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Abstract

We extend recent results [50] on the existence of global phase-locked
states (GPLS) in the Kuramoto model on a complete graph to the case of a
complete bipartite graph. In particular, we prove that, for the Kuramoto
model on a complete bipartite graph, the value of the critical coupling co-
efficient can be determined by solving a system of two nonlinear equations
that do not depend on the coupling coefficient. We show that the said
system of equations can be solved using an efficient algorithm described
in the paper.

1 Introduction

Coordinated or synchronized behaviour is a fundamental aspect of a remarkable
array of physical, biological and engineering systems. In light of this and of the
theoretical interest inherent in the topic, it is hardly surprising that the study of
such behaviour occupies an important place in the general theory of dynamical
systems, and that it has attracted the attention of researchers from a broad
range of scientific disciplines [31, 4, 27, 11, 29].

From a historical point of view, much of the early quantitative work on syn-
chronization was rooted in physical questions such as the analysis of networks
of Josephson junctions [52, 51] or coupled pendula [3]. More recently, with
the growth of activity and interest in mathematical and systems biology, there
has been considerable interest in analyzing synchronization in biological sys-
tems. Examples of synchronized behaviours abound in the life sciences. Some
of the more important examples to have attracted attention include: circadian
rhythms [48, 2, 53], the synchronization of heart cells [24], synchronized neu-
ronal activity [23, 49] with particular emphasis on pathological synchronization
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in disorders such as Parkinson’s disease [14, 47, 46], and flocking behaviour in
populations of animals, birds or fish [43, 6]. In addition to advancing our un-
derstanding of the world around us, a better understanding of the mechanisms
of synchronization can guide the design of modern multi-agent engineering sys-
tems [28, 16, 42, 41, 38]

Of course, the development and analysis of appropriate mathematical mod-
els is crucial to clarifying the mechanisms behind coordinated and synchronized
behaviour. Several general frameworks and approaches have now been proposed.
These include the abstract and elegant theory of Coupled-Cell Networks [13, 12]
which characterizes the possible spatiotemporal behaviours of a system in terms
of symmetries in the network describing the system interactions. Much of the
early work in this direction focussed on symmetries which could be captured
by group structure; however recently there has been considerable effort to ex-
tend this to the more general setting provided by groupoids, which allows for
asymmetric network structures. Another approach is provided by the Master
Stability Function, which provides a condition for the local stability of the syn-
chronized manifold in terms of the eigenvalues of the Laplacian of the network.

To date, one of the most widely-studied frameworks for the analysis of syn-
chronization is the so-called Kuramoto model, which is a mathematical model
describing the dynamics of a system of weakly coupled (nonlinear) oscilla-
tors [18, 19, 45, 44, 25, 1]. The Kuramoto model has been used in numer-
ous applications in biology, physics and medicine; more recently it has also
attracted attention from the engineering community, specifically from the sys-
tems and control community [17, 5, 30, 41, 38, 39, 40]. Indeed, recent work in
the context of multi-agent systems has revealed an interesting connection be-
tween the Kuramoto model and the problem of stabilizing collective motion in
the plane [41].

The basic Kuramoto model is comprised of a system of coupled oscillators,
which may have different natural frequencies, where the coupling between two
oscillators is given by a weighted sinusoidal function of the difference of their
phases. The weights used in the model are typically taken to be the same for all
pairs of oscillators and are given by the ratio of a fixed parameter, the coupling
strength, to the network size.

One aspect of the Kuramoto model that has attracted a lot of attention to
date is the manner in which the onset of synchronization depends on the strength
of the coupling between the oscillators. It has been observed numerically and es-
tablished formally, that a connected network has a particular coupling strength
below which no phase-locked solutions can exist, and that increasing the cou-
pling strength beyond this critical value can induce a phase transition in the
order parameter of the system.

The first closed formula for the critical coupling coefficient was obtained by
Kuramoto. This was for a setting with infinitely many oscillators, a symmetric
frequency distribution and all-to-all coupling. Notwithstanding the considerable
body of numerical evidence supporting the findings of Kuramoto’s work, it can
still be argued that Kuramoto’s analysis is not entirely rigorous [44]. To develop
a more rigorous theory, one possible approach is to start with a network of finite
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size and then prove a convergence result as the number of oscillators tends to
infinity, as suggested by Kopell [44]. To the best of the authors’ knowledge,
such a result has yet to be reported. Recently, the authors of the present paper
contributed a theorem [50, Theorem 3] towards such a result. We will review
this and related work in more detail in Section 3.

Several authors have obtained estimates for the value of the critical coupling
for the case of a general graph. Even if it is not clear in every case how good
the respective estimate is, the key insight that has emerged from this work
(see e.g. [33, 35, 34] and [17]), is that spectral properties of the Laplacian or
adjacency matrix of the graphs play a key role in determining the value of the
critical coupling strength. Indeed, the work described in [33] suggests that the
critical coupling scales with the largest eigenvalue of the adjacency matrix, while
in [17] a lower bound is given which involves the smallest non-zero eigenvalue
of the Laplacian.

Related work on the Kuramoto model includes the study of desynchroniza-
tion in finite populations of oscillators, which has been described in considerable
detail in [21, 20]. Desynchronization is what that takes place when the coupling
strength is reduced below its critical value. The authors of aforementioned work
have shown that desynchronization involves a series of frequency-splitting bifur-
cations. At each such bifurcation, the ensemble of oscillators subdivides into
smaller and smaller groups of oscillators with identical average frequency, un-
til eventually all oscillators oscillate at their own intrinsic frequency. Another
aspect of the Kuramoto model to have attracted attention recently is the emer-
gence of phase chaos [22, 32] in systems of dimension four and higher. A generic
feature of coupled oscillator systems, phase chaos in the Kuramoto model is
most prominent in systems with relatively low dimension (comprising between
ten and fifteen oscillators) [22].

Lastly, we mention closely related recent work on the spectrum and the
stability of (partially) locked states [26, 25, 7, 36, 37]. In particular, we note
the relation between our own work [50] and results in [25].

In this paper we consider the problem of determining the value of the critical
coupling for the Kuramoto model on a complete bipartite graph. The motivation
for this work is in no small part mathematical. It turns out that the ideas
behind previous work on global phase-locking on complete graphs [50] carry
over to the case of complete bipartite graphs, although the actual proofs are
very different, as are some of the results. Bipartite graphs have applications in
many different fields, including biology, sociology and engineering, to name but
a few [15]. Examples of bipartite graphs include social contact networks, linking
people to locations [9], or people to people [10] and metabolic networks, linking
compounds (or substrates) to products.

The outline of the paper is as follows. In Section 2, we introduce some
notation and terminology. In Section 3, we review relevant results on critical
coupling for the case of complete graphs. In Section 4, we introduce the Ku-
ramoto model on the complete bipartite graph, and review some of its basic
properties. Here, we also give formal definitions of the notion of a global phase-
locked state and critical coupling and show that a global phase-locked state
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always exist for sufficiently strong coupling (essentially proving that the critical
coupling is a finite number). In Section 5 we derive our main result, which is a
condition for criticality. To find the critical coupling we introduce an algorithm
which is described in Section 6. Section 7 contains a numerical example to illus-
trate the results of the paper and finally, in Section 8 we present our concluding
remarks.

2 Notation and terminology

Throughout the paper, R (C) denotes the field of real (complex) numbers, while
Rn (Cn), Rm×n (Cm×n) denote the vector spaces of n-tuples of real (complex)
numbers and the space of m × n matrices with entries in R (C) respectively.
Frequently throughout the paper, we shall identify Rm+n with Rm × Rn in
the obvious fashion. N denotes the set of positive integers. For v ∈ Rn and
1 ≤ i ≤ n, vi denotes the ith component of v. Also, R≥0 denotes the set of all
non-negative real numbers. For any finite set S, |S| denotes the cardinality of
S. For any real number x, |x| denotes the absolute value of x and for a vector
v ∈ Rn, ‖v‖∞ denotes the usual infinity norm given by max1≤i≤n |vi|.

The graph theoretical terminology and notation adopted here is standard
and for background on basic graph theory, the interested reader should consult
[8]. As we shall only be concerned with undirected graphs, the term graph shall
be used throughout to denote an undirected graph.

Definition 1 (Graph) A graph G is an ordered pair (V,E), where V is a finite
set of vertices and E is a set consisting of 2-element subsets of V .

The elements of E are referred to as edges and we shall usually write uv (or vu)
for the edge {u, v} and say that u and v are neighbours in G. The degree of a
vertex v ∈ V is the number of neighbours of v. A particularly important class
of graphs in the context of the Kuramoto model is the class of complete graphs
which we define next.

Definition 2 (Complete graph) For any positive integer n ≥ 2, the complete
graph Kn has n vertices V = {v1, . . . , vn}, and edges E = {{vi, vj} : 1 ≤ i <
j ≤ n}.
So, in Kn the degree of every vertex is equal to n− 1. In this paper, our focus
shall be on a related class of graphs, namely complete bipartite graphs. First,
let us recall the definition of a bipartite graph.

Definition 3 (Bipartite graph) A graph G = (V,E) is called bipartite if
there exists a partition V = V1 ∪ V2 of the vertex set so that every edge in E is
of the form v1v2 for some v1 ∈ V1 and v2 ∈ V2.

Definition 4 (Complete bipartite graph) For positive integers m,n ≥ 1,
the complete bipartite graph Km,n = (V1 ∪ V2, E) is a bipartite graph such that
|V1| = m, |V2| = n and for any two vertices v1 ∈ V1 and v2 ∈ V2, v1v2 ∈ E.

Two examples of complete bipartite graphs are given in Figure 1.
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(a) K5,3 (b) K3,3
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Figure 1: Two examples of a complete bipartite graph. As illustrated, the vertex
set V := {v1, . . . , v8} of the graph K5,3 := (V,E) can be divided into subsets
V1 := {v1, . . . , v5} and V2 := {v6, v7, v8} such that E = V1V2 ∪ V2V1. The same
holds forK3,3, whose vertex set can be partitioned into subsets V1 := {v1, v2, v3}
and V2 := {v4, v5, v6}.

