
MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 141
JANUARY 1978, PAGES 175-199

On Computing the Discrete Fourier Transform

By S. Winograd

Abstract. A new algorithm for computing the Discrete Fourier Transform is described.
The algorithm is based on a recent result in complexity theory which enables us to de-
rive efficient algorithms for convolution. These algorithms are then used to obtain the

new Discrete Fourier Transform algorithm.

I. Introduction. A previous paper [1] investigated the minimum number of
multiplications needed to obtain the coefficients of the product of two (n - l)st
degree polynomials modulo an nth degree polynomial. In this paper we will use the
results of [1] to obtain new algorithms for computing the Discrete Fourier Transform
(DFT). These new algorithms use about the same number of additions as the algo-
rithms proposed by Cooley and Tukey [2], but only about 20% of the number of
multiplications which their algorithm requires.

In the second section we will summarize the results needed for the construction
of the algorithms. The third section will describe the derivation of the algorithms for
cyclic convolutions, the fourth section will use these algorithms to derive the. algorithm
for DFT's of a few tens to a few thousands of points. In the last section we will discuss
algorithms for multidimensional DFT's as well as algorithms for computing the DFT
of very large numbers.

II. Theoretical Background. Let

/ m
Rliu)=Zxiui, Smiu)=Zylui

i=0 i=0

be two polynomials with indeterminate coefficients, and let P(u) = u" + E"~fxaiui
be a monic polynomial of degree n with coefficients in a field G. (In the applications
we will use G as the field Q of the rationals, only in the last section we will use other
fields.) Assume P\u) = Pxiu) • P2iu) such that Pxiu) and P2(u) are relatively prime,
and let nx = deg(Pj) and n2 = deg(P2).

Using the Chinese Remainder Theorem, we obtain:

R, • Sm mod Pl m

= (Q2 ■ P2(Rl ■ Sm mod Px) + Qx ■ Px • (R, ■ Sm mod P2)) mod P,

where Qx and Q2 aie polynomials such that

@) QXPX+Q2-P2 = I mod P.

Received November 30, 1976; revised June 9, 1977.
AMS (MOS) subject classifications (1970). Primary 68A20.

Copyright C 1978. American Mathematical Society

175

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

176 S. WINOGRAD

Let T be the set of coefficients of R¡ • Sm and let Tp be the set of coefficients
of R¡ • Sm mod P. It was shown in [3] that at least I + m + 1 multiplications are
needed to compute T (multiplication by a fixed element g E G is not counted), and
using the algorithm of [4] one can actually obtain an algorithm for computing T
using I + m + 1 multiplications. Clearly, we can obtain Tp from T using only addi-
tions and multiplications by elements g E G; thus, the number of multiplications,
which are counted, needed to compute Tp is at most I + m + 1.

Another way of computing Tp when P has more than one irreducible factor is
by the use of the identity (1), i.e., if P = Px • P2 such that Px and P2 are relatively
prime then we can use the algorithm for Tp to multiply (R mod Px) • (S mod Px)
mod Px, and the algorithm for Tp to multiply (R mod P2) • (S mod P2) mod P2,
and then obtain the algorithm for Tp using only additional additions and multiplica-
tions by elements of G. It was shown in [1] that for the case I = m = n - 1 the
number of multiplications needed to compute Tp is 2« - k, where k is the number of
distinct irreducible factors of P. Moreover, every algorithm which computes Tp in
2n - k multiplications uses (1).

When P has only one irreducible factor, i.e., when P is a power of irreducible
polynomial, we cannot use (l);but then we compute Tp by computing T first and
then reducing modulo P.

There are two ways for computing T using only I + m + 1 multiplications. The
first one uses the identity

m + l
(3) Rfii) • Smiu) = R,(u) • Sm(u) mod ft (" " <*,)>

i"=0

where the a(.'s are distinct elements of G. (We assume that G is large enough. Actually,
we will use in this paper only G of characteristic 0.) The right-hand side of (3) can be
computed using (1) in m + I + 1 multiplications. This algorithm is the same as the
one described in [4].

A second algorithm uses the identity

m + l m + l
(4) R,(u) • Sm(u) = R,(u) • Sm(u) mod ft (u - ß.) +x,ym JJ (" " ft-),

i'=i f=i

where the ßt's are distinct elements of G. It was shown in [1] that every algorithm
for computing T in m + I + 1 multiplication uses either (3) or (4).

At times it is desirable to avoid the constants which the algorithms of (3) or (4)
necessitate, even at the expense of additional multiplication. One way of accomplish-
ing this is to choose a polynomial P(u) of degree I + m + 1 with many distinct irre-
ducible factors, but not necessarily only linear factors. Identity (3) is then modified to:

(5) Rii")-Smiu) = R,(u)-Sm(u) mod P.

Similarly, we can modify identity (4).
Another theoretical development which will be needed in this paper is that of

the dual or transpose of system. Let

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 177

(6) Z Z ai/**/>7> k= 1.2,... ,t,
/=i i=i

be a system of bilinear forms, and assume that we have found an algorithm for com-
puting this system using n multiplications without using the commutative law. That is,

(7) Z t «t/**.^/ =tiyk,i(Z Hl*l) (t hM) ' k=l,2,...,t.
j=l 1=1 1=1 \i=\ I \j=l

Multiplying both sides of (7) by zk and summing over k, we obtaink

n

(8) ttt WlVl =t(t Tfcft) f E «M J (t-V/V

Equating the coefficients of x,., we obtain

(9) Z Z a</^*^/ = ¿ «/,/ f Z yk,tzk)(tßj,iyj)> * -1,2,..., r.
fc=i/=i 7=1 \fc=i /\/=i

The left-hand side of (9) is called a dual (or transpose) system, and the right-hand
side of (9) provides an algorithm for computing it using n multiplications.

