.5. This example is taken from [13], where the author constructs
(among other things) a quadrature formula which integrates exactly functions of
the form

f(x) =
p2r−1(x)
(x + λ)r

, p2r−1 ∈ P2r−1
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Table 6. Relative error for I(f1) with ω = 1.001

n ORF classical
2 4.99e − 03 9.36e − 01
4 5.44e − 05 8.46e − 01
8 1.90e − 12 6.75e − 01
16 1.19e − 14 3.97e − 01
32 1.37e − 14 1.11e − 01

Table 7. Relative error for I(f2) with λ = 1.01 and r = 2

n ORF Sri Ranga classical
2 5.41e − 04 8.83e − 05 9.77e − 01
4 6.11e − 07 6.31e − 07 8.93e − 01
8 1.29e − 15 4.97e − 12 5.64e − 01
16 6.46e − 16 2.37e − 15 1.15e − 01

with respect to the Chebyshev weight function. The nodes and weights can be
computed from the classical Chebyshev formula. He then uses this formula to
estimate I(f2) with

f2(x) =
exp(x)

(x + λ)r

for some values of λ and r. We reproduce his results for λ = 1.01 and r = 2,
and compare them to our method where we take α1 = α2 = . . . b = αr = −λ and
αk = ∞ for k > r. The results are shown in Table 7, where we also show the
relative error for the classical Chebyshev rule. Convergence seems to be a little bit
faster for our method.

Example 5.6. Now we look at the integral I(f3) with

f3(x) =
1√

(x + 3)(x + 2)
.

This function has a branch cut on [−3,−2] and, as noted by Van Assche in [16], is
in fact a Stieltjes function given by

f3(x) =
1
π

∫ −2

−3

1
x − t

dt√
(3 + t)(−2 − t)

.

As is known, Stieltjes functions can be well approximated by rational functions with
poles on the cut. We look at three different choices for the poles. In the first case
we take αk = −2.5 for all k (a multiple pole in the middle of the interval). Next we
take two different poles, α2k+1 = (1/

√
2−5)/2 and α2k = (−1/

√
2−5)/2 (these are

the zeros of T2(x) transformed to the interval [−3,−2]). Finally we take all poles
different from each other as in the second example of [16]. They are the zeros of
successive Chebyshev polynomials T3m(x), transformed to [−3,−2] and ordered in
such a way that they are dense on this interval. For more information we refer to
the article. The results are shown in Table 8. Note that there is no need to take
all poles different from each other and dense on the interval; the second case gives
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Table 8. Relative error for I(f3)

n ORF - case 1 ORF - case 2 ORF - case 3 classical
2 2.71e − 05 6.60e − 06 2.34e − 05 5.35e − 03
4 3.24e − 10 1.57e − 11 7.30e − 12 1.90e − 05
6 3.94e − 15 1.23e − 16 2.46e − 16 7.80e − 08
8 1.23e − 16 3.70e − 16 3.70e − 16 3.44e − 10

Table 9. Relative error for I(f4) with α = 1.001

n ORF classical
100 2.12e − 03 5.32e − 02
200 8.01e − 04 5.75e − 02
400 2.01e − 14 4.21e − 02
800 2.94e − 14 1.13e − 02

perfectly satisfactory results as well, and the quadrature formula can be computed
more efficiently, as mentioned before.

Example 5.7. In the previous examples we have only looked at functions which can
be integrated with a small number of nodes. They serve to illustrate the theory, but
the real strength of these quadrature formulas lies in the approximation of integrals
which are very difficult to calculate with conventional methods and which require
a very high number of nodes. As shown by Examples 5.1–5.3 and Theorem 4.4, our
quadrature formulas can be computed efficiently (especially for a finite number of
different poles), even for a very high degree. We give one example where this is of
much use. Take

f4(x) = sin
(

1
x2 − α2

)
,

where α > 1 but very close to 1. This function has an essential singularity in
x = α and x = −α and is extremely oscillatory near these points. Since an essen-
tial singularity can be viewed as a pole of infinity multiplicity, this suggests taking
A = {α,−α, α,−α, . . . } (a more intuitive reason is that the presence of poles near
the boundary attracts the zeros to the endpoints, where the integrand is very os-
cillatory). For α = 1.001 the results are shown in Table 9. It is difficult to obtain
an accuracy of more than approximately 14 digits because of heavy cancellation in
the quadrature sum. To obtain this accuracy using the classical Chebyshev rule
we needed n = 5000 nodes; using our method n = 400 suffices. For integrands
whose evaluation is very difficult (for example the solution of a differential equa-
tion which has to be obtained numerically), this reduction in the number of function
evaluations can be very important.

6. Concluding remarks

We have presented a set of quadrature formulas which integrate rational func-
tions with arbitrary poles with respect to a Chebyshev weight function. For a finite
number of different poles, these formulas can be computed very efficiently in O(n)
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operations. If there is only one multiple pole, the formulas from [13] provide sim-
ilar results, but for the case where there are more poles, we do not know of any
competitive formulas.

The last example suggests a method for the numerical integration of functions
with essential endpoint singularities, using a suitable extrapolation scheme for α →
1. This problem (in a more general form) is still under investigation.

To deduce the quadrature formulas in this paper, we have introduced a rational
generalization of the Chebyshev polynomials. These are among the very few explicit
examples of orthogonal rational functions on an interval (and the only ones for
arbitrary poles). We note that the results for ϕ

(1)
n (x) could also be deduced from

the so-called Malmquist basis of rational functions orthogonal on the unit circle
with respect to the Lebesgue measure. Some preliminary results for this case were
obtained in [19].
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