3 Global Phase-locking on complete graphs

Before considering the problem of global phase-locking on complete bipartite
graphs, in this section we briefly review some relevant results on global phase-
locking on complete graphs. The Kuramoto model for a system of coupled
oscillators on a complete graph Kn, n ≥ 2, is given as

θ̇i = ωi +
k

n

n∑

j=1

sin(θj − θi), i = 1, . . . , n, (1)

where θi(·) ∈ R and ωi ∈ R denote the phase and intrinsic (or natural) frequency
of oscillator i respectively, and k ∈ R≥0 denotes the coupling coefficient. One
of the central problems in the literature on the Kuramoto model [18, 19, 1] has
been to find conditions on the coupling strength k and the distribution of intrin-
sic frequencies, sometimes denoted by g(ω), under which the system (1) exhibits
synchronous behaviour. This problem was essentially solved by Kuramoto him-
self, although subsequent to his work numerous others have contributed to a
more complete solution in different ways. For an overview of classical results,
see [44]; for a more recent survey, consult [1]. Although very powerful, Ku-
ramoto’s original approach has two obvious drawbacks. Firstly, it requires the
frequency distribution g(ω) to be symmetric about the mean, which excludes
certain distributions of practical interest. Secondly, it only works for settings
with infinitely many oscillators (the so called thermodynamic limit case) as the
Fokker-Planck equation describing the evolution of the oscillator density func-
tion does not, by its very nature, capture finite-size effects. The extension of
classical results, on the value of the critical coupling and the instability of the
incoherent state for example, to the finite-dimensional case has proven difficult,
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and papers on the same are few [36, 37, 25, 26]. See also [44] for a discussion of
open problems in the finite-dimensional theory. In recent work [50], the authors
of the present paper showed that the problem of determining the critical cou-
pling of the Kuramoto model (1) boils down to solving a particular nonlinear
equation, the solution of which can be obtained very efficiently using appro-
priate numerical tools. Aside from numerical implications, this enables us to
prove a convergence result which may help bridge the gap between the finite-
dimensional and the infinite-dimensional theory, as we hope to demonstrate in
a future publication. We shall now briefly review the main contribution of the
aforementioned work. But first we introduce some terminology.

Definition 5 (GPLS, complete graph) Let θ0 ∈ Rn and let {θ(t) : t ≥ t0}
be the solution of the system (1) with initial condition θ(t0) = θ0. We say θ0 is
a global phase-locked state (GPLS), if

θi(t) − θj(t) = θ0i − θ0j

for all t ≥ t0.

The existence of global phase-locked states in the Kuramoto model (1) is
dependent on the value of the coupling strength k. The smallest value of k for
which phase-locked states exist defines the critical coupling, as follows:

Definition 6 (Critical coupling, complete graph) Let n ∈ N, n ≥ 2, and
let ω ∈ Rn be given. Consider the Kuramoto model of coupled oscillators on the
complete graph Kn (1). For this model, the critical coupling, kc, is defined as
follows:

kc := min
k

{k ∈ R≥0 : the system (1) admits a GPLS} .

Define Ω : Rn 7→ Rn,

Ωi(ω) := ωi −
1

n

n∑

j=1

ωj, 1 ≤ i ≤ n. (2)

We are now ready to reformulate the main result of [50]:

Theorem 1 Let ω ∈ Rn be given and suppose Ω(ω) 6= 0. Then the equation

2
1

n

n∑

j=1

√

1 −
(

Ωj(ω)

u

)2

=
1

n

n∑

j=1

1
√

1 −
(

Ωj(ω)
u

)2
. (3)

has a unique solution u∗ ∈ (‖Ω(ω)‖∞, 2‖Ω(ω)‖∞], and we have that

kc =
u∗

1
n

∑n
j=1

√

1 −
(

Ωj(ω)
u∗

)2

.

(4)
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The critical point u∗ can be computed numerically to within user-defined
precision AbsTol using the following algorithm.

Algorithm 1

1. a := ‖Ω‖∞;

2. u := 2 · a;

3. AbsTol := 10−6;

4. Err := 1;

5. ∆u := 1

2
(u − a);

6. while |Err| > AbsTol

6.1. Err :=
∑

j

√

1−
( Ωj

u

)2 − 1
2

∑

j
1

√

1−
(

Ωj

u

)2
;

6.2. if Err ≥ 0

u := u− ∆u;
∆u := 1

2
∆u;

6.3. else

u := u + ∆u;
∆u := 1

2
∆u;

6.4. end

7. end

4 Global phase-locking on a complete bipartite

graph

Let (m,n) ∈ N×N be given. We consider a system of coupled oscillators on the
complete bipartite graph Km,n = (V1 + V2, E). Without loss of generality we
assume that the vertices {vi} are labeled in such a way that v1, v2, . . . , vm belong
to vertex set V1 and vm+1, vm+2, . . . , vm+n belong to vertex set V2. We label
oscillators according to their association with a vertex, i.e. we write oscillator
i for the oscillator associated with vertex vi. The coupling dynamics given by
the Kuramoto model are as follows:
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θ̇i(t) = ωi +
k

m+ n

n∑

j=1

sin(φj(t) − θi(t)), i = 1, . . . ,m; (5)

φ̇i(t) = υi +
k

m+ n

m∑

j=1

sin(θj(t) − φi(t)), i = 1, . . . , n. (6)

In the above notation θi(·) ∈ R and φj(·) ∈ R denote the phase of oscillator i
and the phase of oscillator m + j, respectively. Likewise, ωi ∈ R and υj ∈ R

denote the intrinsic frequency of oscillators i and m + j, respectively. Lastly,
the symbol k ∈ R≥0 denotes the coupling coefficient.

The system of equations (5)-(6) admits a range of qualitatively different
solutions, depending on the value of the (bifurcation) parameter k. In this
paper, we are concerned with solutions associated with the existence of global
phase-locked states, which we define as follows:

Definition 7 (GPLS, complete bipartite graph) Let Φ0 ∈ Rm × Rn and
let Φ(·) :=

(
θ∗(·), φ∗(·)

)
, t ≥ t0 be a solution of (5)-(6) with initial condition

Φ(t0) = Φ0. We say that Φ0 is a global phase-locked state (GPLS) if

Φi(t) − Φj(t) = Φ0
i − Φ0

j , 1 ≤ (i, j) ≤ m+ n ; t ≥ t0. (7)

Note that to every global phase-locked solution x∗ there corresponds a 1-
dimensional manifold

M := {x ∈ R
m+n : x = x∗ + 1m+n t, t ∈ R}

that is invariant under the original system dynamics (5)-(6). This correspon-
dence is unique up to equivalence in the sense of the following definition:

Definition 8 (Equivalence of phase-locked states) Let x, x′ ∈ Rm × Rn

be two global phase-locked states in the sense of Definition 7. We say that x
is equivalent to x′, (and write x ≃ x′) if there exists c ∈ R such that x =
x′ + c1m+n.

From the above, and from inspection of (5)-(6) it follows easily that (ξ∗, ν∗) ∈
Rm × Rn is a GPLS if and only if





m∑

j=1

ωj +

n∑

j=1

υj



 − (m+ n) ωi = k

n∑

j=1

sin(ν∗j − ξ∗i ), i = 1, . . . ,m;





m∑

j=1

ωj +

n∑

j=1

υj



 − (m+ n) υi = k

m∑

j=1

sin(ξ∗j − ν∗i ), i = 1, . . . , n.

Let f : Rm × Rn 7→ Rm, and g : Rm × Rn 7→ Rn be given as

(m+ n) f(ξ, ν) :=
(∑n

j=1 sin(νj − ξ1), · · · , ∑n
j=1 sin(νj − ξm)

)T
; (8)

(m+ n) g(ξ, ν) :=
(∑m

j=1 sin(ξj − ν1), · · · , ∑m
j=1 sin(ξj − νn)

)T
. (9)
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Also, let 1m denote the vector of length m all of whose components are 1 and
define Ω : Rm × Rn 7→ Rm, and Υ : Rm × Rn 7→ Rn,

Ω(ω, υ) := ω − 1

m+ n





m∑

j=1

ωj +
n∑

j=1

υj



1m;

Υ(ω, υ), := υ − 1

m+ n





m∑

j=1

ωj +

n∑

j=1

υj



 1n.

Note that
(
Ω Υ

)T
is a linear projection from Rm+n onto the (m + n − 1)-

dimensional linear subspace {x ∈ Rm+n :
∑m+n

j=1 xj = 0}. In this paper we
present a method for computing the critical coupling associated with the system
of equations (5)-(6), where the critical coupling is defined as follows.

Definition 9 (Critical coupling, complete bipartite graph) Let (m,n) ∈
N × N and let ω ∈ Rm and υ ∈ Rn be given. Consider the Kuramoto model
of coupled oscillators on the complete bipartite graph Km,n (5)-(6). For this
model, we define the critical coupling, kc, as follows:

kc := min
k

{

k ∈ R≥0 : ∃(ξ∗, ν∗) ∈ R
m × R

n s.t.

(
Ω
Υ

)

= −k
(
f(ξ∗, ν∗)
g(ξ∗, ν∗)

)}

(omitting the argument (ω, υ) for notational convenience).

The critical coupling is thus the smallest nonnegative coupling for which the
system (5)-(6) admits a global phase-locked state in the sense of Definition 7.

4.1 The order parameter

Let D denote the closed complex unit disc {z ∈ C : |z| ≤ 1}. For p ∈ N, we
define the order parameter rp : R

p 7→ D as:

rp(ξ) :=
1

p

p
∑

j=1

eiξj . (10)

Let rp0 denote the set {ξ ∈ Rp : rp(ξ) = 0}. For the purposes of this paper, we
define the arctangent as a function from R

2 \ {(0, 0)} onto [0, 2π), as follows:

Definition 10 For all (a, b) ∈ R
2 \ {(0, 0)} let arctan(a, b) denote the unique

real number c ∈ [0, 2π) such that

cos(c) =
a√

a2 + b2
; sin(c) =

b√
a2 + b2

(11)
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Using Definition 10, we may may express rp(·) in polar coordinates:

rp(ξ) =

{

Rp(ξ)eiψ
p(ξ) ξ ∈ Rp\rp0

0 ξ ∈ rp0
. (12)

Here, Rp : Rp 7→ [0, 1] and ψp : Rp \ rp0 7→ [0, 2π), are respectively defined as

Rp(ξ) :=

√
√
√
√
√




1

p

p
∑

j=1

cos(ξj)





2

+




1

p

p
∑

j=1

sin(ξj)





2

, (13)

and

ψp(ξ) := arctan(
1

p

p
∑

j=1

cos(ξj),
1

p

p
∑

j=1

sin(ξj)). (14)

The following proposition summarizes some useful properties of the maps
Rp and ψp:

Proposition 1 The maps Rp and ψp defined by (13), (14) satisfy the following
relations:

1. Rp(ξ + c1p) = Rp(ξ), ∀ξ ∈ Rp, ∀c ∈ R;

2. Rp(ξ) = 1
p

∑p
j=1 cos(ψp(ξ) − ξj), ∀ξ ∈ Rp \ rp0 ;

3. ψp(ξ + c1p) = ψp(ξ) + c (mod 2π) ∀ξ ∈ Rp, ∀c ∈ R;

4.
∑p

j=1 sin(ψp(ξ) − ξj) = 0, ∀ξ ∈ Rp \ rp0 ;

Proof: First of all, note that for all ξ ∈ Rp,

Rp(ξ + c1p) :=

∣
∣
∣
∣
∣
∣

1

p

p
∑

j=1

ei(ξj+c)

∣
∣
∣
∣
∣
∣

=
∣
∣eic

∣
∣Rp(ξ) = Rp(ξ).

