MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 141
JANUARY 1978, PAGES 175-199

On Computing the Discrete Fourier Transform

By S. Winograd

Abstract. A new algorithm for computing the Discrete Fourier Transform is described.
The algorithm is based on a recent result in complexity theory which enables us to de-
rive efficient algorithms for convolution. These algorithms are then used to obtain the

new Discrete Fourier Transform algorithm.

I. Introduction. A previous paper [1] investigated the minimum number of
multiplications needed to obtain the coefficients of the product of two (n — 1)st
degree polynomials modulo an nth degree polynomial. In this paper we will use the
results of [1] to obtain new algorithms for computing the Discrete Fourier Transform
(DFT). These new algorithms use about the same number of additions as the algo-
rithms proposed by Cooley and Tukey [2], but only about 20% of the number of
multiplications which their algorithm requires.

In the second section we will summarize the results needed for the construction
of the algorithms. The third section will describe the derivation of the algorithms for
cyclic convolutions, the fourth section will use these algorithms to derive the. algorithm
for DFT’s of a few tens to a few thousands of points. In the last section we will discuss
algorithms for multidimensional DFT’s as well as algorithms for computing the DFT
of very large numbers.

II. Theoretical Background. Let

I m
R@=Y xp' S,@=3 yu'

i=0 =0
be two polynomials with indeterminate coefficients, and let P(u) = 4" + Efgola,u’
be a monic polynomial of degree n with coefficients in a field G. (In the applications
we will use G as the field Q of the rationals, only in the last section we will use other
fields.) Assume P(u) = P, (u) * P,(u) such that P, (u) and P,(u) are relatively prime,
and let n, = deg(P,) and n, = deg(P,).

Using the Chinese Remainder Theorem, we obtain:

R, S,, mod P
1
O =Q, P,R,- S, modP)+Q, - P - (RS, modP,))mod P,
where 0, and Q, are polynomials such that

) QP +Q, P, =1modP.

Received November 30, 1976; revised June 9, 1977.
AMS (MOS) subject classifications (1970). Primary 68A20.

Copyright € 1978, American Mathematical Society

175

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

176 S. WINOGRAD

Let T be the set of coefficients of R 1 ° S, and let 7‘}, be the set of coefficients
of R, + §,, mod P. It was shown in [3] that at least / + m + 1 multiplications are
needed to compute T (multiplication by a fixed element g € G is not counted), and
using the algorithm of {4] one can actually obtain an algorithm for computing T
using / + m + 1 multiplications. Clearly, we can obtain TP from T using only addi-
tions and multiplications by elements g € G; thus, the number of multiplications,
which are counted, needed to compute 7~"P isatmost I + m + 1.

Another way of computing TP when P has more than one irreducible factor is
by the use of the identity (1), ie., if P =P, + P, such that P, and P, are relatively
prime then we can use the algori:thm for fpl to multiply (R mod P,) * (S mod P,)
mod P, and the algorithm for T to multiply (R mod P,) * (S mod P,) mod P,,
and then obtain the algorithm for 27’;, using only additional additions and multiplica-
tions by elements of G. It was shown in [1] that for the case /=m = n — 1 the
number of multiplications needed to compute TP is 2n — k, where k is the number of
distinct irreducible factors of P. Moreover, every algorithm which computes Tp in
2n — k multiplications uses (1).

When P has only one irreducible factor, i.e., when P is a power of irreducible
polynomial, we cannot use (1); but then we compute Tp by computing T first and
then reducing modulo 2.

There are two ways for computing T using only / + m + 1 multiplications. The
first one uses the identity

m+1
3) R/) * S, () =R(u) - S,,(w) mod [] -q),

i=0
where the ;’s are distinct elements of G. (We assume that G is large enough. Actually,
we will use in this paper only G of characteristic 0.) The right-hand side of (3) can be
computed using (1) in m + I + 1 multiplications. This algorithm is the same as the
one described in [4].

A second algorithm uses the identity

m+l m+l

4 R -S,@)=R@w) S, mod [T @-8)+xy,, [] @-8)
i=1 i=1

where the §;’s are distinct elements of G. It was shown in [1] that every algorithm
for computing Tinm+1+1 multiplication uses either (3) or (4).

At times it is desirable to avoid the constants which the algorithms of (3) or (4)
necessitate, even at the expense of additional multiplication. One way of accomplish-
ing this is to choose a polynomial P() of degree / + m + 1 with many distinct irre-
ducible factors, but not necessarily only linear factors. Identity (3) is then modified to:

) R/) - S,,(u) =R,(u) - S, (u) mod P.

Similarly, we can modify identity (4).
Another theoretical development which will be needed in this paper is that of
the dual or transpose of system. Let

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 177

S r
(6) Z Y qpxyy, k=1,2,...,1,

be a system of bilinear forms, and assume that we have found an algorithm for com-
puting this system using #» multiplications without using the commutative law. That is,

$ r n r s
N 2 2 sy = 121 7k,1<zl a,-,zx.-><>: B',ﬂ’i)’ k=1,2,...,¢
= i= j=1

j=1 i=1

Multiplying both sides of (7) by z, and summing over k, we obtain

t s r n t r s
® XXX apzey= X <Z 7k,tzk> <Z “',txi> <Z 5},13’,')-
k=1 j=1 i=1 k=1 i=1

=1 i=1

Equating the coefficients of x;, we obtain

t r n t s
) kZl Zl YiZ Vi = D O <k}: 'Yk,zzk><z ﬁ;,y,-), i=1,2,...,r
=1 j= =1

=1 =1

The left-hand side of (9) is called a dual (or transpose) system, and the right-hand
side of (9) provides an algorithm for computing it using n» multiplications.

I1I. Cyclic Convolution. Consider the problem of computing the cyclic convolu-
tion of two sets of n points (xg, x,, ... ,X,_;) and (¥, ¥y, ..., ¥,_,)- This can
be written as

*o Xy ® Xn_2 Xp_j Yo

Xy Xyttt X1 X, Y1
(10) X3 Xttt ¥oox, :

Xnor Xo "'t Xp_3 X,_, Yn—1

It is readily verified that (10) is the system of coefficients of the polynomial

(xg + xu +xpu* + -0 +x, w1

11
) Oo Vgt +yy g + 2 +yu" 1) modu” - 1,

and we can use the results described in the previous section to compute this system.
As an example we will take n = 3, that is, we consider the system

zg Xo X; X\ [Yo
(12) Zp =% X2 Xo || V|
Zy Xy Xo X1 \V2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

178 S. WINOGRAD

which is the system of coefficients of

(13) (xg + x,u+ xzuz)(y0 +yut yluz) mod (3 - 1).
Since u3 — 1 = (u — 1)@? + u + 1), we have to compute