III. Cyclic Convolution. Consider the problem of computing the cyclic convolu-
tion of two sets of« points (x0, xt, ... ,xn_x) and (y0, yx, ... ,y„_x). This can
be written as

I xo

(10)

xi xn_2

xx x2 xnX xc
.-¿I I7,\

**-i x0---x„_3 Xn2j \y„_1/

It is readily verified that (10) is the system of coefficients of the polynomial

(x0 + xxu + x2u2 + • • • +xnXu" x)

Oo +yn-iu +yn-2u2 + "• +^i""_1) mod "" -1,

and we can use the results described in the previous section to compute this system.
As an example we will take n = 3, that is, we consider the system

/ 2,

(12)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

178 S. WINOGRAD

which is the system of coefficients of

(13) (x0 + xxu + x2u2)iy0 + y2u + yxu2) mod (m3 - 1).

Since u3 - 1 = (u - l)(u2 + u + 1), we have to compute

(x0 +xxu +x2u2)(y0 +y2u + yxu2) mod (u - 1)
(14)

= (*o +xi +x2^iyo +yi +^)

and

ix0 +xxu + x2u2)(y0 +y2u + yxu2) mod (u2 +u + 1)
(15)

= ((x0-x2) + (xx -x2)u)'((y0-yx) + (y2-yx)u) mod (u2 + u + l).

The part of the computation (14) can be done in one multiplication. To compute
(15) we first compute T, that is, the coefficients of ((xQ - x2) + (xx - x2)u) •
((yo ~y{) + (^2 ~yi)u)- This 's done using the identity:

Hx0 -x2) + (xx ~x2)u)((y0 -yx) + (y2 -yx)u)

(16) = iix0 -x2) + (xx -x2)u)((y0 -yx) + (y2 -yj)M)mod u(u + 1)

+ (xx -x2)(y2 -yx)u(u + 1),

which leads to the algorithm:

m\ - (xa ~x2Xy0 ~^i). mi = ixi ~x2)iy2 -yx),

m3 ~ iixo -x2)~ixx -x2)Xiy0 -yl)-(y2 -y,)) = (^0 ~xi)iyo "^2)-

(x0 ~x2)(y0 -yx) = mx,

(17) (x0 ~x2Xy2 ~yx) + (xx ~x2)(y0 ~yx) = mx + m2 - m3,

(xx -x2)(y2 -yx) = m2.

And consequently, the coefficients of (15) are

ffij - m2 and m, + m2 - m3 - m2 = m, - m3.

Defining mQ = (xQ + xx + x2)(y0 + yx + y2), we obtain

(x0 + xxu + x2u2)(y0 + y2u + yxu2) mod (u - 1) = m0,

(18) (x0 + xxu + x2u2)(y0 + y2u + yxu2) mod (u2 + u + 1)

= (mx -m2) + (mx - m3)u;

and using (1), we obtain

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM

(x0 + xxu +x2u2)iy0 +y2u + yxu2) mod(u3-l)

u2 +u 4

179

m0 +

(19)
■(

+

(-ju-l)ju +2)\
\—*-3 -LJ iimx -m2) + (m, - m3)u)

mod (u3 -1)

t) + It + t+t-—j"
(m0 2mi ,m2,m3\ 2

mn m. 2m.
3 3 3

In many applications either the x7s or the y's are known a priori, for example, they
are the tap values; and therefore, computations involving only these variables can be
done beforehand, and thus should not be counted. Assuming that the operations on
the xf's are not counted, we define

ft 1 1 ft 2
(20) m'0=-g-O'o+J'i +Ja)' m'i =-3-^0 "J'i)'

X -, X*
(20a) w'2 = ' 3 (y2 ~y,)

x„ -x
m0 -5—CVo"^)''

and the three desired quantities are:

(20b) m'0 + m\ - 2m'2 + m'3, m'Q + m\ + m'2 - 2m'3, m'0 - 2m\ + m'2 + m'3.

Another algorithm is obtained by noticing that the transpose of (12) is

ho
(21) zl Z0 Z2

\ ly°
yx

\ Z2 Zl Z0 /

/ z0 zx z2 \

Zl Z2 Z0

\y,l I

I y0\

^2

\yil
Transposing algorithm (20), we obtain

z0+zx + z2

(22a)
m, (y0 +yi +>,2)'

2z0 + zx+ z2
iy2 -J'i).

z0 + Zl - 2Z2

z0 - 2zx + z2

iy0 -y0>

iy0 -^2);

and the three quantities to be computed are :

(22b) mQ + mx + m3, m0 + m2 - m3, m0-mx-m2.

This method of obtaining simpler algorithms by transposing the system of bilinear forms
is useful for other cyclic convolutions as well. Using the Chinese Remainder Theorem
usually results in Qx • Px and Q2 • P2 coefficients other than 0, 1, - 1, and transpos-
ing the algorithm results in moving these coefficients to what part which can be pre-
computed.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

180 S. WINOGRAD

The matrix in (10) can be viewed as the "multiplication table" for the group
z of addition modulo n. In case n = nx • n2 where nx and n2 are relatively prime,
then zn is isomorphic to z„ x zn . Therefore, there exists a permutation of the
rows and columns of the matrix of (10) such that the resulting matrix can be parti-
tioned into blocks of n2 x n2 cyclic matrices, and such that the blocks form an
nx x nx cyclic matrix.