This proves property 1. Next observe that for ξ ∈ Rp \ rp0 ,

Rp(ξ) = e−iψ
p(ξ)rp(ξ)

=
1

p

p
∑

j=1

ei(ξj−ψ
p(ξ)). (15)

Equating real and imaginary parts in (15), we see that for ξ ∈ Rp \ rp0 :

Rp(ξ) =
1

p

p
∑

j=1

cos(ψp(ξ) − ξj); (16)
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p
∑

j=1

sin(ψp(ξ) − ξj) = 0. (17)

This proves properties 2 and 4. Finally, by definition of ψp(·) we have that

cos(ψp(ξ + c1p)) =
1

Rp(ξ + c1p)

1

p

p
∑

j=1

cos(ξj + c)

=
1

Rp(ξ)

1

p

p
∑

j=1

cos(ξj) cos(c) − sin(ξj) sin(c)

= cos(ψp(ξ)) cos(c) − sin(ψp(ξ)) sin(c)

This implies that

cos(ψp(ξ + c1p)) = cos(ψp(ξ) + c). (18)

Similarly we have that

sin(ψp(ξ + c1p)) = sin(ψp(ξ) + c). (19)

It follows that ψp(ξ + c1p) = ψp(ξ) + c (mod 2π). This proves property 3.
Using the definition of the order parameter, we can rewrite the functions f

and g, previously defined in (8) and (9), as follows:

(m+ n)fi(ξ, ν) =

{

n Rn(ν) sin(ψn(ν) − ξi), ν ∈ Rn \ rn0
0, ν ∈ rn0 ,

(20)

and

(m+ n)gi(ξ, ν) =

{

mRm(ξ) sin(ψm(ξ) − νi), ξ ∈ R
m \ rm0

0, ξ ∈ rm0 .
(21)

4.2 Global phase-locking states: the homogeneous case

In this section we assume that Ω(ω, υ) = 0 and Υ(ω, υ) = 0. Thus we assume
that there exists c ∈ R such that ωi = υj = c for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Under this assumption the system of ODEs (5)-(6) simplifies to

(
θ̇(t)

φ̇(t)

)

= c1m+n + k

(
f(θ, φ)
g(θ, φ)

)

(22)

It is easy to see that the homogeneous system (22) admits a GPLS for all k > 0
(as it does, of course, for the trivial case k = 0). Indeed, for k > 0, we have
that (ξ, ν) ∈ Rm×Rn is a GPLS if and only if f(ξ, ν) = 0 and g(ξ, ν) = 0. This
motivates the following result.
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Proposition 2 Let f and g be defined by (8) and (9) respectively, and let
(ξ, ν) ∈ Rm × Rn. If (ξ, ν) satisfies the following condition:

sin(ξi − νj) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (23)

then (ξ, ν) is a solution of the homogeneous system

(
f(ξ, ν)
g(ξ, ν)

)

= 0. (24)

Moreover, if (ξ, ν) is a solution of (24) and if, in addition, Rm(ξ)Rn(ν) 6= 0,
then (23) holds.

Proof: The first part follows trivially from inspection of (8) and (9). To
prove the second part, suppose Rm(ξ) 6= 0. Then ψm(ξ) is well defined and
by (9) we have that sin(ψm(ξ) − νi) = 0 for all i. This implies that there
exists k ∈ Zn such that νi − νj = (ki − kj)π and hence sin(νi − νj) = 0 for all
(i, j). By analogy we have that sin(ψn(ν) − ξi) = 0 and sin(ξi − ξj) = 0 for all
(i, j). In addition, by Proposition 1 (property 3) we have that sin(ψn(ν)−νi) =
sin(ψn(ν − νi)) = 1

Rn(ν)
1
n

∑n
j=1 sin(νj − νi) = 0 for all i. It follows that

sin(ξi − νj) = sin(ξi − ψn(ν) − (νj − ψn(ν))

= sin(ξi − ψn(ν))
︸ ︷︷ ︸

=0

cos(νj − ψn(ν)) −

cos(ξi − ψn(ν)) sin(νj − ψn(ν))
︸ ︷︷ ︸

=0

= 0

for all (i, j). This concludes the proof

Remark 1 Proposition 2 provides a partial characterization of the set of so-
lutions to the homogeneous equation (24). Condition (23) is a sufficient but
not a necessary condition. However, it becomes necessary when the extra con-
dition Rm(ξ)Rn(ν) 6= 0 is imposed, as per the second part of the proposition.
The complete set of homogeneous solutions can be found by taking the union of
the set of solutions defined by conditions (23) and the set {(ξ, ν) ∈ Rm × Rn :
Rm(ξ)Rn(ν) = 0}. In general, these sets are not disjoint. In fact, it can be
shown that these sets are disjoint if and only if both m and n are odd.

In the remainder of the paper, we shall use the notation Shom to denote
the set of all global phase-locked states corresponding to the homogeneous sys-
tem (24). That is,

Shom := {(ξ, ν) ∈ R
m × R

n :

(
f(ξ, ν)
g(ξ, ν)

)

= 0}.

Figure 2 shows a particular GPLS (ξ∗, ν∗) ∈ Shom for the case of the complete
bipartite graph K5,3.

12



ξ∗i ν∗i

ξ∗1

ξ∗2

ξ∗3

ξ∗4

ξ∗5

ν∗1

ν∗2

ν∗3

Figure 2: One solution (ξ∗, ν∗) ∈ Shom of the system of equations (24) for the
case of the complete bipartite graphK5,3. Note that (ξ∗, ν∗) does not satisfy the
conditions of Proposition 2. In this particular example however, we have that
Rm(ξ∗) = 0 and Rn(ν∗) = 0, and therefore (ξ∗, ν∗) is a GPLS by Remark 1.

4.3 Global phase-locking under strong coupling

Let Π1 : Rm+n 7→ Rm and Π2 : Rm+n 7→ Rn be given by

Π1(x) :=
(
x1 · · · xm

)T
; Π2(x) :=

(
xm+1 · · · xm+n

)T

respectively, and define F : Rm+n 7→ Rm+n,

F (x) :=

(
f(Π1(x),Π2(x))
g(Π1(x),Π2(x))

)

. (25)

Also, let Ξ : Rm × Rn 7→ Rm+n be given as

Ξ(ω, υ) :=

(
Ω(ω, υ)
Υ(ω, υ)

)

. (26)

Lastly, define the truncation operator T : Rm+n 7→ Rm+n−1,

(Tz) := zi, i = 1, . . . ,m+ n− 1.

We now state a technical lemma which will play an important role in the proof
of Proposition 3 below. As the proof of this lemma is rather long and technical,
we defer it to the Appendix in the interests of clarity.

Lemma 1 Let F̃ : Rm+n−1 → Rm+n−1 be defined by F̃ (y) = TF (y; 0) and
suppose y∗ ∈ R

m+n−1 satisfies F̃ (y∗) = 0 and Rm(Π1(y∗; 0))Rn(Π2(y∗; 0)) 6= 0.
Then the jacobian J : Rm+n−1 7→ Rm+n−1,

J(y) :=
∂F̃ (ζ)

∂ζ
(y)

is nonsingular at y = y∗.

13



We can now state and prove the following proposition, which establishes that
the critical coupling is finite for complete bipartite graphs and any given set of
finite natural frequencies.

Proposition 3 Let (ω, υ) ∈ Rm×Rn be given and let Ξ(ω, υ) be defined by (26).
Furthermore, let x∗ ∈ Shom and suppose Rm(Π1(x∗))Rn(Π2(x∗)) 6= 0. Then
there exists K > 0 and an open set V ⊂ R

m+n−1 containing Tx∗, such that for
all k > K, the system

kF (y1, . . . , ym+n−1;x
∗
m+n) = Ξ(ω, υ) (27)

has a unique solution y′ on V .

Proof: Observe that
∑m+n
j=1 Fj(·) ≡ 0 and

∑m+n
j=1 Ξj(·, ·) ≡ 0. This implies

that y is a solution of (27) if and only if kTF (y;x∗m+n) = TΞ(ω, υ) or

kF1(y1, . . . , ym+n−1;x
∗
m+n) = Ξ1(ω, υ)

...
kFm+n−1(y1, . . . , ym+n−1;x

∗
m+n) = Ξm+n−1(ω, υ).

(28)

Next, assume without loss of generality that x∗m+n = 0 and define y∗ = Tx∗ and

F̃ : Rm+n−1 7→ Rm+n−1, F̃ (y) := TF (y; 0). Then under the hypotheses of the
proposition we have F̃ (y∗) = 0 and it follows from Lemma 1 that the jacobian
J : Rm+n−1 7→ Rm+n−1,

J(y) :=
∂F̃ (ζ)

∂ζ
(y)

is nonsingular at y = y∗. Then by the inverse function theorem there exists
an open set U , containing the origin, such that on U , the map F̃ has a unique
inverse, F̃−1. Define V := F̃−1(U) and note that V is open by continuity of
F̃−1. Now pick ǫ > 0 such that Bǫ := {z ∈ Rn+m−1 : ‖z‖ < ǫ} ⊂ U and let

K = ‖Ξ̃‖
ǫ . Then it follows that (28) has a unique solution on V for all k ≥ K.

5 Critical coupling

In the previous section we showed that, for large enough values of k, the hetero-
geneous system (5)-(6) will exhibit global phase-locked states in (small) open
sets containing a global phase-locked state of the associated homogeneous sys-
tem (24). A particular implication of this result is that the critical coupling kc

is always finite. In the present section we will refine this result and show that
the value of the critical coupling can be obtained by solving a particular system
of nonlinear equations, the solution of which can be determined very efficiently
by means of a bisection algorithm.