(xg +xu+ xzuz)(y0 +y,u + y,u*) mod (u-1)
(14 = (g tx, + x2)(y0 +, +y2)
and
(xg +x,u +x,u®)y, +y,u+yu?)mod (? +u+1)
O o5+ 5y =50+ (G =20) + 03 =300 mod @ +u+ 1),

The part of the computation (14) can be done in one multiplication. To compute
(15) we first compute 7"', that is, the coefficients of ((xy —x,) + (x; —x,)u) -
((yo —¥,) + (¥, —y;)u). This is done using the identity:

((xo _xz) + (xl _xz)“)((yo _yl) + (}’2 "yl)u)
(16) = ((xo _xz) + (x1 _xz)“)((yo _yl) + (y2 —yl)u)mod up +1)
+ (x4 _xz)(J’2 _yl)“(u + 1),
which leads to the algorithm:
my = @Xq =X, X¥o =), My =0, —x)v, —¥,),
my = ((xo _xz) - (xl "xz))((yo _yl) - (y2 _yl)) = (xo _xl)(yo _yz)-
(xo _xz)(yo _yl) =m,,
17 (xo—x2)(y2 _y1)+(x1 _xz)(yo —y1)=m1 +m2_m3,
(xl _xz)(y2 _yl) =m,.
And consequently, the coefficients of (15) are
my—m, and mg +m,—my—my=m —m,.

Defining mg = (xo + x, + x,)(yo +», + »,), we obtain

(o +xyu +x,u*)(yg + yyu + y,u?) mod (u—1) =my,
(18) (xg + x,u + x,u?)yg + yu + y,u?) mod (u? +u +1)

= (ml - mz) + (ml - m3)u;

and using (1), we obtain

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 179
(xg +xu+ x2u2)(yo +y,u +ylu2) mod (u3 - 1)

2 = (u— 1))
S S S +3"+1m0+ (“ ; u+2>'((ml-—m2)+(ml—m3)u)

mod (3 —1)
(19)

In many applications either the x;’s or the y;’s are known a priori, for example, they
are the tap values; and therefore, computations involving only these variables can be
done beforehand, and thus should not be counted. Assuming that the operations on
the x;’s are not counted, we define

, X tx;tx, , X %3

(20) m, = 3 (yo +y1 +y2)’ m, = 3 (yo —yl)a
y X1 T X , X0 ™%

(202) my =——=—— (¥, = »y), my=—3—(¥o = »,);

and the three desired quantities are:
(20b) my + my — 2my +my, my +my +my —2my, my - 2m) +m, +mj.

Another algorithm is obtained by noticing that the transpose of (12) is

29 2 % Yo 29 2y %3 Yo
@ Zy Zp I Yi|S1 %4 %22 %o Ya
Z Z; %9 Ya Z, 20 2y Y1

Transposing algorithm (20), we obtain

zotz, +z zq +2, — 2z,

@™ T 3 GotriEn) m =m0y,
=225+ 2z, +2z, 24— 22z, t+2z,

my = 3 (yz _yl), my =_—3—(J’o _J’z);

and the three quantities to be computed are:

(22b) m, + m, + my, mg + m, —my, mg—m; —m,.

This method of obtaining simpler algorithms by transposing the system of bilinear forms
is useful for other cyclic convolutions as well. Using the Chinese Remainder Theorem
usually results in Q, - P, and Q, - P, coefficients other than 0, 1, — 1, and transpos-
ing the algorithm results in moving these coefficients to what part which can be pre-
computed. '

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

180 S. WINOGRAD

The matrix in (10) can be viewed as the “multiplication table” for the group
z,, of addition modulo n. In case n = n, * n, where n, and n, are relatively prime,
then z,, is isomorphic to z,, x z,,. Therefore, there exists a permutation of the
rows and columns of the matrix of (10) such that the resulting matrix can be parti-
tioned into blocks of n, x n, cyclic matrices, and such that the blocks form an
n, x n, cyclic matrix.

For example, since 6 = 2 x 3 we have the isomorphism

0—(0,0), 1—(1,1), 2—(,2),
) 0,0 (1, 1) ©,2)
3—(1,0, 4—0,1), 5—(1,2);

and therefore, if we have the cyclic convolution

Yo Yo X1 X2 X3 X4 X5\ [Vo
v, Xp Xy, X3 X4 X5 X, 1
(24) Y, Xy X3 X4 X5 Xg Xy Y2
Y3 X3 X4 X5 Xo X; X, 3
Ys ¥qa Xs Xo Xy Xy X3 |1 Vs
Vs X5 Xg X; X, X3 X4 Vs

and we arrange it in the order 0, 4, 2, 3, 1, 5 (that is, first those indices whose first
coordinate is O and the second coordinate in ascending order, and then those indices
whose first coordinate is 1 and the second coordinate in ascending order), we obtain

Yo Yo X4 X¥p | X3 X; X5 Yo
[
Vs X4 Xg Xg : Xy Xs X3 Ya
. [
¥, Xy Xg X4 X5 X3 X, Y2
(25) -= = = poonommooe - |-
Y3 X3 X3 X5 Xg X5 X3 V3
[
¥y) X5 X3l X4 Xy Xo [\ Vg
I
Ys Xs X3 X ! Xy Xo X4 Vs

which is the same as (24), yet exhibits the block structure.
This block structure can be used to derive an algorithm by composing two dif-
ferent algorithms. Using #? — 1 = (u + 1)(u — 1), we immediately obtain:

X, X _____xo tx + 1305 o
0 1 Yo (yo yl) (yo yl)
(26) =
X, X, Y Xo +x1 X — X,
) 0o t¥) - 3 (}’o"yl)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 181

for a cyclic convolution of two elements. If we define:

Yo Vs Yo Y3
o={VYs |, &=V} Yo=[2s)} Yi=[|21)
¥, Vs Y2 Vs
7N
Xy X, X, X3 X, Xg
Xo=1 x4 x5 X0} Xy=|x; x5 x5 ,
X, X, X4 X5 X3 X,

then we can write (25) as

QO — XO Xl YO .
e (o) = G %) G2

and using algorithm (26), we get

X, +X

1
M ==5—(+Y,), M=

(29)
@) =M, +M,, @, =M, - M,.

Computing M, and M,, we use algorithm (22). Thus we obtained an algorithm
for (24) which uses eight multiplications and 34 additions. It should be noted that we
could have factored 6 as 3 x 2 and obtained a different block structure, namely that
of three point convolution of 2 x 2 blocks. In this case we would have obtained an-
other algorithm for (24) using eight multiplications and 38 additions.

In Appendix A we give the algorithms derived for cyclic convolution of 2, 3, 4,
5 and 6 points. These algorithms are summarized in Table 1. The algorithm given
for five point cyclic convolution does not use the minimum number of multiplications.
Another algorithm could have been derived using only eight multiplications, but then
the number of additions would have been much larger, and the constant coefficients
would not have been 0, + 1.