For example, since 6 = 2 x 3 we have the isomorphism

(23)
0-^(0,0), I-* (1,1), 2

3^(1,0), 4^(0,1), 5

and therefore, if we have the cyclic convolution

(24)

(0, 2),

(1,2);

and we arrange it in the order 0, 4, 2, 3, 1, 5 (that is, first those indices whose first
coordinate is 0 and the second coordinate in ascending order, and then those indices
whose first coordinate is 1 and the second coordinate in ascending order), we obtain

(25)

r°\
*2

*3

X0 X4 X2 ¡ X3 Xl X5

A2 Aq Aq ! .*5 -*3 -A.j
-r-
x3 xx x5 i x0 xA x2

! xA

I x0

y0

y*

y_2_

^3

yi

y$

which is the same as (24), yet exhibits the block structure.
This block structure can be used to derive an algorithm by composing two dif-

ferent algorithms. Using u2 - 1 = (u + l)(u - 1), we immediately obtain:

(26) ,xi xo

¡ x0 + x, xn -x. \
^-2-L0'o+-V,)+-V^Oo->'1)

ft 1 0 1
\ —2—O'o+^i)—2—too-yO

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 181

for a cyclic convolution of two elements. If we define:

(27)

Yo » U, . ^i

*3 Xl XS

0 I XA X2 X0 I' 1 — I *1 *5 X
Kx2 XQ X^J \Xç, x3 xx

then we can write (25) as

(28)
*„\ _ X0 Xx\ Y0

¿i Xo> Vi

and using algorithm (26), we get

(29)
**! = -JLy—-iY0 + Yx), M2 = -JLY-LiY0 - Yx),

$0 =MX +M2, 4>j =MX -M2.

Computing Mx and M2, we use algorithm (22). Thus we obtained an algorithm
for (24) which uses eight multiplications and 34 additions. It should be noted that we
could have factored 6 as 3 x 2 and obtained a different block structure, namely that
of three point convolution of 2 x 2 blocks. In this case we would have obtained an-
other algorithm for (24) using eight multiplications and 38 additions.

In Appendix A we give the algorithms derived for cyclic convolution of 2, 3,4,
5 and 6 points. These algorithms are summarized in Table 1. The algorithm given
for five point cyclic convolution does not use the minimum number of multiplications.
Another algorithm could have been derived using only eight multiplications, but then
the number of additions would have been much larger, and the constant coefficients
would not have been 0, ± 1.

Table I

n # mult. # add.

2 2 4
3 4 11
4 5 15
5 10 31
6 8 34

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

182 S. WINOGRAD

IV. One Dimensional Fourier Transform. The Discrete Fourier Transform of n
points

(30)
n-l

Ak = Z **'«/' i = 0, 1, ... , n - 1, »v - e2m>,
7=0

can be written as A = Wa where W(. — w1'. We will consider first the case that « is a
prime. In this case the matrix W\¡i^0 can be viewed as the "multiplication table" for
the group Mn of nonzero integers relatively prime to n with group operation of multi-
plication modulo n. As is well known, M . = z _j for p =£ 2 a prime and M
= z2 xz r_2. That means that if « is a prime, we can rearrange the rows and col-
umns of W\¡ m o so tne resulting matrix is cyclic. (The idea of rearranging the indices
of the Discrete Fourier Transform of a prime number of points so as to obtain cyclic
convolution was first suggested by C. M. Rader [5].) This is illustrated in (31) for the
case n = 1, i.e., (31) is another way of writing the Discrete Fourier Transform for
seven points.

1111
„6lA:\

(31)

/:

W
1 w3

w*

w"

w

w-

w
W"

w"

w

w-

w

w

w"

w

w
w*

w

w"

w

W"

w
w
w

w

w-

w
w

w
w"

w = pimp

We can now use the algorithm for six point cyclic convolution developed in the pre-
vious section to compute the seven point Fourier Transform. Actually, for later use,
it is better to compute first A¡ ~AQ, i = 1,2, ... , 6. (Note that we have not disturb-
ed the symmetries and, therefore, can still use the algorithms developed in the previous
section.) The resulting algorithm appears in Appendix B.

In case n = pr is a power of a prime number, the situation is very similar. We
can permute the rows and columns of W so as to have copies of M r,M ., ... ,
M 0. This permutation is best explained by means of an example. In (32) we illus-
trate the permutation of W for a nine point Fourier Transform. The algorithm for the
nine points Fourier Transform is in Appendix B.

\'

(32)

A..

l8

An
A,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 183

An examination of the algorithms for the seven and nine point Fourier Transform
reveals that the multiplicand which depends on the powers of w is either a real number
or an imaginary number-never a general complex number. This is not a peculiarity of
these two numbers, but a general property of these algorithms. In the case that n = p'',
p =£ 2, the group M „ is isomorphic to Z, „ _ ,, and the element - 1 of M , is
mapped into xhip - l)pr~x under the isomorphism. But since u^~l^Pr - 1 =

tu1A(P-i)Pr-1 - \)(uYi(P-i)pr~x + l), the part of the algorithm for cyclic convolution
which is based on computing modulo i//2(P-1)pr_1 - i depends on w' + w~' which
are real numbers; and the part of the algorithm which is based on M1/2(P-1)Pr- + 1
depends on w' - w~' which are imaginary numbers. A similar argument establishes this
fact for n = 2r. Table 2 summarizes the algorithms for computing the Discrete Fourier
Transform of 2, 3, 4, 5, 7, 8, 9, and 16 points. The actual algorithms are given in Ap-
pendix B. Since we will later have to consider multiplication by w° = 1 as a multipli-
cation, this is also summarized in Table 2.

Table 2

n #Mult. #Mult. byw° # Add.