Our first result relates the existence of global phase-locked states to solutions
of a two-dimensional system of equations, as follows:

14



Theorem 2 Let k > 0 and let (ω, υ) ∈ Rm×Rn . Then the system (5)-(6) ad-
mits a GPLS if and only if there exists (x, y) ∈ [m+n

m
1
k‖Υ‖∞, 1]×[m+n

n
1
k‖Ω‖∞, 1]

and (a, b) ∈ {−1, 1}m × {−1, 1}n such that

x2 =
(m+ n

mn

m∑

j=1

Ωj
ky

)2

+
( 1

m

m∑

j=1

aj

√

1 −
(m+ n

n

Ωj
ky

)2
)2

; (29)

y2 =
(m+ n

mn

n∑

j=1

Υj

kx

)2

+
( 1

n

n∑

j=1

bj

√

1 −
(m+ n

m

Υj

kx

)2
)2

. (30)

Proof: We distinguish four cases: (a) Ω(ω, υ) = 0 and Υ(ω, υ) = 0; (b)
Ω(ω, υ) = 0 and Υ(ω, υ) 6= 0; (c) Ω(ω, υ) 6= 0 and Υ(ω, υ) = 0; (d) Ω(ω, υ) 6= 0
and Υ(ω, υ) 6= 0. Case (a) corresponds to the homogeneous system (24) that
we discussed in the previous section, where we showed that global phase-locked
states exist for every k > 0. Hence, what we need to show for this case is that
for every k > 0 there exists (a, b) ∈ {−1, 1}m × {−1, 1}n such that (29)-(30)
has a solution (x, y) ∈ [0, 1] × [0, 1]. Under the given hypotheses it suffices to
note that the system {x2 = 1, y2 = 1} has a nonnegative solution that does not
depend on k. Case (b) corresponds to the semi-homogeneous system

0 = k
m+n

∑n
j=1 sin(νj − ξi) i = 1, . . . ,m;

−Υi = k
m+n

∑m
j=1 sin(ξj − νi) i = 1, . . . , n.






(31)

This system has a solution if and only if k ≥ m+n
m ‖Υ‖∞. The necessity is

obvious. For sufficiency, note that if ξi = c for 1 ≤ i ≤ m, we can always find
ν1, . . . , νn satisfying the second equation above. But then km

m+n sin(νj − c) = Υj

for 1 ≤ j ≤ n and

k

m+ n

n∑

j=1

sin(νj − c) = m(
n∑

j=1

Υj +
m∑

j=1

Ωj) = 0.

Hence, what we need to show is that there exists (a, b) ∈ {−1, 1}m×{−1, 1}n
such that the system (29)-(30) has a solution (x, y) ∈ [m+n

m
1
k‖Υ‖∞, 1] × [0, 1]

if and only if k ≥ m+n
m ‖Υ‖∞. We note that the condition x ∈ [m+n

m
1
k‖Υ‖∞, 1]

implies that k ≥ m+n
m ‖Υ‖∞, which proves necessity. To prove sufficiency sup-

pose k ≥ m+n
m ‖Υ‖∞. Under the given hypotheses it suffices to show that the

system

{

x2 = 1, y2 =
(m+ n

mn

n∑

j=1

Υj

k

)2

+
( 1

n

n∑

j=1

√

1 −
(m+ n

m

Υj

k

)2
)2}

has a solution on [m+n
m

1
k‖Υ‖∞, 1] × [0, 1]. But this amounts to showing that

(m+ n

mn

n∑

j=1

Υj

k

)2

+
( 1

n

n∑

j=1

√

1 −
(m+ n

m

Υj

k

)2
)2

≤ 1.
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But if k ≥ m+n
m ‖Υ‖∞, then for each j = 1, . . . , n, we can write m+n

m
Υj

k = cos(xj)
for some xj ∈ [−π, π] and thus the above expression reduces to

( 1

n

n∑

j=1

cos(xj)
)2

+
( 1

n

n∑

j=1

sin(xj)
)2

=
∣
∣
1

n

n∑

j=1

eixj
∣
∣
2 ≤ 1

as required. Case (c) is analogous to case (b). We now consider case (d). Let
(ξ, ν) be a GPLS in the sense of Definition 7. The conditions Ω(ω, υ) 6= 0 and
Υ(ω, υ) 6= 0 imply that Rm(ξ) 6= 0 and by Rn(ν) 6= 0 respectively. It follows
that ψm(ξ) and ψn(ν) are well defined and by (20)-(21) we have that

sin(ψn(ν) − ξi) = − (m+n
n )Ωi

kRn(ν)
, i = 1, . . . , n;

sin(ψm(ξ) − νi) = − (m+n
m )Υi

kRm(ξ)
, i = 1, . . . ,m;

Recall that (Rm(ξ))2 = (Rm(ξ − ψn(ν)1m))2 by Proposition 1. It follows that

(Rm(ξ))
2

=
( 1

m

m∑

j=1

sin(ξj − ψn(ν))
)2

+
( 1

m

m∑

j=1

cos(ξj − ψn(ν))
)2

;

(Rn(ν))
2

=
( 1

n

n∑

j=1

sin(νj − ψm(ξ))
)2

+
( 1

n

n∑

j=1

cos(νj − ψm(ξ))
)2

.

Now let a ∈ {−1, 1}m and b ∈ {−1, 1}n be respectively defined as

ai :=

{

+1 cos(ξi − ψn(ν)) ≥ 0

−1 cos(ξi − ψn(ν)) < 0
, 1 ≤ i ≤ m;

bi :=

{

+1 cos(νi − ψm(ξ)) ≥ 0

−1 cos(νi − ψm(ξ)) < 0
, 1 ≤ i ≤ n.

Let x := Rm(ξ), y := Rn(ν). Then the result follows by substitution. This
proves necessity. To prove sufficiency, let (a′, b′) ∈ {−1, 1}m×{−1, 1}n be given
and let (x, y) be a solution of (29)-(30) with (a, b) = (a′, b′). Consider the system
of equations

{

sin(ui) = − ( m+n

n
)Ωi

ky

a′i cos(ui) ≥ 0
, i = 1, . . . ,m; (32)

{

sin(vi) = − ( m+n
m

)Υi

kx
b′i cos(vi) ≥ 0

, i = 1, . . . , n. (33)

Under the hypotheses of the proposition, the system (32)-(33) has a unique solu-
tion (u′, v′) on (−π, π]m × (−π, π]n. We claim that either ψm(u′) = −ψn(v′) or
ψm(u′)−ψn(v′) = π (mod 2π). To prove this, recall that

∑m
j=1 Ωj+

∑n
j=1 Υj =

16



0. By (32)-(33) we have that
∑n

j=1 sin(v′j) = − ny
mx

∑m
j=1 sin(u′j). If we can show

that |∑n
j=1 cos(v′j)| = | nymx

∑m
j=1 cos(u′j)|, this claim will be established. By (29)

and (30) we have that

(

n∑

j=1

cos(v′j))
2 = n2y2 − (

n∑

j=1

sin(v′j))
2

=
n2y2

m2x2
[m2x2 − (

m∑

j=1

sin(u′j))
2]

= (
ny

mx

m∑

j=1

cos(u′j))
2,

where the last line follows from (29). This proves the claim. Indeed, the above
implies that either

n∑

j=1

cos(v′j) =
ny

mx

m∑

j=1

cos(u′j), (34)

in which case ψm(u′) = −ψn(v′), or

n∑

j=1

cos(v′j) = − ny

mx

m∑

j=1

cos(u′j), (35)

in which case ψm(u′) − ψn(v′) = π (mod 2π). Suppose (35) holds. Define
(a′′, b′′) := (a′,−b′) and observe that (x, y) is a solution of (29)-(30) with
(a, b) = (a′′, b′′). Moreover, if (u′′, v′′) denotes the solution of (32)-(33) with
(a′, b′) replaced with (a′′, b′′), then we have that ψm(u′′) = −ψn(v′′). This
implies that we can assume without loss of generality that (34) holds, and hence
that ψm(u′) = −ψn(v′). Now define

ξi := −u′i, i = 1, . . .m;

νi := −v′i − ψm(u′), i = 1, . . . n;

Then we have that

sin(ψn(ν) − ξi) = sin(−ψn(v′) − ψm(u′) + ui) = sin(ui), i = 1, . . . ,m;

sin(ψm(ξ) − νi) = sin(−ψm(u′) + ψm(u′) + vi) = sin(vi), i = 1, . . . , n.

If we can show that Rm(ξ) = x and Rn(ξ) = y then it follows that (ξ, ν) is a
GPLS and the proof is finished. We have that

(Rm(ξ))2 = (
1

m

m∑

j=1

sin(ξj − ψn(ν)))2 + (
1

m

m∑

j=1

cos(ξj − ψn(ν)))2;

=
(m+ n

mn

m∑

j=1

Ωj
ky

)2

+
( 1

m

m∑

j=1

aj

√

1 −
(m+ n

n

Ωj
ky

)2
)2

;

= x2, (36)
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where the last step follows from the hypotheses of the proposition. This implies
that Rm(ξ) = x and by analogy we have that Rn(ν) = y. This concludes the
proof.

Define

Iv := [
(
m+n
n ‖Ω‖∞

)2
,∞) , I◦v := (

(
m+n
n ‖Ω‖∞

)2
,∞)

Iw := [
(
m+n
m ‖Υ‖∞

)2
,∞) , I◦w := (

(
m+n
m ‖Υ‖∞

)2
,∞)

(37)

and let p : Iv × {−1, 1}m 7→ [0, 1], and q : Iw × {−1, 1}n 7→ [0, 1] be given as

p(v, a) :=
(m+ n

mn

m∑

j=1

Ωj

)2 1

v
+

( 1

m

m∑

j=1

aj

√

1 −
(m+ n

n
Ωj

)2 1

v

)2

; (38)

q(w, b) :=
(m+ n

mn

n∑

j=1

Υj

)2 1

w
+

( 1

n

n∑

j=1

bj

√

1 −
(m+ n

m
Υj

)2 1

w

)2

. (39)

In terms of the above notation, Theorem 2 states that the system (5)-(6) admits
a GPLS if and only if there exist (v, w) ∈ Iv×Iw and (a, b) ∈ {−1, 1}m×{−1, 1}n
such that w = k2p(v, a) and v = k2q(w, b). It follows that the critical coupling
is the smallest k for which such a solution exists. Before we proceed, let us
illustrate the result of Theorem 2 with an example. We consider the case of the
complete bipartite graph G = K5,4. Thus, let (m,n) = (5, 4) and let ω, υ be
given as

ω :=
(
1 3 5 7 9

)T
; υ :=

(
2 4 6 8

)T
.

Then by definition, we have that

Ω(ω, υ) =
(
−4 −2 0 2 4

)T
; Υ(ω, υ) =

(
−3 −1 1 3

)T
.

We note that Theorem 2 implies the weaker result that the system (29)-(30)
admits a GPLS if there exists (v, w) ∈ Iv × Iw such that w = k2p(v,1m) and
v = k2q(w,1n). In Figure 3 we have plotted three sets of two graphs for three
different values of k. The graphs correspond to the sets of points

{

(
v

k2
, p(v,1m)) :

v

k2
∈ [

(m+ n

n
‖Ω‖∞

)2
, 1]

}

and {

(q(w,1n),
w

k2
) :

w

k2
∈ [

(m+ n

m
‖Υ‖∞

)2
, 1]

}

respectively. We observe that for each value of k there is a unique point of
intersection. By Theorem 2 such an intersection corresponds to a global phase-
locked state.