TABLE I
n # mult. # add.
2 2 4
3 4 11
4 5 15
5 10 31
6 8 34

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

182 S. WINOGRAD

IV. One Dimensional Fourier Transform. The Discrete Fourier Transform of n
points

n-1)
(30) Ap=3 Wa, i=0,1,...,n-1, w=ermm,
=0

can be written as A = Wa where W, ; = w". We will consider first the case that n is a
prime. In this case the matrix W|; .., can be viewed as the “multiplication table” for
the group M,, of nonzero integers relatively prime to n with group operation of multi-
plication modulo n. As is well known,MP, = Z(p—l)p’_l for p # 2 a prime and Mzr
=2y XZy o That means that if » is a prime, we can rearrange the rows and col-
umns of W, j#0 5O the resulting matrix is cyclic. (The idea of rearranging the indices
of the Discrete Fourier Transform of a prime number of points so as to obtain cyclic
convolution was first suggested by C. M. Rader [5].) This is illustrated in (31) for the
case n = 7, i.e., (31) is another way of writing the Discrete Fourier Transform for
seven points.

A o 1 1 1 1 1 1 1 a,
A, 1wl w w?2 owt owt W a,
A, 1 w3 w2 wt owt W oWl a,
ey | 4, =1]"1 w2 owé wt WS ow Wil |, w=e
A 1 ws wt WS owl oW ow? g
A, 1wt ws ow W ow? Wb g,
A 1 ws wh owd w2 oWt wt g

We can now use the algorithm for six point cyclic convolution developed in the pre-
vious section to compute the seven point Fourier Transform. Actually, for later use,
it is better to compute first A, —A4,, i=1,2,...,6. (Note that we have not disturb-
ed the symmetries and, therefore, can still use the algorithms developed in the previous
section.) The resulting algorithm appears in Appendix B.

In case n = p" is a power of a prime number, the situation is very similar. We
can permute the rows and columns of W so as to have copies of Mp,,M rqr e
Mpo. This permutation is best explained by means of an example. In éZ) we illus-
trate the permutation of W for a nine point Fourier Transform. The algorithm for the
nine points Fourier Transform is in Appendix B.

A, 11 11 11 E 111 ay
A, 11 1 : w3 wt wd | wt w3 we a,
Aq L Laww weiw weow g,
A, 1 w3 we : wl w2 wt : wd Wl wS a,
©2) A, = 1w w3'I w2 w* wt : wl w w! a,
44 1w Wi Wt W W wt W W e
Ag 1 wé w3 : w8 w? ws : wl w? w? ag
A, 1w owt i owl WS owl lI wl w* wh a,
A 1 wé wl : ws owl o w? | wt wd oW ag

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 183

An examination of the algorithms for the seven and nine point Fourier Transform
reveals that the multiplicand which depends on the powers of w is either a real number
or an imaginary number—never a general complex number. This is not a peculiarity of
these two numbers, but a general property of these algorithms. In the case that n =p’,
p # 2, the group Mp, is isomorphic to Z (-1)pr—1’ and the element —1 of M , is
mapped into %(p — 1)p"~! under the isomorphism. But since u®-Dp""1 — 1 =
(% ®-1p"~1 —)% @P-1DP"=1 + 1), the part of the algorithm for cyclic convolution
which is based on computing modulo «%®-1DP"~1 — 1 depends on w/ + w~/ which
are real numbers; and the part of the algorithm which is based on u%®—-Dp"~1 +]
depends on w/ — w/ which are imaginary numbers. A similar argument establishes this
fact for n = 2", Table 2 summarizes the algorithms for computing the Discrete Fourier
Transform of 2, 3,4, 5,7, 8,9, and 16 points. The actual algorithms are given in Ap-
pendix B. Since we will later have to consider multiplication by w® = 1 as a multipli-
cation, this is also summarized in Table 2.

TABLE 2

n # Mult. # Mult. by w° # Add.

2 0 2

3 2 1

4 0 4

5 5 1 17

7 8 1 36

8 2 6 26

9 10 1 45
16 10 8 74

We now turn our attention to performing the Discrete Fourier Transform of n
points where # is not a power of a prime. The idea of using the Chinese Remainder
Theorem for “building up” an algorithm for computing the Discrete Fourier Transform
of composite numbers originated with 1. J. Good [6]. Since the way we *“build up”
the algorithm is somewhat different from Good’s method, we will describe the whole
process in detail.

Assume n = n, - n, where n, and n, are relatively prime. By the Chinese
Remainder Theorem we can represent every integer 0 < i < n by the pair (i, i,) such
that if i is represented by (i, i,) and j by (j,, j,), then i + j mod 7 is represented by
(i, +j, mod n,i, +j, mod n,)and i + j mod n is represented by (i, * j, mod n,
iy * j, mod n,).

Therefore, if we let w be the nth root of unity then:

(33) wh* = ki mod n _ w(kl’k2)(il’i2) — w(kl°j1’k2'j2)

- W(k1i1'0)+(°’k2j2) - w(klil’o)w(o’ijZ) - (W(I,O))klil . (w(O,l))k2i2'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

184 S. WINOGRAD

That means that if we permute the rows and columns of the Discrete Fourier Transform
matrix so as to arrange the indices to be in the lexicographical order of their representa-
tion, it can be partitioned in 7, x n, blocks each of dimensions n, x n,. The block in
position 7, s will be (W(1:9Y**W, when the u, v entry of W, is (W(®>D)**?. But w(1:0)
is wi where w, is the n, th root of unity (note that the number represented by (1, 0) is
divisible by n,), and w(0:1) i w’z’ where w, is the n,th root of unity. Consequently, w,
is the same as the Discrete Fourier Transform matrix for n, points except that w,, is re-
placed by wlz’. If we denote by W, the matrix of the Discrete Fourier Transform of n,
points where w, is replaced by w{, then the matrix of Discrete Fourier Transform of
n, * n, points has been transformed to the direct product of W, and W,.