2 0 2 2
3 2 1 6
4 0 4 8
5 5 1 17
7 8 1 36
8 2 6 26
9 10 1 45

16 10 8 74

We now turn our attention to performing the Discrete Fourier Transform of n
points where n is not a power of a prime. The idea of using the Chinese Remainder
Theorem for "building up" an algorithm for computing the Discrete Fourier Transform
of composite numbers originated with I. J. Good [6]. Since the way we "build up"
the algorithm is somewhat different from Good's method, we will describe the whole
process in detail.

Assume n = nx • n2 where nx and n2 are relatively prime. By the Chinese
Remainder Theorem we can represent every integer 0 < / < n by the pair (i,, i2) such
that if i is represented by (ix, i2) and / by (jx, j2), then /' + / mod n is represented by
(ix + /, mod n, i2 + j2 mod n2) and i • / mod n is represented by (i. • /, mod n,
i2 • j2 mod n2).

Therefore, if we let w be the nth root of unity then:

(33) w><-i = WK-) mod n = ¿"t'HWl'ty = ^V'l'W

= w<*i/i,0) + (0,*2/2) = w(kxixfi)w(0,k2j2) m ^(ifirflh . ^(0,1)^2/2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

184 S. WINOGRAD

That means that if we permute the rows and columns of the Discrete Fourier Transform
matrix so as to arrange the indices to be in the lexicographical order of their representa-
tion, it can be partitioned in nx x nx blocks each of dimensions n2 x n2. The block in
position r, s will be (w(1'0))r"sH'2 when the u, v entry of IV2 is (w*0'1))"'". But w<-x >0>
is w"x where wx is the «, th root of unity (note that the number represented by (1,0) is
divisible by n2), and w^0'1^ is u>2 where w2 is the «2th root of unity. Consequently, w2
is the same as the Discrete Fourier Transform matrix for n2 points except that w2 is re-
placed by w2. If we denote by Wx the matrix of the Discrete Fourier Transform of n x
points where wx is replaced by w°x, then the matrix of Discrete Fourier Transform of
nx ' n2 points has been transformed to the direct product of Wx and W2.

For example, take «=12 = 3 • 4. The correspondence according to the Chinese
Remainder Theorem is

0-(0,0) 1-(1,1) 2-(2, 2) 3-(0,3)
4-(l,0) 5-(2,1) 6-(0,2) 7-(l,3)
8-(2,0) 9-(0,1) 10-(1,2) 11-(2,3)

and put in lexicographical order we get the rearrangement: 0,9,6,3,4,1,10, 7,8,5, 2,
11. Thus the Discrete Fourier Transform for 12 points can be written as:

(34)
i ■ i
i •-/
i •-1
i •(

i -1
i •-(
i • -1

i ■ i
i ■ i

i • i
i ■ i

i ■ i

i •-/
i • -i
i ■,

w* ■ 1

1 • 1
1 ■ i
1 • - 1 I
I ■ -

1, andwhere w is the cubic root of unity. Since (1,0) corresponds to four, we have a = 1,
since (0, 1) corresponds to nine we have b = 3.

The decomposition of the 12 point Discrete Fourier Transform leads to an algo-
rithm for its computation. If we define

(35)

M / «4 \

°6 I I «10

M U/
A9

A6

Asl \aJ
then using Algorithm B2 we obtain:

A, =

K
a5

"2

"ll/

A

W»1
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 185

Mo = w2 ' («o + ai + a2>> Mi = (cos y-ljlV2- (a, + a2),

(36) 2tt
M2 = i sin — W2 ' (ax - a2),

A0 =M0, Ax =M0+MX +M2, A2=M0+ Mx M„

where IV2 is the four point discrete Fourier Transform with i replaced by -i (since b = 3).
Therefore, we can use the Algorithm B3 to compute MQ, Mx, and M2. In computingMx,
for example, we have to modify Algorithm B3 by first replacing í by -/ and second multi-
plying the constants in the multiplication steps by (cos 2tt/3 - 1). These modifications
are done initially when we derive the algorithm and, therefore, are not counted in analyz-
ing the computation complexity of the algorithm. In the end of this section we will show
how one can avoid the first modification.

It should be clear that the way we derived the algorithm for computing the 12
points Discrete Fourier Transform is quite general. If n = nx - n2 (where w1(n2 are
relatively prime) and we have algorithms for computing the Discrete Fourier Transform
of/jj points using a x additions and m x multiplications, (including multiplication by 1)
and of n2 points using a2 additions and m2 multiplications, we can combine them to ob-
tain an algorithm for computing the n points Discrete Fourier Transform using m x • m2
multiplications and n2 ax +mx a2 additions. Since we would have decomposed the
n points discrete Fourier Transform using n = n2 • nx as well, we could have derived an
algorithm using mx • m2 multiplications and nx • a2 + m2 • ax additions. In general,
these two algorithms will differ in their number of additions. In Table 3 we summarize
the number of multiplications and additions used in algorithms derived this way for var-
ious values of n. For the sake of comparison with FFT we also tabulate 2« log2 n and
3« log2 n (the formulas for the number of real multiplications and real additions, respec-
tively, in FFT).

Mult.
Complex Data

#Add.
Complex Data 2n log2« 3« log2H

30
48
60

120
168
240
420
504
840

1008
2520

72
108
144
288
432
648

1296
1584
2592
3564
9504

384
636
888

2076
3492
5016

11352
14642
24804
34920

100188

295
537
709

1658
2484
3796
7320
9050

16320
20115
56949

442
805

1064
2487
3726
5693

10980
13574
24480
30172
85423

Table 3

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

186 S. WINOGRAD

As we saw before, one of the modifications needed to compute the Discrete Fourier
Transform of nx • n2 points is to replace wx by w°x and w2 by w2. One way of avoiding
this modification is to use different permutations on the rows and columns of the matrix,
that is, different permutations of the input and output data.