In Proposition 4 below, we shall show that if, for a given value of k, the sys-
tem (5)-(6) admits a solution for some (a, b) ∈ {−1, 1}m×{−1, 1}n, then it will
also admit a solution for (a, b) = (1m,1n). This suggests that, without loss og
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Figure 3: The graphs of ( vk2 , p(v,1m)) and (q(w,1n), wk2 ) for different values
of the coupling coefficient k. An intersection is a point (v∗, w∗) such that
k2p(v∗,1m) = w∗ and k2q(w∗,1n) = v∗. By Theorem 2 such an intersection
corresponds to a GPLS of the system (5)-(6).

generality, the critical coupling can be found by determining the smallest value
of k for which the system of equations

w = k2p(v,1m)

v = k2q(w,1n)






(40)

has a solution. To prove this, we will make use of some special properties of the
functions p and q, namely: monotonicity (Lemma 2) and concavity (Lemma 3).

Lemma 2 (monotonicity) Let (ω, υ) ∈ Rm × Rn be given and let p, q be de-
fined by (38) and (39) respectively. Then:

(1) p(·,1m) is monotone increasing (on Iv);

(2) p(·,1m) is strictly monotone iff Ωi(ω, υ) 6= Ωj(ω, υ) for some (i, j);

(3) p(·,1m) is either strictly monotone or constant.
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Moreover, the statement remains true if we replace p(·,1m) with q(·,1m), Iv
with Iw, and Ω(ω, υ) with Υ(ω, υ).

Proof: We prove the result for p. The result for q follows by analogy.
Note that p(·,1m) is continuous on Iv and differentiable on I◦v . We claim that
dp(ξ,1m)

dξ (v) ≥ 0 on I◦v . Note that

m2 dp(ξ,1m)

dξ
(v) =

1

v2

(( m∑

j=1

√

1 −
Ω̃2
j

v

)( m∑

j=1

Ω̃2
j

√

1 − Ω̃2
j

v

)

︸ ︷︷ ︸

A

−
( m∑

j=1

Ω̃j

)2)

,(41)

for v ∈ I◦v , where Ω̃ :=
(
m+n
n

)
Ω. Using the notation

yi(v) :=

√

1 − Ω̃2
i

v
, 1 ≤ i ≤ m,

we rewrite the term A, as follows:

( m∑

i=1

yi(v)
)( m∑

j=1

Ω̃2
j

yj(v)

)

=
( m∑

i=1

(√

yi(v)
)2

)( m∑

j=1

( Ω̃j
√

yj(v)

)2
)

.

By the Cauchy-Schwarz inequality we have that

( m∑

i=1

(√

yi(v)
)2

)( m∑

j=1

( Ω̃j
√

yj(v)

)2
)

≥
( m∑

j=1

√

yj(v)
Ω̃j

√

yj(v)

)2

=
( m∑

j=1

Ω̃j

)2

for all v ∈ I◦v where equality holds (for a fixed v) if and only if there exists
α ∈ R such that yi(v) = α Ωi for all i. Inspection shows that this condition is
satisfied if and only if Ωi = Ωj for all (i, j), in which case p(·,1m) is a constant
function (p(·,1m ≡ 1). This concludes the proof.

Lemma 3 (concavity) Let (ω, υ) ∈ Rm × Rn be given and let p, q be defined
by (38) and (39) respectively. Then:

(1) p(·,1m) is concave (on Iv);

(2) p(·,1m) is strictly concave iff Ωi(ω, υ) 6= Ωj(ω, υ) for some (i, j);

(3) p(·,1m) is either strictly concave or constant.

Moreover, the statement remains true if we replace p(·,1m) with q(·,1m), Iv
with Iw, and Ω(ω, υ) with Υ(ω, υ).
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Proof: We prove the result for p. The proof for q follows by analogy.
Suppose Ωi(ω, υ) = Ωj(ω, υ) for all (i, j). Then p(·,1m) is a constant function
by Lemma 2. Hence p(·,1m) is concave but not strictly concave. Now suppose

Ωi(ω, υ) 6= Ωj(ω, υ), for some (i, j). We claim that ∂2p(ζ,1m)
∂ζ2 (v) < 0 for all

v ∈ I◦v .
It follows easily from (41) that

m2 ∂p(ξ,1m)

∂ξ
(v) =

1

v2

m∑

i,j=1,i6=j

(

Ω̃j
2

√
√
√
√
v − Ω̃i

2

v − Ω̃j
2 − Ω̃iΩ̃j

)

, (42)

and hence we may write

m2 ∂
2p(ξ,1m)

∂ξ2
(v) = −2

v
m2 ∂p(ξ,1m)

∂ξ
(v) +

1

2v2
B (43)

where the term B is given by:

m∑

i,j=1,i6=j

Ω̃2
j

(

(v − Ω̃2
i )

−1/2(v − Ω̃2
j)

−1/2 − (v − Ω̃2
i )

1/2(v − Ω̃2
j)

−3/2
)

. (44)

As Ωi(ω, υ) 6= Ωj(ω, υ), for some (i, j), it follows from Lemma 2 that the first
term on the right hand side of (43) is negative for all v ∈ I◦v . Thus, to complete
the proof, it is enough to show that B ≤ 0 for v ∈ I◦v .

Note first that by rearranging terms we can write

B =

m∑

i,j=1,i6=j

Ω̃2
j(v − Ω̃2

i )
−1/2(v − Ω̃2

j)
−1/2

(

1 − v − Ω̃2
i

v − Ω̃2
j

)

=
m∑

i,j=1,i<j

(v − Ω̃2
i )

−1/2(v − Ω̃2
j)

−1/2Tij , (45)

where

Tij = Ω̃2
j

(

1 − v − Ω̃2
i

v − Ω̃2
j

)

+ Ω̃2
i

(

1 −
v − Ω̃2

j

v − Ω̃2
i

)

(46)

= Ω̃2
j

( Ω̃2
i − Ω̃2

j

v − Ω̃2
j

)

+ Ω̃2
i

( Ω̃2
j − Ω̃2

i

v − Ω̃2
i

)

(47)

= (Ω̃2
i − Ω̃2

j)
( Ω̃2

j

v − Ω̃2
j

− Ω̃2
i

v − Ω̃2
i

)

. (48)

It can be readily verified that

(Ω̃2
i − Ω̃2

j) ≥ 0 ⇔
Ω̃2
j

v − Ω̃2
j

− Ω̃2
i

v − Ω̃2
i

≤ 0
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and hence Tij ≤ 0 for 1 ≤ i < j ≤ m. But it then follows immediately from

(45) that B ≤ 0 for v ∈ I◦v and hence that ∂2p(ζ,1m)
∂ζ2 (v) < 0 for all v ∈ I◦v as

required.

Proposition 4 Let k > 0, and let p and q be given by (38) and (39) respectively.
Suppose there exists (v′, w′)) such that w′ = k2p(v′, a) and v′ = k2q(w′, b)
for some (a, b) ∈ {−1, 1}m × {−1, 1}n. Then there exists (v′′, w′′)) such that
w′′ = k2p(v′′,1m) and v′′ = k2q(w′′,1n).

Proof: Let D ⊂ Iv denote the largest (open) subinterval of Iv on which
q(k2p(·)) is defined. Note that if k2p(v0) ∈ Iw for some v0 ∈ Iv then k2p(v) ∈ Iw
for all v ≥ v0. It follows that

D =

{

∅ if {v ∈ Iv : k2p(v) ∈ Iw} = ∅;
[min{v ∈ Iv : k2p(v) ∈ Iw},∞) otherwise.

Let s : D 7→ R≥0 be given as

s(v) := k2q(k2p(v,1m),1n).

Then there exists (v, w) ∈ Iv × Iw such that

w = k2p(v,1m) ; v = k2q(w,1n) (49)

if and only if s has a fixed point on D. Indeed, if v is a fixed point of s,
then (v, w) = (v, k2p(v,1m)) is a solution of (49) and vice versa. Inspection
of (38)-(39) shows that

p(v,1m) ≥ p(v, a), ∀a ∈ {−1, 1}m, ∀v ∈ Iv;
q(w,1n) ≥ q(w, b), ∀b ∈ {−1, 1}n, ∀w ∈ Iw

. (50)

Let (a′, b′) be such that v′ = k2q(w′, b′) and w′ = k2p(v′, a′). As an immediate
consequence of (50) we have that

s(v′) ≥ k2q(k2p(v′,1m), b′). (51)

Moreover, monotonicity of p(·,1m) and q(·,1n) (see Lemma 2) implies that

k2q(k2p(v′,1m), b′) ≥ k2q(k2p(v′, a′), b′) = v′. (52)

Combining (51) and (52) we see that s(v′) ≥ v′. If s(v′) = v′, we are done.
Suppose therefore that s(v′) > v′. If we can show that there exists v+ ∈ (v′,∞)
such that s(v+) < v+, then by continuity of s there exists v′′ ∈ [v′, v+) such
that s(v′′) = v′′. Note that s(v) ≤ k2 for all v ≥ v′. Take v+ = 2k2. It follows
that s(v+) ≤ k2 < v+. This concludes the proof.
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Theorem 3 Let (ω, υ) ∈ Rm × Rnand let p and q be given by (38) and (39)
respectively. If Ωi(ω, υ) 6= Ωj(ω, υ) for some (i, j) and Υl(ω, υ) 6= Υm(ω, υ) for
some (l,m) then there exists a unique pair (v, w) ∈ Iv × Iw such that

∂q(ζ,1n)
∂ζ (w) · ∂p(ζ,1m)

∂ζ (v) = p(v,1m)
v

q(w,1n)
w

w · q(w,1n) − v · p(v,1m) = 0






, (53)

and we have that

kc =

√
v

q(w,1n)
=

√
w

p(v,1m)
.

In all other cases, kc is given by

kc =

{
m+n
m ‖Υ‖∞, Ωi = Ωj for all (i, j);

m+n
n ‖Ω‖∞, Υl = Υm for all (l,m).

Proof: First we prove the case Ωi = Ωj for all (i, j): suppose there exists
c ∈ R such that Ωi = c for all i. Then c = − 1

m

∑n
j=1 Υj by definition of Ω and

Υ. We claim that the system

−c = k
m+n

∑n
j=1 sin(νj − ξi) i = 1, . . . ,m;

−Υi = k
m+n

∑m
j=1 sin(ξj − νi) i = 1, . . . , n.