For example, take n = 12 = 3 - 4. The correspondence according to the Chinese
Remainder Theorem is

0-(0,00 1-(1,1) 2-(2,2) 3-(0,3)
4-(1,0) 5-(2,1) 6-(0,2) 7-(1,3)
8-(2,0) 9-(0,1) 10-(1,2) 11 -(2,3)

and put in lexicographical order we get the rearrangement: 0,9,6,3,4,1,10,7,8,5, 2,
11. Thus the Discrete Fourier Transform for 12 points can be written as:

(34)

Ay 1-1 1-1 1-1 il 11 1-1 11 1-1 1-1 1-1 1-1 1-1 a,
Ay -1)--i 1--1 14 11 1--i 1--1 1ei 1-1 1e-i te-1 1-i aq
Ag 1-1 t--1 1-1 1--1 1 1--1 1.1 1--1 1-1 1--1 el 1--1 a,
Ay 11 14 1--1 1--i 1-1 1+ 1+-1 1-~-i 11 1-i 1--1 1--i ay
A, Lol 1-1 1-1 11 w-el wel wel w-l wiol wi-l o wi-l o wiel a,
A, Tel 1e-i 1:-1 1. wel we-i w--l1 wei wi-1 wi--j wi--1 w?-i a,
Ao tel 1--1 1-1 1--1 wel we-1 w-l w1 wi-l wi- -] w?-l wi-—1 a,
A, LICHE S 1--1 1--i w-l wei we=1 we i wi-l wlei wie-1 w2~ a,
Ag LI N I | 1-1 11 wl-] wisl wi-j w -] wel w-l wel wel ag
Ag Tt 1+-i 1--1 14 wi-l wiemi wPe-l wl - wel we i we-—1 wei ag
A, 1 1+-1 11 1--1 w21 we-1 wi-i wii-l wel owe=l wel we-1 a,
Ay 11 1-i Te=1 1--i w2-1 wiei w?--] wle—i w-l wei we-1 w--i a,,

where w is the cubic root of unity. Since (1, 0) corresponds to four, we have a = 1, and
since (0, 1) corresponds to nine we have b = 3.

The decomposition of the 12 point Discrete Fourier Transform leads to an algo-
rithm for its computation. If we define

2 a, ag
—| % a a
ao - ’ al - ! s 82 = 5)
g 40 a,
N @ ay
(35)
AO A4 AB
A A
AO = ? s A = 1 A, = As
A 1 ’ 2 »
6 AIO A2
43 Ay Ay,

then using Algorithm B2 we obtain:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 185

(36) M, =isnZw, -, -
2= 3 "2 1 2,),

Ag=My, A =M, +M +M, A, =M,+M -M,

-where W, is the four point discrete Fourier Transform with i replaced by —i (since b =3).
Therefore, we can use the Algorithm B3 to compute M,,, M, and M,. In computing M,
for example, we have to modify Algorithm B3 by first replacing i by —i and second multi-
plying the constants in the multiplication steps by (cos 2#/3 — 1). These modifications
are done inijtially when we derive the algorithm and, therefore, are not counted in analyz-
ing the computation complexity of the algorithm. In the end of this section we will show
how one can avoid the first modification.

It should be clear that the way we derived the algorithm for computing the 12
points Discrete Fourier Transform is quite general. If n=n, - n, (wheren, n, are
relatively prime) and we have algorithms for computing the Discrete Fourier Transform
of n, points using 2, additions and m, multiplications, (including multiplication by 1)
and of n, points using a, additions and m, multiplications, we can combine them to ob-
tain an algorithm for computing the n points Discrete Fourier Transform usingm, « m,
multiplications and n,, - a; + m, - a, additions. Since we would have decomposed the
n points discrete Fourier Transform using n = n,, < n, as well, we could have derived an
algorithm using m, « m, multiplications and n, - a, +m, - a, additions. In general,
these two algorithms will differ in their number of additions. In Table 3 we summarize
the number of multiplications and additions used in algorithms derived this way for var-
ious values of n. For the sake of comparison with FFT we also tabulate 2n log, n and

3n log, n (the formulas for the number of real multiplications and real additions, respec-
tively, in FFT).

Mult. # Add.
n Complex Data Complex Data 2n logyn 3n log,n

30 72 384 295 442
48 108 636 537 805
60 144 888 709 1064
120 288 2076 1658 2487
168 432 3492 2484 3726
240 648 5016 3796 5693
420 1296 11352 7320 10980
504 1584 14642 9050 13574
840 2592 24804 16320 24480
1008 3564 34920 20115 30172
2520 9504 100188 56949 85423
TABLE 3

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

186 S. WINOGRAD

As we saw before, one of the modifications needed to compute the Discrete Fourier
Transform of n, * n, points is to replace w, by w{ and w, by wg. One way of avoiding
this modification is to use different permutations on the rows and columns of the matrix,
that is, different permutations of the input and output data.

Let by, by, ..., b, _, be the reordering of the input data ag, 4,,...,4,_,;and

sYn—-
let By, By, ..., B be the reordering of the output data4,, 4,,... ,4,, _,. Choose

»Bp_y
ry» Ty, §q, $, such that

n

37N ry*sy*ny =1modn,, ry-s, n,=1modn,.

If we choose bi a

1n2+ia = ryjinytrajany modn andBkln2+k2 =As1k1nl+s2k2n2modm

then the resulting entry of (k,n, + k,, j;n, +j,) of the Discrete Fourier Transform
matrix is (remember that w” = 1):

W _ w(31k1"1+“'2k2"2)('1i1"1+'2i2"2)
= wS1T17m 1)k 1+ (5a7ama)k g/,

(38) = w")€272"Dkaia L "1 m DRy

= W$2rankaiy | (rysyny)ky iy
=w, w,

kof kyj n n
272 . WF 1= 2 =
w, w, (w, 1, w, 1).

Therefore, this matrix is the direct product of the matrix for n; point Discrete
Fourier Transform and n, point Discrete Fourier Transform.

One easy way of getting r, r,, s, and s, is to choose 7, =r, =1 and s, s,
according to the Chinese Remainder Theorem.

We will end this section with the remark that the algorithms developed here can
be used in conjunction with FFT. The identity behind FFT states that computing
the Discrete Fourier Transform of n, * n, points (n,, n, are not necessarily relatively
prime) can be done by first performing the Discrete Fourier Transform of n; points
n, times, then one performs (n, — 1)n, complex multiplications, and then one per-
forms n, times the Discrete Fourier Transform of n, points. It is, of course, possible
to use the algorithms developed here in the first and third stages of the FFT identity.

V. Multidimensional Fourier Transform. For the sake of concreteness we will
consider only two dimensional Fourier Transform, even though it should be clear that
the results apply to all dimensions. The n, x n, points Discrete Fourier Transform is
n

-1
2 i] ’
) w’l"w;”a”,, 0<k<n, -1,0<k <n,-1.
I=O 4

n;—1
@) 4., = X
=0
It is apparent from (39) that the matrix for the Discrete Fourier Transform of
n, x n, points is the direct product of the matrix of n, points by the matrix for

n, points, and consequently the methods of the end of the last section are immediately

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 187

applicable to multidimensional Discrete Fourier Transform. This can be stated even
more strongly by noting that underlying the method for one dimensional Discrete
Fourier Transform is the transformation to multidimensional transform.