Let b0, bx,... ,bn_x be the reordering of the input dataa0, ax,... ,an_j;and
letß0, Bx,... ,Bn_x be the reordering of the output data AQ,AX,... ,AnX. Choose
rx,r2,sx, s2 suchthat

(37) rx ' sx • nx = 1 mod n2, r2 • s2 • n2 = 1 mod nx.

If we choose */j„2+/2 = arxjxnx+r2j2n2 mod« an<l Bkin2+k2 =As1kxnx+s2k2n2 modn»

then the resulting entry of (kxn2 + k2, j'xn2 + j2) of the Discrete Fourier Transform
matrix is (remember that w" = 1):

w _ M.(*l*l"l+i2fc2"2)<'V'l"l+''2>'2"2>
W(kx,k2)(jx,j2) ~w

- w(ílrlnl)kl/l"l + (í2r2"2)k2'2n2

(38) = {y"2^s2r2"2^k2Í2 . (w" l)(rl*lB l>Vl

= w^2r2n2^k2Í2 . w('Vl"l>*l'l

= w**'2 • wji'i (w"i = l,w22 = l).

Therefore, this matrix is the direct product of the matrix for nx point Discrete
Fourier Transform and n2 point Discrete Fourier Transform.

One easy way of getting r., r2, sx and s2 is to choose rx = r2 = 1 and sx, s2
according to the Chinese Remainder Theorem.

We will end this section with the remark that the algorithms developed here can
be used in conjunction with FFT. The identity behind FFT states that computing
the Discrete Fourier Transform of nx • n2 points (nv n2 are not necessarily relatively
prime) can be done by first performing the Discrete Fourier Transform of nx points
n2 times, then one performs («j - 1)«2 complex multiplications, and then one per-
forms nx times the Discrete Fourier Transform of n2 points. It is, of course, possible
to use the algorithms developed here in the first and third stages of the FFT identity.

V. Multidimensional Fourier Transform. For the sake of concreteness we will
consider only two dimensional Fourier Transform, even though it should be clear that
the results apply to all dimensions. The nx x n2 points Discrete Fourier Transform is

«j-i «2—i
(39) ¿ ,= Z Z wfw*Ta, ,. 0<k<nx-l,0<k' <n2-l.

/=° / =o

It is apparent from (39) that the matrix for the Discrete Fourier Transform of
«j x n2 points is the direct product of the matrix of nx points by the matrix for
n2 points, and consequently the methods of the end of the last section are immediately

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 187

applicable to multidimensional Discrete Fourier Transform. This can be stated even
more strongly by noting that underlying the method for one dimensional Discrete
Fourier Transform is the transformation to multidimensional transform.

The main results in this section consist of illustrating how the full strength of
the investigation of a product of polynomials modulo a polynomial, and their depend-
ence on the field of scalars, can be utilized. The discussion in the preceding paragraph
indicates that the techniques to be described are applicable in the one dimensional
case as well, but their exposition is simpler in the multidimensional case.

As was mentioned in Section II, the minimum number of multiplications needed
to compute T is 2n - k where n is the degree of P and k is the number of distinct
irreducible factors of P. By choosing a larger field of constants we can increase k
and thus decrease the number of multiplications. For example, T 4 requires five
multiplications over the field Q of rationals, but only four over the field (&i). Sim-
ilarly, Tu6 requires eight multiplications over Q, but only six over Qie2n'/3). Re-
calling that T 4 is the cyclic convolution of four points and T 6 is the cyclic
convolution of six points, we see that if somehow we could take advantage of the
larger fields we could reduce the complexity of cyclic convolutions and, therefore, of
the Discrete Fourier Transform.

One way of utilizing algorithms over fields which are algebraic extensions of the
rationals is to use them in the situation that the Discrete Fourier Transform is to be
performed on more than one set of data. For the sake of concreteness assume that we
have two independent sets of data: {a^, a^2\ ... , ajylj} and {a£2), o[2\ ■■■ ,a^lx}-
We can "group" them together as {a0, ax, ... , an_x] where a¡ = (aP\ a^). Assume
that the field of constants we want to use is Qil), where I2 = - 1, i.e., the field of
Gaussian rationals.

We can transform the vectors a;. into an algebra over QQ) by defining:

1. (a}», «p>) + (akx\ 42>) = (*/'> + 41), a}2> + 42>),

I.<a)x\af) = i-a)2\ *<»>),

(40) (a/(1),f>x41),42)) = (^(I).¿(2)),

&<»> = a(»)aO) - fl(2)fl(2) = a(l)(ß(l) + a(2)) _ (a(l) + f)tf»,

b(2) = ay)a(2) + a(2)a(l) = a(l){a(l) + fl(2)) _ (a(l) _ a(2))a(l)

That is, we view the vector a¡ as standing for oí1* + / • aj2) where I2 = - 1. This is
of course possible whenever the number of independent sets of data is the same as the
dimension of the extension field. We see that in this setting, multiplication by / is not
counted (it amounts to interchanging the components of the vector and changing one
of the signs), while multiplication of two elements of the algebra amounts to three
multiplications of the components plus a certain number of additions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

188 S. WINOGRAD

The pairs of data could have been transformed into an algebra of Qi<¡>) where
02 + 0 + 1 = 0, if instead of (40) we would have defined:

(a\x\ «f >) + (akx\ 4a>) = (a)» + a[x\ «/« + <#>),

4>-(a)x\af) = (-a)2\a^-af),

(41) (ajx\aW)-(aix\akV) = (b(x\bW),

b<x> = (aj1) + a}2^1) - aj2*^1 > - a£2>),

¿(2> = (a;i)a(2)+a}2)(a[1)-a^).