(54)

admits a solution (ξ, ν) if and only if k ≥ m+n
m ‖Υ‖∞. Necessity follows by

inspection. To prove sufficiency, suppose k ≥ m+n
m ‖Υ‖∞. Then there exist

ν′ ∈ Rn such that sin(ν′i) = m+n
km Υi. Now let ξ′ = 0. Then by construction

−Υi = k
m+n

∑m
j=1 sin(ξ′j − ν′i), 1 ≤ i ≤ n. Moreover, for 1 ≤ i ≤ m, we have

that k
m+n

∑n
j=1 sin(ν′j − ξ′i) = 1

n

∑n
j=1 Υ = −c, and it follows that (ξ′, ν′) is a

solution of (54). This proves the claim. The case Υl = Υm for all (l,m) follows
by analogy. Now suppose Ωi(ω, υ) 6= Ωj(ω, υ) for some (i, j) and Υl(ω, υ) 6=
Υm(ω, υ) for some (l,m). Let D := {v, k) ∈ Iv × R≥0 : k2p(v,1m) ∈ Iw} and
let t : D 7→ R≥0 be given as

t(v, k) := k2q(k2p(v,1m),1n). (55)

Then kc is the smallest k for which t(·, k) is defined on a nonempty interval
and has a fixed point on that interval. We claim that the fixed point equation
t(v, kc) = v has precisely one solution. To prove this, observe first of all that by
definition of the critical coupling, it has at least one solution. Now suppose by
contradiction that there exist v(1),v(2), v(1) 6= v(2), such that t(v(1), kc) = v(1)

and t(v(2), kc) = v(2). Without loss of generality, assume that v(2) > v(1). It
is easy to verify that the set of points on which t(·, kc) is defined, is convex
(i.e. defines an interval). This implies that t(v, kc) is defined for all v ∈ V :=
[v(1), v(2)]. Under the given hypotheses, t is strictly concave on V by Lemma 3.
This implies that there exists v′ ∈ V ◦ := (v(1), v(2)) such that t(v′, kc) > v′ (in
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fact, t(v, kc) > v for all v ∈ V ◦). As t is both strictly monotone and continuous
with respect to its second argument, this implies that there exists k′ < kc such
that t(v′, k′) = v′, which is a contradiction. We conclude that the fixed point
equation t(v, kc) = v has a unique solution, and we denote this solution by v∗.
Let w∗ := k2

cp(v
∗). Then by definition

(kc)
2q(w∗,1n) = v∗

(kc)
2p(v∗,1m) = w∗






. (56)

Eqn. (56) implies, firstly, that

kc =

√

v∗

q(w∗,1n)
=

√

w∗

p(v∗,1m)
;

and secondly, that

w∗ · q(w∗,1n) − v∗ · p(v∗,1m) = 0.

Next, we will show that
∂t(ζ, kc)

∂ζ

∣
∣
∣
∣
ζ=v∗

= 1. (57)

As a first step towards proving this we will establish the fact that there exists
an open subinterval S ⊂ Iv, containing v∗, such that t(·, kc) is defined on the
whole of S. It suffices to show that v∗ > vmin := min{v ∈ Iv : (v, kc) ∈ D}.
Suppose by contradiction that v∗ = vmin. Then by monotonicity, it must be the
case that w∗ = (m+n

m ‖Υ‖∞)2. But this implies that there exists δ > 0 such that

∂t(ζ, kc)

∂ζ
(v) =

(

(kc)
2 ∂q(ζ,1n)

∂ζ

∣
∣
∣
∣
ζ=k2p(v,1m)

)

·
(

(kc)
2 ∂p(ζ,1m)

∂ζ

∣
∣
∣
∣
ζ=v

)

> 1

for all v ∈ (v∗, v∗ + δ). Indeed, by continuity of the partial derivative, and
by the fact that p is strictly concave, there exist δ > 0 and c > 0, such that

(kc)
2 ∂p(ζ,1m)

∂ζ

∣
∣
∣
ζ=v

> 1
c and (kc)

2 ∂q(ζ,1n)
∂ζ

∣
∣
∣
ζ=k2p(v,1m)

> c for all v ∈ (v∗, v∗ + δ).

But this implies that there exists v′ ∈ (v∗, v∗+δ) such that t(v′, kc) > v′. Noting
that t(v, kc) < v for large enough v, it follows by continuity that there exists
v∗∗ > v∗ such that t(v∗∗, kc) = v∗∗. But this contradicts the uniqueness of the
fixed point and we conclude that v∗ > vmin.

We are now ready to prove equality (57). Suppose that ∂t(ζ,kc)
∂ζ (v∗) > 1.

Then by continuity there exists δ > 0 such that t(v, kc) > v for all v ∈ (v∗, v∗+δ).
But as we have seen above this leads to a contradiction and we conclude that
∂t(ζ,kc)
∂ζ (v∗) ≤ 1. Now suppose that ∂t(ζ,kc)

∂ζ (v∗) < 1. Then by continuity

there exists v′ < v∗ such that t(v′, kc) > v′. But this implies that there exists
k′ < kc such that t(v′, k′) = v′, which is a contradiction by definition of kc. We
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conclude that ∂t(ζ,kc)
∂ζ (v∗) = 1. Straightforward manipulation and substitution

of (56) gives us:

∂t(ζ, kc)

∂ζ
(v∗) =

(

(kc)
2 ∂q(ζ,1n)

∂ζ

∣
∣
∣
∣
ζ=k2p(v∗,1m)

)

·
(

(kc)
2 ∂p(ζ,1m)

∂ζ

∣
∣
∣
∣
ζ=v∗

)

=
( v∗

q(w∗,1n)

∂q(ζ,1n)

∂ζ

∣
∣
∣
∣
ζ=w∗

)

·
( w∗

p(v∗,1m)

∂p(ζ,1m)

∂ζ

∣
∣
∣
∣
ζ=v∗

)

.

It follows that

∂q(ζ,1n)
∂ζ (w∗) · ∂p(ζ,1m)

∂ζ (v∗) = p(v∗,1m)
v∗

q(w∗,1n)
w∗

. (58)

This concludes the proof.

6 Algorithm

Theorem 3 states that the critical coupling of a system of coupled oscillators on
a complete bipartite graph can be determined from the unique solution of the
system of equations (53). In the present section we will show how this solution
may be computed using numerical techniques.

Let P : I◦v 7→ R and Q : I◦w 7→ R be given as

m2P (v) :=
( m∑

j=1

√

1 −
(
Ω̃j

)2 1

v

)( m∑

j=1

1
√

1 −
(
Ω̃j

)2 1
v

)

(59)

n2Q(w) :=
( n∑

j=1

√

1 −
(
Υ̃j

)2 1

w

)( n∑

j=1

1
√

1 −
(
Υ̃j

)2 1
w

)

(60)

where, as before Ω̃ := m+n
n Ω and Υ̃ := m+n

m Υ. Using the notation

zj(v) := 1 −
(
m+n
n Ωj

)2

v
, j = 1, . . . ,m, (61)

we can rewrite ∂p(ζ,1m)
∂ζ (v), as follows:

∂p(ζ,1m)

∂ζ
(v) = − 1

v

(

p(v,1m) − 1
m

∑m
i=1

√

zi(v)
1
m

∑m
j=1

1√
zj(v)

)

. (62)

An analogous formula also holds for the function q(ζ,1n). Let (v, w) ∈ Iv × Iw.
Then it follows from (62) that (v, w) is a solution of (53) if and only if (v, w)
satisfies

( P (v)

p(v,1m)
− 1

)( Q(w)

q(w,1n)
− 1

)

= 1. (63)
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As a first step, we introduce the function Γ : Iv×Iw 7→ {(i),(ii),(iii),(iv)}, which
partitions the set Iv × Iw into 4 disjoint subsets, as follows:

Γ(v, w) :=







(i) vp(v,1m) − wq(w,1n) ≤ 0, ( P (v)
p(v,1m) ) − 1)( Q(w)

q(w,1n) ) − 1) ≤ 1

(ii) vp(v,1m) − wq(w,1n) > 0, ( P (v)
p(v,1m) ) − 1)( Q(w)

q(w,1n) ) − 1) ≤ 1

(iii) vp(v,1m) − wq(w,1n) > 0, ( P (v)
p(v,1m) ) − 1)( Q(w)

q(w,1n) ) − 1) > 1

(iv) vp(v,1m) − wq(w,1n) ≤ 0, ( P (v)
p(v,1m) ) − 1)( Q(w)

q(w,1n) ) − 1) > 1

.

(64)
Note that by definition of Γ, the solution of the system of equations (53) is con-
tained in the set {(v, w) : Γ(v, w) = (i)}. Figure 4 shows the sets corresponding
to the different values of Γ for a particular realization of the complete bipartite
graph K24,17. We have the following result:

i

ii
iii

iv

1 1.0002 1.0004 1.0006 1.0008 1.001
1

2

3

4

5

6

v/(m+n
n ‖Ω‖∞)2 →

w
/
(
m

+
n

m
‖Υ

‖ ∞
)2

→

vp(v,1m) − wq(w,1n) = 0

(
P (v)

p(v,1m) − 1
)(

Q(w)
q(w,1n) − 1

)

= 1

Figure 4: Illustration of the action of the map Γ, given by (64): Γ induces a
partition on the set I◦v × I◦w. In the figure, the different subsets are represented
by colors, and a lower case roman numeral, e.g. (i) or (ii), is used to denote the
value of Γ on that particular subset. The bold lines correspond to the isoclines

{(v, w) : vp(v,1m)−wq(w,1n) = 0} and {(v, w) : ( P (v)
p(v,1m) −1)( Q(w)

q(w,1n) −1) = 1}
separating the subsets.
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Proposition 5 Let (v′, w′) denote the unique solution of the system of equa-
tions (53) and let Γ be given by (64). Let (v, w) ∈ I◦v × I◦w. Then the following
implications hold:

(1) If Γ(v, w) = (i) then w ≥ w′.

(2) If Γ(v, w) = (ii) then v > v′.

(3) If Γ(v, w) = (iii) then w < w′.

(4) If Γ(v, w) = (iv) then v < v′.