The main results in this section consist of illustrating how the full strength of
the investigation of a product of polynomials modulo a polynomial, and their depend-
ence on the field of scalars, can be utilized. The discussion in the preceding paragraph
indicates that the techniques to be described are applicable in the one dimensional
case as well, but their exposition is simpler in the multidimensional case.

As was mentioned in Section II, the minimum number of multiplications needed
to compute Tp is 2n — k where n is the degree of P and k is the number of distinct
irreducible factors of P. By choosing a larger field of constants we can increase k
and thus decrease the number of multiplications. For example, Tu a_, requires five
multiplications over the field Q of rationals, but only four over the field Q7). Sim-
ilarly, ’7\:,,6_ , Tequires eight multiplications over O, but only six over Q(e®™3). Re-
calling that Tu a_, s the cyclic convolution of four points and Tu6_1 is the cyclic
convolution of six points, we see that if somehow we could take advantage of the
larger fields we could reduce the complexity of cyclic convolutions and, therefore, of
the Discrete Fourier Transform.

One way of utilizing algorithms over fields which are algebraic extensions of the
rationals is to use them in the situation that the Discrete Fourier Transform is to be
performed on more than one set of data. For the sake of concreteness assume that we
have two independent sets of data: {a{!), a{?, ... ,a{?) |} and {a{®), a{?),... ,agf_)_l}.
We can “group” them together as {aq, a,,...,4,_;} where g = (ai(l)’ 41(2)). Assume
that the field of constants we want to use is Q(/), where 2 = — 1, i.e., the field of
Gaussian rationals.

We can transform the vectors a; into an algebra over Q(I) by defining:

L@ af?)+ @, afP) = (af + oD, oft) + af?),
e (gD 2N = (gD gV
I (al. . 4)=(", q;),
(40) (a](l), a}z))(afc‘), a®) = W), p@)),
p(1) = al(l)agcl) - a}”a}f) = a,gl)(ag) + () - (aj(l) + ai(z))a?),

2) _ =
b = afVa(® + al(z)afcl) = a}l)(ag) +a(?) - (alfl) - a{®)a(l).

That is, we view the vector g; as standing for a}l) +1- a}z) where I = — 1. This is
of course possible whenever the number of independent sets of data is the same as the
dimension of the extension field. We see that in this setting, multiplication by [is not
counted (it amounts to interchanging the components of the vector and changing one
of the signs), while multiplication of two elements of the algebra amounts to three
multiplications of the components plus a certain number of additions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

188 S. WINOGRAD

The pairs of data could have been transformed into an algebra of Q(¢) where
¢* + ¢ + 1 = 0, if instead of (40) we would have defined: :

@, af®) + @@V, a(®) = @ +a», af® + a2,
8+ @D, d) = (-a®, o) —a?)

41 (a}l),a}z)) . (a,(cl)’ a§‘2)) = (b(l), b(2))’
) = (a}’) +a}2))a§c1) - a}z)(a,(cl) -a(®),

b = @NaP + (D fh) - o).

That is if we view the vector g; as standing for ai(l) + ¢a}2), where ¢2 = — ¢ — 1.

Having computed the Discrete Fourier Transform of the pair gives us the two
desired Discrete Fourier Transforms.

As an example, consider performing the three dimensional Discrete Fourier
Transform on 120 x 120 x 120 data points, which are assumed to be complex. Using
the method described in the beginning of this section would require 5,971,968 real
multiplications and 97,203,456 real additions for each set of data. (For the sake of
comparison with FFT, note that 2 x 120% x log,1203 = 71,610,641 and 3 x 1203 x
log,120% = 107,415,962.) Since 120 = 8 x 3 x 5, we could have reduced the num-
ber of muitiplications if we could have done the four point cyclic convolution (which
appears in the five point Fourier Transform) in four multiplications instead of five.
Since Q(I) splits u* — 1, we choose to view the pair of input data as an algebra over
Q(I). In Appendix C we give an algorithm for the five point Fourier Transform over
Q(I). Using this algorithm, we can perform the 120 x 120 x 120 Fourier Transform
in 2 x 5,184,000 real multiplications and 2 x 96,840,800 real additions. But since
this yields the results of performing the Fourier Transform on two sets of data, we
obtained 13% savings of the number of multiplications (and a slight reduction of the
number of additions).

It should be clear that this construction is general. For example, computing the
Discrete Fourier Transform of 252 x 252 points may be advantageously done over
Q(¢); and the Fourier Transform of 140 x 140 x 140 may be sped up by doing it
over Q(1, ¢).

Another, more subtle, way of utilizing the fact that Tp may require fewer multi-
plications when the field of constants is enlarged, is based on the construction in the
beginning of [1].

The Chinese Remainder Theorem states that when P, and P, are relatively prime,
the system TPl‘ p, can be transformed, by appropriate change of variables, to the
direct sum of TPl and '7\"},2. We will illustrate this by considering the four point cyclic
convolution, i.e., Tu4—1' Since u* — 1 = (@2 — D(? + 1), we obtain:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM

189

Xy X3 X3 X\ [1 0 o0
Xy X3 X4 X ||)2 0o 1 1
X3 Xq X, X, Y3 - 1 0+« O
Xa Xy Xy X3 |V, 0o 1 -
x; +tx,4 X2+X4
2 2 0 Yty
42
“2) Xy tx, x tx;
R 0 Y2 * s
X, =X, X~ X,
0 0 2 s Y17V
X, =Xy X, X,
0 0 3 _—2— Y2 = Vs

This transformation can be carried directly into the appropriate Discrete Fourier Trans-
form. Thus, the decomposition (42) translates into the following decomposition of

the five point Discrete Fourier Transform

A, 1 0 0 0
A, 110 0 1
A, 1 0 1 0
A,y 110 0 -1
A, 1 0 -1 0
! 0 0 0 0 agta, ta,tay;ta,
0 cosu—-1 cos2u—1 0 0 a, ta,
0 cos2u-1 cosu-—1 0 0 a, +a,
0 0 0 isin2u —isinu a, —a,
0 0 0 isinu isin2u a, —a,

If we consider the two dimensional Fourier Transform of 5 x 5 points it can be de-
composed as

F,eT, oT, 0@, 0T, oT,)

=Tu® 2'?2

u*—~

1 82:72,,9T, ,® T24)

®2- (Tu2~1 ® Tu2+1)®(Tu2+l ® Tu2+l)'

In [1] we showed how to compute Tu using six multiplications, and

® T
24 u2+1
therefore the total number of multiplications needed to perform the 5 x 5 two dim-
ensional Fourier Transformis 1 +4 + 6 + 4 + 12 + 6 = 33 (instead of 36). Using

this construction to obtain an algorithm for the 5 x 5 x 5 Fourier Transform, and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

190 S. WINOGRAD

then incorporating it in computing the 120 x 120 x 120 points Fourier Transform we
obtain an algorithm which uses 90,706,176 real additions and 4,810,752 real multiphi-
cations. (That is, 6.7% of the number of multiplications and 84% of the number of

additions of FFT.)