That is if we view the vector a- as standing for ai1^ + 0a^2\ where 02 = - 0 - 1.
Having computed the Discrete Fourier Transform of the pair gives us the two

desired Discrete Fourier Transforms.
As an example, consider performing the three dimensional Discrete Fourier

Transform on 120 x 120 x 120 data points, which are assumed to be complex. Using
the method described in the beginning of this section would require 5,971,968 real
multiplications and 97,203,456 real additions for each set of data. (For the sake of
comparison with FFT, note that 2 x 1203 x log21203 = 71,610,641 and 3 x 1203 x
log21203 = 107,415,962.) Since 120 = 8 x 3 x 5, we could have reduced the num-
ber of multiplications if we could have done the four point cyclic convolution (which
appears in the five point Fourier Transform) in four multiplications instead of five.
Since Q(l) splits m4 - 1, we choose to view the pair of input data as an algebra over
Q(I). In Appendix C we give an algorithm for the five point Fourier Transform over
Q(I). Using this algorithm, we can perform the 120 x 120 x 120 Fourier Transform
in 2 x 5,184,000 real multiplications and 2 x 96,840,800 real additions. But since
this yields the results of performing the Fourier Transform on two sets of data, we
obtained 13% savings of the number of multiplications (and a slight reduction of the
number of additions).

It should be clear that this construction is general. For example, computing the
Discrete Fourier Transform of 252 x 252 points may be advantageously done over
ß(0); and the Fourier Transform of 140 x 140 x 140 may be sped up by doing it
over Q(I, 0).

Another, more subtle, way of utilizing the fact that T may require fewer multi-
plications when the field of constants is enlarged, is based on the construction in the
beginning of [1].

The Chinese Remainder Theorem states that when Px and P2 are relatively prime,
the system Tp p can be transformed, by appropriate change of variables, to the

direct sum of Tp and Tp . We will illustrate this by considering the four point cyclic
convolution, i.e., T 4 . Since u4 - 1 = (u2 - l)(u2 + 1), we obtain:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 189

X, X- X, X

%2 "^3 ^"4 ^l

X* Xj, X. X

(42)

/ 1 0 0 1
0 110

10-0-1
0 1-1 0

xl + X3 x2 + XA

2 2

X2 + JC4 JCj + x3

2 2

0 0

\/*-

X2 *4 Xl X3
2 2

Xi~X3 X2~X4

■V3

y 2 +y*

y\ ~y3

y2~y

This transformation can be carried directly into the appropriate Discrete Fourier Trans-
form. Thus, the decomposition (42) translates into the following decomposition of
the five point Discrete Fourier Transform

JA0\ ^10 0 0 0
110 0 1Al

A, 10 110

110 0-1

\ 1 0 1 —1 0 /

/ 1 0 0

0 cos u - 1 cos 2u - 1

0 cos 2u - 1 cos u - 1

0 0 0

0 0 0

0 \ la0 + ax+a2+a3 + a\

i sin 2u -i sin u

i sin u i sin 2u,

"l +fl4

fl2+a3

If we consider the two dimensional Fourier Transform of 5 x 5 points it can be de-
composed as

iT„®T- 0?,)®(?„®f2 ©?,)v " u2-l ul+\' v " u¿-l u2+l

= fu®2'T2 ®2-T2^®(T2 ,®r2xi)« U¿-\ U¿+1 K u -1 u¿+l/

e 2 • (T 2v u2-l)®(T *+l*

In [1] we showed how to compute f 2 ® f 2 using six multiplications, and
therefore the total number of multiplications needed to perform the 5 x 5 two dim-
ensional Fourier Transform isl +4 + 6 + 4+12 + 6 = 33 (instead of 36). Using
this construction to obtain an algorithm for the 5 x 5 x 5 Fourier Transform, and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

190 S. WINOGRAD

then incorporating it in computing the 120 x 120 x 120 points Fourier Transform we
obtain an algorithm which uses 90,706,176 real additions and 4,810,752 real multipli-
cations. (That is, 6.7% of the number of multiplications and 84% of the number of
additions of FFT.)

It should be emphasized that the savings of the last construction occur at the
expense of the length of the program. This construction calls for writing an algorithm
to compute the 5 x 5 x 5 Discrete Fourier Transform.

Acknowledgment. The author wishes to thank Dr. Ramesh C. Agarwal of IBM
Research for helping in simplifying the algorithm for DFT of nine points.

Appendix A

Al. /X1 X2

Algorithm:

sl = yl+y2

Vx2

S3 " V m2

A2. !*!■

1*3 1 1*3 \'3

Algorithm:

sl " yl+ y2 32 - yl-y2

35 " y3+ sl

y2- y3

xl+x2+x3 2x1-x,-x,

s6

S9

x +x--2x.

m2+m3

ml+ S6

Xj-2x_+x

510 " ml+ S7

*2 ■ S10

s8 - m2+ m4

11

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 191

/ *!,

'41
X3 X4 \ X2

Algorithm:

51 = V y3 S3 = y4+y2 y4-y2

S2+S4

xl"x2+x3~x4

512 " S8+S10

Sll = m4+m5

'12 14 J13 '15

A4. I *1 Xl X2 X3 X4 X5 '