Proof: As a first step we show that the functions P (·)
p(·,1m) −1 and Q(·)

q(·,1n) −1

are monotone decreasing and nonnegative on their respective domains. The non-
negativity follows immediately from (62). It is also possible to show using argu-

ments very similar to those used in the proof of Lemma 3 that ∂P (ζ)
∂ζ (v) =≤ 0

for all v ∈ I◦v and that ∂Q(ζ)
∂ζ (w) ≤ 0 for all w ∈ I◦w. Since p and q are mono-

tone increasing by Lemma 2, it follows that P (·)
p(·,1m) and Q(·)

q(·,1n) are monotone

decreasing. Furthermore we have that P (v) ≥ p(v,1m) for all v ∈ I◦v , and
Q(w) ≥ q(w,1n) for w ∈ I◦w (this follows from the proof of Lemma 2, and
Eqn. (62) in particular). We conclude that

( P (v)

p(v,1m)
− 1

)

≥ 0 ∀v ∈ Iv, and
( Q(w)

q(w,1n)
− 1

)

≥ 0 ∀w ∈ Iw.

Now let (v, w) ∈ I◦v × I◦w. It follows that

( P (v)

p(v,1m)
− 1

)( Q(w)

q(w,1n)
− 1

)

> 1,

if v < v′ and w < w′. Similarly, we have that

v · p(v,1m) − w · q(w,1n) > 0.

if v > v′ and w < w′ (by monotonicity of p and q). Now suppose for example
that Γ(v, w) = (i). Then it follows from the above that (v ≥ v′ OR w ≥ w′)
AND (v ≤ v′ OR w ≥ w′), which implies that v = v′ OR w ≥ w′. Inspection
shows that if v = v′ and w < w′ then necessarily

v · p(v,1m) − w · q(w,1n) > 0,

which contradicts the assumption that Γ(v, w) = (i). We conclude that w ≥ w′,
which proves implication (1). The other cases follows similarly. This concludes
the proof.

Proposition 5 suggests that the solution of the system of equations (53)
can be found numerically using a bisection algorithm. The idea is as follows.
To initialise the algorithm, we pick (v0, w0) ∈ I◦v × I◦w such that v0 ≥ v′ and
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w0 ≥ w′ (more about this shortly), and we define ∆v := 1
2 (v0 − av) and ∆w :=

1
2 (w0 − aw), where av and aw are given by

av :=
(m+ n

n
‖Ω‖∞

)2
; aw :=

(m+ n

m
‖Υ‖∞

)2
. (65)

We set v := v0 − ∆v and w := w0 − ∆w. Now we invoke Proposition 5 to
obtain information about the location of (v, w) relative to (v′, w′). There are
four possibilities:

(1) Γ(v, w) = (i). In this case w ≥ w and we update w and ∆w according to
the update rule w 7→ w − ∆w, ∆w 7→ 1

2∆w;

(2) Γ(v, w) = (ii). In this case v > v′ and we update v and ∆v according to
the update rule v 7→ v − ∆v, ∆v 7→ 1

2∆v;

(3) Γ(v, w) = (iii). In this case w < w′ and we update w and ∆w according
to the update rule w 7→ w + ∆w, ∆w 7→ 1

2∆w;

(4) Γ(v, w) = (iv). In this case v < v′ and we update v and ∆v according to
the update rule v 7→ v + ∆v, ∆v 7→ 1

2∆v.

We repeat until the algorithm terminates (which it does when the error first
drops below a certain tolerance level). The error can be defined in different
ways. We have defined it as follows:

Err(v, w) := max

{

|vp(v,1m) − wq(w,1n)|,
∣
∣
∣
P (v)

p(v,1m)
− 1

∣
∣
∣ ·

∣
∣
∣
Q(w)

q(w,1n)
− 1

∣
∣
∣

}

Before we present the actual algorithm, let us discuss how to pick v0, w0 such
that v0 ≥ v′ and w0 ≥ w′. One approach is to try and derive analytic upper
bounds on v′ and w′ in terms of ‖Ω‖∞ and ‖Υ‖∞. We propose a more practical
approach, as follows. We pick any pair (v, w) ∈ I◦v × I◦w. For concreteness, let
us say (v, w) := (2av, 2aw). Next we fix w = 2aw and repeatedly increase v by
a factor of 2 until Γ(v, 2aw) = (ii). It is easy to show that this procedure always
terminates in a finite number of steps. If we let v0 denote the value of v after
termination of this procedure, then by Proposition 5, we have that v0 ≥ v′. Now
we fix v = v0 and we repeatedly increase w by a factor of 2 until Γ(v0, w) = (i).
Again, this procedure will always terminate in a finite number of steps. Let w0

denote the value of w after termination of this procedure. Then by Proposition 5
we have that w0 ≥ w′. Effectively, if ρ1 is the smallest nonnegative integer i for
which Γ(2i+1av, 2aw) = (ii) and ρ2 is smallest nonnegative integer j for which
Γ(2ρ1+1av, 2

j+1aw) = (i), then we have that (v0, w0) = (2ρ1+1av, 2
ρ2+1aw). We

have the following algorithm:

Algorithm 2

1. av := ( m+n
n
‖Ω‖∞)2;
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2. aw := ( m+n

m
‖Υ‖∞)2;

3. v := 2 · av;
4. w := 2 · aw;
5. AbsTol := 10−6;

6. Err := 1;

7. while Γ(v, w) <> (ii)

v := 2 · v;
w := w;

8. end

9. while Γ(v, w) <> (i)

v := v;

w := 2 · w;
10. end

11. ∆v := 1

2
(v − av);

12. ∆w := 1

2
(w − aw);

13. while Err > AbsTol

13.1. switch Γ(v, w)

13.1.1. case (i)

w := w− ∆w;
∆w := 1

2
∆w;

13.1.2. case (ii)

v := v− ∆v;
∆v := 1

2
∆v;

13.1.3. case (iii)

w := w + ∆w;
∆w := 1

2
∆w;

13.1.4. case (iv)

v := v + ∆v;
∆v := 1

2
∆v;

13.2. end

13.3. Err := max
{

|v · p(v,1m) − w · q(w,1n)|,
∣
∣
∣

P(v)
p(v,1m)

− 1

∣
∣
∣ ·

∣
∣
∣

Q(w)
q(w,1n)

− 1

∣
∣
∣

}

;

14. end

By construction of the algorithm and Proposition 5, v and w exponentially
converge to the unique solution (v′, w′) of the system of equations (53). In the
next section we will apply this algorithm in a number of different examples.
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7 Numerical Examples

7.1 Example 1

In the first example, we consider the very simple complete bipartite graph K(2,2)

depicted in Figure 5, which is also known as the cycle graph C4. We pick natural

ω1

υ1

ω2

υ2

Figure 5: The complete bipartite graph K(2,2). The symbol next to each node
represents the intrinsic frequency of the corresponding oscillator.

frequencies (ω, υ) ∈ R2 × R2, as follows: ω := (1.0 1.3)T , υ := (0.9 1.2)T . By
definition of Ω and Υ we have that

(
Ω(ω, υ)
Υ(ω, υ)

)

:=

(
ω
υ

)

− 1

4
(ω1 + ω2 + υ1 + υ2)







1
1
1
1







=







−0.1
0.2

−0.2
0.1






.

Our objective is to determine the smallest k ≥ 0 for which the system of differ-
ential equations

θ̇1(t) = ω1 + k
4 sin(φ1(t) − θ1(t)) + k

4 sin(φ2(t) − θ1(t))

θ̇2(t) = ω2 + k
4 sin(φ1(t) − θ2(t)) + k

4 sin(φ2(t) − θ2(t))

φ̇1(t) = υ1 + k
4 sin(θ1(t) − φ1(t)) + k

4 sin(θ2(t) − φ1(t))

φ̇2(t) = υ2 + k
4 sin(θ1(t) − φ2(t)) + k

4 sin(θ2(t) − φ2(t))







(66)

admits a global phase-locked state. To investigate the phase-locking behaviour
of this system, we integrate (66) twice, first with k = 0.55, and then with
k = 0.65. The results are given in Figures 6 and 7. When k = 0.55, we observe
that the magnitudes of the order parameters do not converge but rather oscillate
between the extrema 0 and 1. If a global phase-locked state would exist for this
value of k, and if it were stable in the sense that its equivalence class is a stable
manifold, then we might expect that at least for some initial conditions the order
parameters would converge. This is in fact what we observe in Figure 7. On the
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Figure 6: Case k = 0.55: no global phase-locked state exists. The graph shows
the time evolution of Rm(θ) and Rn(φ), where (θ(·), φ(·)) is the solution to the
system (66) subject to the initial condition (θ(0), φ(0)) = ((1

2π − 1
2π), (1

2π
1
2π)).

Inset: the evolution of the order parameter rm(θ) (left panel) and rn(φ) (right
panel) in the complex plane.
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Figure 7: Case k = 0.65: the system converges to a global phase-locked state.
The graph shows the time evolution of Rm(θ) and Rn(φ), where (θ(·), φ(·)) is
the solution to the system (66) subject to the initial condition (θ(0), φ(0)) =
((1

2π − 1
2π), (1

2π
1
2π)). Inset: the evolution of the order parameter rm(θ) (left

panel) and rn(φ) (right panel) in the complex plane.
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1 2 3 4 5 6 7 8 9 10 11

0.859 0.750 0.571 0.278 0.179 0.110 0.012 0.053 0.518 0.158 0.040

Table 1: The error term Err(v, w) vs. iteration number.

other hand, convergence of the magnitude of the order parameters is a necessary
but not a sufficient condition for the existence of a global phase-locked state.
In other words, these plots are not conclusive in as far as the (non)existence of
global phase-locked states is concerned. To determine whether a GPLS exists
in each case we examine the graph of t(·, k) for k = 0.55 and k = 0.65 to see
whether, for one value of k or the other, it has a fixed point on the interval Iv. If
it does then we know that a GPLS exists for the corresponding value of k (and
in fact for any k greater than or equal to it). And if does not, then we know that
no GPLS exists for k ≤ 0.65. The graphs of t(·, 0.55) and t(·, 0.65) are given in
Figure 8. We observe that t(·, 0.55) does not have a fixed point (in the given
interval), whereas t(·, 0.65) does. From this we deduce that 0.55 < kc ≤ 0.65.
To compute the exact value of kc, we invoke algorithm 2. It turns out that for
this example kc = 0.6298. Table 1 shows the error Err(v, w), which was defined
in (66), as a function of the number of iterations. We observe that the error
decreases rapidly, as expected, though not monotonically. To check whether the
given answer is correct we examine the graph of t(v, 0.6298), shown in Figure 9.
Inspection shows that for this value of k, the map t(·, k) has exactly one fixed

point v∗ and ∂t(ζ,k)
∂ζ

∣
∣
∣
ζ=v′

= 1, as required.