It should be emphasized that the savings of the last construction occur at the
expense of the length of the program. This construction calls for writing an algorithm

to compute the 5 x 5 x 5 Discrete Fourier Transform.

Acknowledgment. The author wishes to thank Dr. Ramesh C. Agarwal of IBM
Research for helping in simplifying the algorithm for DFT of nine points.

Appendix A
AL 1] ("1 "2) 41
¥2 2 0% Y2
Algorithm:
517 N1 S2° 917
o = x1+x2 ‘s xl_ x2
1 2 1 b R S,
S3 = m1+ m2 54 = ml- m2
b, =8, by =8,
A2, 12} X)Xy x4 '
Wz =% x5 0% Y,
1'3 X3 0% X, Y3
Algorithm:
81" Nty 82 = V1Y, $3 = Yy" V3
8 Y3~V 85 = Y3t 5
o - x1+x2+x3 . 2x1—x2—x3)
1 3 55 mz 3 Sz
+x_ =2 -
o . x,+x,°2x . .. Xy 2x2+x3 .
3 3 3 4 3 54
8g = myt my 57 = m,- my sg = Myt m,
89 = my* sg 510 =t 5 8;) = ™~ Sg
Y1 = 8 Y2 = 510 ¥3 = sy

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

2
Al. “’1 xl x2 x3
23 X, X3 X,
V3| = | X3 %4 %y
Vg B TS T
Algorithm:
5y "Nt Y, S; TYV;
Ss = Sl+S3 86 = 51-53
m _ x1+x2+x3+x4
1 Y - 8g
bt B M
My o= 2 -8, M
88 = m1+m2 59 = ml-mz
512 = %g™%10 %13 = Sg7510
Y1 =5 Yy =54
Ad. “’1 xl x2 x3
v, X *3 %
Vi 5| X3 %5 %5
Yy X ¥s X%
A ¥ ¥ X
81 =Yty Sy =¥ty
8¢ = ¥17¥s 87 =YVN)7Y;
11 = ¥37Vs 512 T ¥37Y
n - x1+x2+x3+x4+x5
o 5 - Sg
. 2x1-3x2+2x3-3x4+2xs
®y 5
2x1+2x2-3x3-3x4+2xs
m, =
4 5
2x1+2x2+2x3—3x4-3x5
m =
3 5
—3x1+2x2+2x3-—3x4+2x5
g = 5

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 191

x4 Yy
* ¥y
*2 ¥3
*3 Yy
53 T Yty
57 = 52*54
m2 =
e
=72 -5
510 = M3y
S14 T 8951y
V3 =853
fy X 51
xs X Y2
xl X y3
X X Yq
*n X ¥g
83 sl+sz
Sg Y27¥s5
813 T ¥47Ys
m
. S7 m3
. 59 ms
* %10 o
. m
512 9

xl-xz-x3+x4

Mg = 2

-] = m, +m

84 = 81-82

89 = ¥Y)7Y3

x1+x +X.,4+X ,-4%

273 74
5

-4, +X +X_ +X ,+X

5

172 7374 75

H

-, =X,=-X_+2X -X

1 ™2 73 ™4
5

X, =4X_ +X_ +X +X

1 727374
5

X, +X,—4%.+X +X

172 7374
5

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

5

5

5

. 84

Ss = 53+y5

810 " ¥27¥y

. S6

11

13

192 8. WINOGRAD

814 " ' 815 = P S16 = ®o'™ 817 = 516™2
%18 = 517%%14 819 * Mg ™ 820 = %193 521 = 8207515
By2 ™ WyS14 833 ¥ Sty 834 = S23'Mg 825 = Wp*S)s
86 ™ 5257 837 = 826*Mg S8 = W™ S29 = S287™™3
830 * 5237 531 7 %309
=g = = = -
" 18 V2 =5y ¥y =8y Yy =8y Vg =53
As. Yy X ¥ X3 X, X5 X Y
¥, Xy X3 X4 X5 Xg X Y,
Y3 X3 X4 X5 Xg X %X Y3
Vg |=| % %5 Xg X X X3 Yq
Vs Xg Xg X X3 X3 X4 ¥
Ve X6 X3 X3 X3 X4 ¥%g Yg
5 =¥y, 8, =YY 83 = ¥p*¥s 8y ™ Y¥57¥,
By = Y3V Sg = ¥37¥g 8, = 5)%5, Sg = 84%85
8y = 8;%5, S10 = 59*%¢ 571 < 5175 812 ™ 837%5
813 = 8575) 814 = 52784 815 * 8478 316 = %6752
x1+x2+x3+x4+x5+x6 . _ 2x1—x2-x3+2x4-x5-x6
m 6 g) 3 * %
. xy x2-2x3+x4+x5-2x6 . xl—2x2<|»x3«0'x4—2x5+x6
By 6 - %12 my 3 - 513
.. ,xl--x,‘,+x3-x4+x_,)-x6 . o = 2x1+x2-x(3-2x4-x5+x6 .
5 3 * %10 3 6 © 894
. xl--xz-2x‘.<1-x44~x5-|=2x6 . . . x1+2x2+x3—x4-2x5-x6 .
by 3 e 1 8 3 - %16
8)7 = MM, 518 = 5173 S19 =M™y 530 ™ 519%%
S5 T™m™ S2 T 527" Sy3 T Rgilg 574 = S23'%y
825 = Wg~W, S26 = S25*Mg S27 = BsMg 828 = 8277 g
89 = S38%524 S30 = S187524 S31 = 8207%26 832 = S30%S26
833 ™ S3%S3g S34 = 5227528
¥y =3y ¥y = 53y ¥y = S33 ¥y = S30 Vg = 83, Vg = 834

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 193

Appendix B
2ri
0 0
Bl. A, v w a, wrel = -1
*lo o
Al W -w ‘al
Algorithm:
8, = aj+a, s, = aj,ma,
By = 1) m =l
AO = m, Al =m
B2. Ao wo wo wo ao
2ni
Al = wo wl sz a w=e 3
1
o 2 1
Az w W W az
Algorithm:
8, = a,+a, 5, = a,-a, 8y = s 4a,
m = l°s m, = {cos u-l)-+s m, = i1 sin u-'s u = 2n
0 3 1 1 2 2 3
8, = mytm, 8y = s.m, 8¢ = 8,m,
Ao = lo Al = 35 Az = 86
B3. Ao wo wo wo wo ao
2ni
0o .1 0 1 4
Al w w W W al ws e
o_0 .0_0
A[=]w ~w w -w a,
o _ 1 _0 _1
A3 w W -w W 33
8) = agta, s, = ay-a, s, = a,+a, s, = a,7a,
85 = 5)*5, % = %1793
. . 1 i sin u-s -2
m1=lss m2=156 my = s, m, = sin 4 u=72
8, = mytm, Sg = Mymy
1\0=m1 Al=s7 Az'mz A:,t-s8