Sl = yl+y4 s2 = y2+y3 s3 " Sl+S2 s4 = Sl"s2 s5 = s3+y5

S6 " yl-y5 s7 = yl"y2 s8 " y2"y5 s9 = yl_y3 S10 = *2-y4

X.+X-+X +x +x

mo-i-
Xj+x2+x,+x -4x_

• °6

2x,-3x_+2x,-3x„+2x,12 3 4 5 -4x. +x_+x,+x „+X,.12 3 4 5S7 m3-5- • S8

2x.+2x -3x,-3x„+2xc12 3 4 5 -x1-x2-x3+2x4-x5
S9 m5-5- • S4

2x,+2x„+2x -3x -3x,,12 3 4 5 Xr4X2+X3+X4+X5
10 7 11

-3x,+2x_+2x,-3x„+2xr12 3 4 5

12

x1+x2-4x3+x4+x5
m9 - 5 * 813

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

192 S. WINOGRAD

"14 "4'"'5 "15 "'5 "'6 "16 ™0™1 17 16 2

826 " S25~m8

S31 ■ S30_m9

S20 ■ ■l9-*3

S25 " VS15

Tl

A5.

'18

U

"21 24

l>\ Í:
4 "27

i y, \

y4

O O i. ¿ J H 1 D I

\ x6 xx x2 x3 x4 x5 / \ y6 /

*5 = S31

Sl ■ yi+y4 s2 =yry4 ä3 " y2+y5 y5"y2

S5 ■ y3+y6

S2+S4

sa = y^-y,3 J6

10

'7

511

Sl+S3
s7+s5

S12 ■ S3-S5

2x1-x2-x3+2x4-x5-x6
11

X, x_-2x,+x.+xc-2x,12 3 4 5 6 "12
x.-2x_+x,+x -2X.+X,1 2 3 4 5 6 '13

X,-X_+X--X.+X_-X,12 3 4 5 6 "10
2x,+x_-x,-2x.-x.+x.1 2 3 4 5 6

14

-7r
x,-x,-2x,-x,+x_+2x,12 3 4 5 6

15

x,+2x.,+x,-x -2x-x-1 ¿34 56 "16

S17 = Vm2 S18 = S17+m3 S19 = Bl-"3 520 = S19+m4

S21 = mrm2 S22 = S2l"m4 S23 = m5+m6 S24 = S23+m7

*1 = S29 *2 = S31 *3 = S33 *4 " S30 32

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Bl.

ON COMPUTING THE DISCRETE FOURIER TRANSFORM

Appendix B

o ow w

0 0w -w

.1

Ia!

2ïïi
2w = e = -1

193

Algorithm:

51 " Va!

"o = 1-si "l ■ 1-S2

A0 = mo

B2.

\ A2/

/ 0 0 0' w w w

0 12www

\ 0 2 1 /I w w w /

'-.'

"2 I

2*i

Algorithm:

81 = Va2 s2 " ara2 S3 = Sl+a0

"0 = 1>S3 m = (cos u-1)-s 2tt

4 0 1 S5 " S4+m2

A„ = m.0 0 Al = S5 A2 = S6

B3. K

\s

I 0 0 0 0 \I w w w w |

0 1 0 1w w -w -w

0 0 0 0w -w w -w

\

. . . 1\ w -w -w w I \ a /

2ni
4

s5 = s1+s3

ml " 1-s5 m2 = l's, m3 = l"s2 m4 = i s*-n u's4 u ~ z
2n

A0 = Bj_ A2 = m2 A3 " S8

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

194 S. WINOGRAD

B4. / 0 0 0 0 0 \l w w w w w

0 12 3 4w w w w w

0 2 4 13w w w w w

0 3 14 2
w w w w w

0 4 3 2 1 /1 w w w w w I

^

1

2

3

\34

2m
5

Algorithm:

Sl = Va4

s„ s1+s3

l-s„

°3 ~3"2

s7 = s2+s4 S8 = S5+a0

ml = (
cos u+cos 2u \ /cos u-cos 2u\

g-s m- = (-2->*'s6 u 5

m = i (sin u+sin 2u)-s iru = i sin2u-s7 m5 ■ i (sin u-sin2u) • B^

S14 ' S10+S12 S15 = S10"S12 "16 "n°i3

17 "11 13

Ao =mo

B5.

A, = S 14 A2 " S16 A3 = S17

Algorithm

ooooooo\wwwwwwwl

0 12 3 4 5 6'
w w w w w w w

0 2 4 6 13 5
w w w w w w w

0 3 6 2 5 14
w w w w w w w

0 4 15 2 6 3
w w w w w w w

0 5 3 16 4 2
w w w w w w w

1 0 6 51 w w w w4 w3 w2 w1

A4 ■ S15

h\
2*i

7

Sl " al+a6 -1 "6

S5 " a2_a5
37 * Sl+S3

S9 = Va0
Sll = S3"S5

S13 * VS4

1- s„ /cos u+cos2u+cos3u \
ni " '-3-^' se

^cos u-cos2u-cos3u \m2 = J,---; •

/cos u+cos2u-2cos3u \m = (-5-; •

2TTÍ

/cos u-2cos2u+cos3u \"3 = (-3-'* '11

'12 ./sinu+sin2u-sin3um5 = ^-5- "14

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 195

i(2sinu-sin2u+si n3u V
15

./si
n? = i(—

inu-2sin2u-sin3u ^ "16

/sinu+sin2u+2sin3u '17

S18 = Vmi ä19 = S18+m2 520 = S19+m3

S24 " S23+m4 S25 = m5+m6

526 " S25+m7

S33 = S22+S28

Ao = mo "31 A2 = S33 A3 = S36

35 '34 A6 = S32

B6. 00000000wwwwwwww

01234567wwwwwwww

02460246wwwwwwww

03614725wwwwwwww

04040404wwwwwwww

05274163wwwwwwww

06420642wwwwwwww

07654321wwwwwwww

2ni
8

Algorithm.