7.2 Example 2

In this example we use Algorithms 1 and 2 to compare the critical coupling of
a complete bipartite graph Km,n with the critical coupling of the associated
complete graph Km+n. More specifically, we compare the critical coupling of
K2i,3i with that of K5i; that of K2i,4i with that of K6i; and that of K3i,4i

with that of K7i for selected values of i in the interval [1, 100]. The intrinsic
frequencies of the respective graphs are picked as follows. We construct the
vectors α ∈ R300 and β ∈ R400 by drawing from a uniform distribution on [0, 1],
respectively 300 and 400 times. Then for the set of complete bipartite graphs
{Km,n : (m,n) ∈ {(2, 4), (2, 3), (3, 4)}}, we define intrinsic frequencies ω ∈ Rm

and υ ∈ Rn,

ωi := αi, i = 1, . . .m;

υi := βi, i = 1, . . . n,

and for the set of complete graphs {Km+n : (m,n) ∈ {(2, 4), (2, 3), (3, 4)}}, we
define ω ∈ Rm+n,

ωi :=

{

αi, i = 1, . . . ,m;

βi−m, i = m+ 1, . . . ,m+ n.
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Figure 8: The graphs of t(v, 0.55) and t(v, 0.65) for selected values of v in the
interval [av, 2av]. The dashed line corresponds to the identity map Id : R 7→ R.
The red circle marking the intersections of t(v, 0.65) with Id(v) correspond to
global phase-locked solutions.
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Figure 9: The graph of t(v, 0.6298) for selected values of v in the interval
[av, 2av]. The dashed line corresponds to the identity map Id : R 7→ R. The red
circle marking the intersection of t(v, 0.6298) with Id(v) defines a unique fixed

point v′ of t(·, 0.6298). Note that ∂t(ζ,0.6298)
∂ζ

∣
∣
∣
ζ=v′

= 1.
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Finally, for each pair of graphs (Km,n,Km+n) we compute the critical coupling.
The results are depicted in Figure 10. We observe that, in all cases, the criti-
cal coupling of the Kuramoto model on the complete graph is strictly smaller
than that of its counterpart on a complete bipartite graph. The data also sug-
gest—though we do not have proof to show this—that in each case the value
of the critical coupling tends to a limit as the number of oscillators tends to
infinity with the limit depending on the ratio of m and n. As regards the first
observation, on the critical coupling of a complete graph being smaller than that
of its complete bipartite counterpart, we remark that as it is, the comparison is
not entirely fair. The reason is that the normalization constant in the bipartite
system (5)-(6) scales with the total number of oscillators (n+m), and not with
the number of neighbours (n or m), as it does in the case of a complete graph
(where the ratio between the two tends to one as n +m tends to infinity). To
ensure a fair comparison we consider the modified complete bipartite system
given below, where, consistent with the Kuramoto model on a complete graph,
the normalization constant is directly proportional to the number of neighbours.

θ̇i(t) = ωi +
k

n+ 1

n∑

j=1

sin(φj(t) − θi(t)), i = 1, . . . ,m; (67)

φ̇i(t) = υi +
k

m+ 1

m∑

j=1

sin(θj(t) − φi(t)), i = 1, . . . , n. (68)

Computing the critical coupling for this system turns out to be equivalent to
solving the familiar system of equations

k

m+ n

n∑

j=1

sin(ξi − νj) = −Ωi, i = 1, . . . ,m;

k

m+ n

m∑

j=1

sin(νi − ξj) = −Υi, i = 1, . . . , n.

where, in this case, Ω and Υ are given by

Ω :=
( n+ 1

m+ n

)(
ω −

(m+ 1)
∑n
j=1 υj + (n+ 1)

∑m
j=1 ωj

(m+ 1)n+ (n+ 1)m
1m

)
;

Υ :=
(m+ 1

m+ n

)(
υ −

(m+ 1)
∑n
j=1 υj + (n+ 1)

∑m
j=1 ωj

(m+ 1)n+ (n+ 1)m
1n

)
.

When we compare the critical coupling of this system (Figure 11) with that of
the original system (Figure 10) we observe that: (a) the values of the critical
coupling of the modified system are closer to that of the corresponding complete
system than the values of the original system are, yet the critical coupling of
the complete system is still significantly smaller in all cases; (b) as was the case
for the original system, the data suggests that the values of the critical coupling
of the modified system tend to a limit as the size of the system tends to infinity.
Here however, the limit appears to be independent of the ratio of m and n.
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Figure 10: The figure shows the values of the critical coupling of the complete
bipartite graphs K2i,4i (blue square), K2i,3i (red circle), and K3i,4i (yellow dia-
mond) along with that of the corresponding complete graphs K6i (blue square),
K5i (red circle) and K7i (yellow diamond) for selected values of i.
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Figure 11: The same as Figure 10, but the data in this figure apply to the
modified bipartite system (67)-(68) rather than the original system (5)-(6). Note
the difference in scale.
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8 Conclusion

In this paper, we have derived new results on the critical coupling of the Ku-
ramoto model for the case of a complete bipartite graph. In particular, we have
shown that the value of the critical coupling can be obtained exactly by solving
a system of two nonlinear equations that do not depend on the coupling coeffi-
cient. We showed that the said system of equations can be solved using efficient
numerical techniques and we proposed an algorithm based on the same. Using
this algorithm we were able to investigate numerically the relation between the
critical coupling of a complete bipartite graph and the critical coupling of the
associated complete graph for networks with large numbers of nodes (oscilla-
tors). After renormalization of the coupling strength, we found that the critical
coupling of the complete graph is significantly smaller than that of the bipartite
graph. We also found that the critical coupling of the appropriately renormal-
ized bipartite graph tends to a limit as the number of oscillators tend to infinity.
The numerical results suggest that this limit is independent of the ratio of the
number of oscillators in each partition, but further analysis is required to show
that this is indeed the case.

Appendix A

Proof of Lemma 1

Proof: Let x∗ = (y∗; 0). Then as
∑m+n
j=1 Fj(·) ≡ 0, it follows that F (x∗) =

0 and under the hypotheses of the lemma, Rm(Π1(x∗))Rn(Π2(x∗)) 6= 0. Thus,
from Proposition 2 we have that sin(x∗j − 0) = 0 for 1 ≤ j ≤ m+ n− 1.

Inspection shows that J(y∗) is of the form

J(y∗) =
1

m+ n

(
A B
BT C

)

,

where A and C are diagonal matrices of size m × m and (n − 1) × (n − 1)
respectively, whose entries are given as

Aii := −
n∑

j=1

cos(x∗m+j − x∗i )

= −
n∑

j=1

cos(x∗m+j) cos(x∗i );

Cii := −
m∑

j=1

cos(x∗j − x∗m+i) = −
m∑

j=1

cos(x∗j ) cos(x∗m+i).

The submatrix B is a matrix of dimension m× (n− 1) whose entries satisfy the
following relation:

Bij := cos(x∗m+j − x∗i ).

= cos(x∗m+j) cos(x∗i ).
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Using the following identities:

Rm(Π1(x∗))2 = (
1

m

m∑

j=1

cos(x∗j ))
2; (69)

Rn(Π2(x∗))2 = (
1

n

n∑

j=1

cos(x∗m+j))
2, (70)

we rewrite Aii and Cii as

Aii = −nRn(Π2(x∗)) cos(x∗i ) ; Cii = −mRm(Π1(x∗)) cos(x∗m+i).

This shows that, under the hypotheses of the proposition all diagonal entries
of A and C are non-zero. If we define the non-singular diagonal matrix D =
diag(cos(x∗1), . . . , cos(x∗m+n−1)), then J(y∗) is non-singular if and only if S =
D−1J(y∗) is non-singular. We shall show that S is non-singular by contradic-
tion. Suppose there is some non-zero vector z ∈ Rm+n−1 with Sz = 0. Then
by inspection the components of z must satisfy:

azi +

n−1∑

j=1

bjzm+j = 0 for 1 ≤ i ≤ m, (71)

czi +

m∑

j=1

djzj = 0 for m ≤ i ≤ m+ n− 1, (72)

where a = −∑n
j=1 cos(x∗m+j), bj = cos(x∗m+j) c = −∑m

j=1 cos(x∗j ), dj =
cos(x∗j ). From (69), (70) it follows that a and c are non-zero. Now note the
following easily verifiable facts.

(i) If zi = 0 for any i with 1 ≤ i ≤ m + n − 1, then z = 0. Thus we can
assume that each component of z is non-zero.

(ii) There are constants κ1, κ2 ∈ R such that zi = κ1 for 1 ≤ i ≤ m and
zi = κ2 for m ≤ i ≤ m+ n− 1.

(iii) a+
∑n−1
j=1 bj = −1.

(iv) c+
∑m
j=1 dj = 0.

We can assume without loss of generality that κ1 = 1. Then it follows from
(72) that c + κ2(

∑m
j=1 dj) = 0. Thus (iv) implies that κ2 = 1. But then (71)

implies that a +
∑n−1

j=1 bj = 0 which contradicts (iii) above. Thus, there is no

non-zero z ∈ Rm+n−1 satisfying Sz = 0 and hence S and J(y∗) are non-singular
as claimed.
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[1] J. Acebrón, L. Bonilla, C. Pérez Vicente, F. Ritort, and R. Spigler. The ku-
ramoto model: a simple paradigm for synchronization phenomena. Reviews
of Modern Physics, 77:137–185, 2005.

[2] S.J. Aton and E.D. Herzog. Come Together, Right Now: Synchronization of
Rhythms in a Mammalian Circadian Clock. Neuron, 48(4):531–534, 2005.

[3] M. Bennett, M. Schatz, H. Rockwood, and K. Wiesenfield. Huygen’s clocks.
Proc. R. Soc. Lond. A, 458:563579, 2002.

[4] A. Beuter, L. Glass, M.C. Mackey, and M.S. Titcombe, editors. Nonlinear
Dynamics in Physiology and Medicine. Springer, 2003.

[5] N. Chopra and MW Spong. On exponential synchronization of Kuramoto
oscillators. IEEE Transactions on Automatic Control (accepted), 2008.

[6] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Transactions
on Automatic Control, 52(5):852–862, 2007.

[7] F. De Smet and D. Aeyels. Partial entrainment in the finite Kuramoto–
Sakaguchi model. Physica D: Nonlinear Phenomena, 234(2):81–89, 2007.

[8] R. Diestel. Graph Theory. Springer-Verlag, 2000.

[9] S. Eubank et al. Modelling disease outbreaks in realistic urban social net-
works. Nature, 429:180–184, 2004.

[10] Ergun G. Human sexual contact network as a bipartite graph. Physica A,
308:483–488, 15 May 2002.

[11] L. Glass. Synchronization and rhythmic processes in physiology. Nature
Review, 410:277–284, 2001.

[12] M. Golubitsky and I. Stewart. The Symmetry Perspective: from Equilibrium
to Chaos in Phase Space and Physical Space. Birkhaüser Verlag, 2000.
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