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

194 S. WINOGRAD
0 0 0 (+] 0
B4. Ao w o ow W w oW ao
0 1 2 3 4
A wow oW ow W a ami
A wo w2 w4 wl w3 a w=e 5
2 2
A Wo W3 Wl w4 w2 a
3 3
A WO Wl w oWl wt a
4 4
Algorithm:
s, =ajta, s, =a-a, 55 = ajta, 8, = aj-a,
= = - = = +
sg 8,%s, sg 8,-84 85 5,48, sy sgta,
cos utcos 2u cos u-cos 2u), - <L
Wy = 1'sg l“1=(_2_'"'_’1)$5 “‘2"(2)se“ 5
m, = i(sin u+sin 2\1)‘52 m, = i sin2u°s7 mg = i(sin u-sin2u) - s,
89 = mgtm, 510 = So*™2 811 T 8g7M; 812 T W3Ry
513 = Py*Ps 514 = S10*%12 515 ¥ 5107512 816 = *11*%13
517 ¥ 117513
Bo =Wy A =Sy Ay=s Ry=s); A =8y
BS. A 0 wo wo wo wo wo wo wo ag
0 1 2 3 4 S 6
Al w w w w w w w al ani
Az = wo wz w4 w6 wl w3 ws a2 w=e 7
A3 wo w3 w6 w2 ws wl w4 33
(o] 4 1 S 2 6 3
A4 w w w w w w w a4
As wo ws w3 wl w6 w4 w2 as
0 6 S 4 3 2 1
I\6 w w W w w w w a6
Algorithm:
s, =a+a, s, =a-a 8, = a,ta, s, = a,-a,
85 =a,ag Sg = a,mag s, = s)+s, sg = s,tsg
Sg = 8g*a, S10 © 51753 511 T 53755 512 = %575
513 T 535, 514 T 513%% 515 = %275 %16 = 547%
%17 T %6752
- 1. o (€os utcos2utcos3u .Y\, 2mi
Mo =18y 0m 3 1) 5 =3
= (2cos u-cos2u-cos3u) | _ [Cos u-2cos2u+cos3u
P2 (3) 510 my = (3). 11
= (Sos_utcos2u-2cos3u) | _ ;(sinutsin2u~sin3u
Ty (3) S12 g = i 3) 14

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 195

2sinu-sin2u+sin3u), _ :fsinu-2sin2u-sin3u\,
% = i(3) 515 B, = a(3) S16
- i(sinu+sin2u+25in3u). s
Mg 3 17
%18 * Moty 519 = S18*™ 50 7 %19*™3 531 = S18™™
= - = = +
822 " 517y 523 F 51873 Syq T 523*My 5y5 = Mg*Mg
%6 = S25*"9 837 = MgMg S8 ™ 5277 Mg Sy9 = MM,
830 ™ %29"Mg S31 = 830826 S32 T 5207526 S33 = 833%S5g
834 = 5227528 835 = S34%530 836 = %247%30
Ry =M A =8y A = 833 Ay = 83
Ay = 835 By = 834 Rg = 535
B6. Ao wo wo wo wo wo wo wo wo a o
06 1 2 3 4 .5 6 .7
Al w w W w w w w w al
0 2 4 6 0 2 4 6
Az w w w w w w w w a2
0 .3 6 1 .4 .7 .2 .5
A3 w w w w w w w W l3 2"1
A 4 = wo W4 Wo W4 Wo W4 Wo w4 a 4 w=e
AS Wo ws w2 w7 W4 Hl Ws W3 ﬁs
A6 wo w6 w4 w2 wo w6 w4 wz a6
A Wo W-’ WG ws w4 w3 w2 Wl a
7 7
Algorithm.
51 = a0+a4 52 = lo-a4 33 = 32"'36 84 = az-ae
85 = a1+a5 56 = al as 87 = a3+a7 88 - 53-ﬂ7
8g = S)%s; %10 T 51753 531 T Ss5%9, 512 = 8575,
513 T Sg*Syy 514 T %9711 815 = S¢*Sg 516 = %¢"%8
. 2n
m:l = 1-513 m2 = l'sl4 m3 = l-slo m4 = i sin 2u°512 u = 7
m5 = 1'52 me = i'sz.n2u°s4 m, = i sin u-sl5 mg = cos u-516
817 = My*my S18 = M3y 819 = MgiMg S0 = MMy
S21 = Mgty S22 = Mgy S23 = 839%Sy; 824 = 8197821
8 S

25 = S20%522 26 = $207%22

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

196 S. WINOGRAD

B7. A w W W W W W W W W a

[s] 0
("} 1 2 3 4 5 6 7 8
Al w w w w W w w w w a:L
0 2 4 6 8 1 3 5 7
A2 w w w w w w W w w a2
0 3 6 [+] 3 6 0 3 6
A3 w w w w w w w \ w a3
0 4 8 3 7 2 6 1 5
A4 = w w w w w w w A w a4
0 5 1 6 2 7 3 8 4
As w w w w w w w w w as
A 6 wo w6 w3 wo w6 w3 wo w6 w3 a 6
0 7 S 3 1 8 6 4 2
A7 w w W w w w w w w a7
0 8 7 6 S 4 ki 2 1
A w w w w w w w w w a
8 8
Algorithm:
S = a,+a S = a.=-a S = a,+a s = a,—a
1 178 2 18 3 772 4 7 72
55 = a3+a6 56 = 63—36 S-, = a4+65 SB = a4-a5
89 = S)*S3 S10 = So*sy S11 = %10 *S5 S12 = S11%39
S13 T Sty 514 T S13%5g S15 = 51753 516 = %375,
517 7 975 518 T 52734 519 T 8475g S20 T %752
1 sk _ 2%
mo =1 512 m = (- 7) le my, =i sin3u 514 u =)
_ ~1y. I . _ (2cosu-cos2u-cosédu, |
ln3 = (cos3u-1) Sg m, = isin3u Sg mg = (3) 515
n = (cosu+c052u-2cos4u‘ .s m = (cosu-2c052u+c054u‘ .
3 3 %16 7 = 3 7789
mn =i (25inu+sin2u-sin4u\ .s Vom =i (sinu-sinZu-2sin4u\ .
8 3 ‘18 9 3 ' 19
m =i (Sinut+2sin2u+sindu,
10 ! 3 7820
S0 = ™M S22 = S20"™ S23 T Mo*S22 S)4 T Sz ™
- - = = = +
S25 T %2372 S26 = Mo™M3 S27 % S26%521 S8 ~ 527™"s
Sy9 = $28™M6 S30 T 5277 S31 T S30*"y S32 T S9™Mg
S33 T S32™™ S34 = MMy S35 T S34™Mg S36 ~ Mg
S37 = S36*Mg S3g = My Mg S39 = S3g™Mi0 540 = S20%%35
= _ = = - = +
S41 7 S297%35 S42 T 531%%37 S43 T S317%37 Sa4 T 5337539
S, = $,.-S

45 337739

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM

197

By = Mg A = S0 Ry =543 Ay = Sy By = 543
A5 =545 Bg = sy3 Ay = sy Ag = sy
15 4 o
BS. A = ‘gow aj k=0,1,...,15 w=e .
3

Algorithm.

s = agtag S, =373 S3 T 84%ay, 84 T 8479,

S5 = ata), S¢ T 2789 S7 T agta, %g T 372y

Sy = 3ta, 510 T %173 81 T 3523 S12 T 35733

813 T aztay %14 T 3372 515 = 35t 516 =~ 377215

817 = 5183 S18 T 51793 819 T 555, S20 = %5757

S21 7 So*S1y S22 ¥ %9711 S23 = 51385 Sy4 = 5137835

S25 = S19%5319 526 = 177519 S27 = S21*%23 S28 = %217%23

S29 T 525527 S30 = 8257527 531 T S22*5n S32 = 5227524

833 = S¢*Sg 34 T % %g 35 T %1016 36 = %107"16

537 T %12"%14 %38 T %127%14 %39 T %3575y %40 = ®36™%38
m = 1~s29 m, = 1'530 m, = 1-526 m, = i s.'l.n4u°s28 us= i—;
ms = .’L°sl8 m6 =i sin4u-520 m_, =i sinzu-ssl na = cos2u-s32
my = 1. 2 Mo = i sindu- 4 mll = i sin2y- 33 m12 - cos2u-s34
my, = i sin3u-s39 my, = J'.(.'=.1'.nu-s:i.n3u)'s35 By = i(sinu + sin3u)'337
me = <:os3u-s40 m, = (cosu + cos3u)-s36 mg = (cos3u ~ cosu)'s38
541 T M3t Ty S42 T M3 "My Sg3 "Wty 544705 "Wy
S45 = Mg + Mg Sg6 “ M5 "~ Mg S47 = %43 * 545 48 = 343" 845
549 " %44 * 546 S50 = S4q " S4e Sg) = Wg * By, 852 < Mg - Wy,
553 " M0 T My Ssq T MypT My Ss5 = M3t By S56 = M3 ~ My
%57 = ™17 M6 ®sg = ™18” Mg S59 = S51* 555 %60 = %51 " 555
S61 7 S52* Ss6 862 = 5537 Sgg 563 ~ Ss3* S5 %64 ™ %53 " %57
865 = S54% Ssg %66 ~ 554~ Ssg 567 = Ss9* S¢3 868 = %59~ 53

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

198

S. WINOGRAD

569 = 60" S64 570 * %60” %64 521 = %61* %es 872 ™ %1" S¢s
873 = Se2% %66 574 = %62” %66
Ao =My A = Sgq Ay = 84 A3 =8y LV Ag = 84
Rg =845 Py = Sgg Ag =™, Ag = 8gg Rio= %9 M1 "%
R, =8, B3=8y3 Ry =850 A5 T 8y
Appendix C
cl.
01 X Xy Xy X, Y,
*2 X, X3 X, x Y,
YVil=l*x % % % ¥y
L Xy X X, Xy ¥, .
Algorithm:
8) =YY, 8, = Y)" ¥y 8y = Vgt ¥, 8, =¥, ¥,
s5 = sl+ 33 86 = 5;' s3 s7 = sz+ I-s4 58 = 52- I-s4
. x1+x2+x3+x4 . m xl-x2+x3--x4 ..
» r) 8g 2 Y 6
o e (xl-:g3)+ I(xz—x4) e . (xl-x:i) - I(xz'x4) .
3 3 7 ny rl 8
8 =Bt W, 810 "™~ ™ 5y = Mgty 812 T M Py
513 = 8% 513 514 " %" 13 515 = 510t 1'512 516 = 5107 I"512
¥ = 83 ¥2 = 555 ¥y = 814 Yy = 536
0o 0 0 o0 0
c2. Ao w w w w w ao
o 1 2 3 .4
Al w w w w w al
0 2 4 1 .3
Az w w - W W w a2
o 3 1 4 2
A3 w w w w w a3
o 4 3 2 1
A4 w w w w w 34 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 199

Algorithm:
81=al+ 34 82=al‘ 64 53=a3+ a2 84=a-32
ss = sl+ s3 56 = sl- s3 s.’ = sz+ I°s4 58 = sz- I-s4
89 = a0+ S5
cosu + cos2u 21
m, = 1°s9 m = (—-—2— - 1) Sg us=g
_ cosu - cos2u n = i(sinu + I sin2u) s
By = 2 % 3 2 7
m = i{sinu - I sin2u) s
5 2 8
510 " Mot ™ 511 = S10t ™2 512 7 %107 ™2 S13 T Mgt Ry
814 T TWgT M3 S15 = Sut S13 S16 = 5117 513 Sy7 = 812% 17514
818 = S12” 1'S14
Ay =My A =555 By =59 Ay = 518 LT

Mathematical Science Department
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

1. S. WINOGRAD, “Some bilinear forms whose multiplicative complexity depends on the
field of constants,”” to be published in Mathematical Systems Theory, Vol. 10.

2. J. W. COOLEY & J. W. TUKEY, “An algorithm for the machine calculation of complex
Fourier series,”” Math. Comp., v. 19, 1965, pp. 297—301.

3. C. M. FIDUCCIA & Y. ZALCSTEIN, Algebras Having Linear Multiplicative Complexities,
Technical Report 46, Dept. of Computer Science, State University of New York, Stony Brook,
August 197S8.

4. A. L. TOOM, “The complexity of a scheme of functional elements simulating the multi-
plication of integers,”” Dokl. Akad. Nauk SSSR, v. 150, 1963, pp. 496-498 = Soviet Math, Dokl.,
v. 4, 1963, pp. 714-716.

5. C. M. RADER, *“Discrete Fourier transforms when the number of data samples is prime,”
Proc. IEEE,v. S, no. 6, June 1968, pp. 1107—1108.

6. L J. GOOD, “The interaction of algorithm and practical Fourier series,” J. Roy. Statist.
Soc. Ser. B, v. 20, 1958, pp. 361—372; Addendum, v. 22, 1960, pp. 372—~375.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