Sl = a0+a4 S2 = a0_a4 S3 = a2+a6

S5 = al+a5 S6 = ara5

S9 = Sl+S3 S10 = SrS3 Sll = S5+S7 S12 = S5'S7

S13 = S9+Sll S14 = VS11 S15 = S6+S8 S16 = VS8

ml ' 1<s13 m2 = 1-s14 m3 = 1,810 ra4 = i Sin 2U*S12 2«

m • l's- m, = i,sin2u"s. m- = i sin u-s,c m„ = cos u-s,_5 2 6 4 7 15 8 16

= 20 - "'5 u,8

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

196 S. WINOGRAD

A0 " ml Al = S23 A2 ■ S17 26

A4 ■ m2 A5 = S25 A6 " S18 A7 = s24

B7.

012345678wwwwwwwww

024681357wwwwwwwww

036036036wwwwwwwww

048372615wwwwwwwww

051627384wwwwwwwww

063063063wwwwwwwww

075318642wwwwwwwww

087654321wwwwwwwww

Algorithm:

33 = a7+a2

°10 "9 7 312 Bir"a0

"17 "7 "1

m0 * 1<s12

m = (cos3u-l)'S-

t-f)•«10

il. = isin3u'S-4 6

m_ = i sin3u-s u = —2 14 9
,2cosu-cos2u-cos4u,»5 = (-).si5

,cosu+cos2u-2cos4u,"6 * (-3-,,S16 ,cosu-2cos2u+cos4u,m7 = (-)-s17

. ,2sinu+sin2u-sin4u,"8 " 1(-3-''»IB \ . ,sinu-sin2u-2sin4u,m9 ■ 1(-3-)-S19

. ,sinu+2sin2u+sin4u,
■l0 = 1(-3-'-S20

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 197

A0 = m0 Al = S40 A2 = S43 A3 = S24 A4 " S43

A5 = s45 A6 = S23 A7 = S42 A8 = S41

B8.
is . 2rt

A, = y wkj a. k=0,l.15 w = e 16

Algorithm.

318 " SrS3 S19 = S5+S7

S25 * S17+S19 S26 " S17"S19 S27 S21+S23

S29 = S25+S27

S35 = S10+S16

S37 = S12+S14 S38 = S12_S14 S39=S35+S37 S40 = S36+S38

ml = 1,S29 m2 " 1,S30 m3 = 1,S26 m4 " i si^^2e « ' Jg

m5 = 1,s18 m6 = i sin4u's20 m7 = i sin2u-s31 m8 = cos2u-s32

m9 = 1# 2 m10 = i sin4u- 4 »n = i sin2u- 33 m12 = cos2u-s34

m13 = i sin3u-s39 m14 ■ i(sinu-sin3u)-s35 m15 = i(sinu + sin3u)«s

m16 = cos3u's4o mi7 " <cosu + cos3u)-s36 m18 = (cos3u - cosu)-s^

s41 = m3+ m4 s42 = m3 - m4 s43 = m5 ♦ m? „^ = m5 - m?

S45 = m6 + m8 S46 = m6 - m8 S47 " S43 + S45 848 = S43- S45

S49 = S44 + S46 S50 = S44 " S46 S51 = m9 + m12 852 = m9 ' mi2

S54 = "lu" mil S55 ■ mi3+ mi4 S56 " mi3 " B15

S58 = m18" mi6 S59 = S51+ S55 S60 = 851 " S55

S61 * S52+ S56 S62 " S52~ S56 S63 " S53+ S57 S64 " S53 " S57

S67 = S59+ S63 S68 " S59" S63

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

198 S. WINOGRAD

S69 " S60+ S64 70 60 64 871 ■ S61+ S65

S73 ' S62+ s66 S74 " S62~ 866

A0 = Bl 67 A2 " 847 A3 C S72 A4 " S41 A5 " 871

A6 = S48 A7 = S68 A8 = Bl2 "69 A10 " 849 ^11 °74

A12 " S42 A13 " S73 A14 S50 A15 " S70

Cl. K\

l*4/
x4 x!

Appendix C

Algorithm:

si ■ yi+ y3 s2 ■ yr y3 53 = V y2

6 3 3
s8 = s2- I-s4

Xl+X2+X3+X4 XrVX3'X4m2-4-S6

(Xj^-Xj)* I(x2-x4) (x3"X3) - I(x2-x4)

s = m + m9 1 2 Sll = V m3

513 = V Sll "14 9 11 315 = S10+ I<S12 S16 = S10' I"S12

+1 = S13 *2 = S15 r3 "14 U "16

C2.
»\

0 0 0 0 \w w w w '

2 4w w

14 2« w w

0 4 3 2 1 /w w w W W I

al

a2

a3

a4

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON COMPUTING THE DISCRETE FOURIER TRANSFORM 199

Algorithm:

*1 = al+ a4 53 = 33+ a2

ä5 = Sl+ S3 »7 » V I>S4 88 = V I-S4

S9 = V S5

»0 = 1-S9 ,cosu + cos2u ,, 2ti
ml " (-2-X) * S5 U " 5~

cosu - cos2u i(sinu + I sin2u)"3-2-S7

i(sinu - I sin2u)

5io = V mi Sll = S10+ m2 313 = V m3

16 11 13 S17 " S12+ I-S14

318 = S12" I-S14

A0 = m0 Al = S15 A2 = S17 A3 = S18 A4 " S16

Mathematical Science Department
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

1. S. WINOGRAD, "Some bilinear forms whose multiplicative complexity depends on the
field of constants," to be published in Mathematical Systems Theory, Vol. 10.

2. J. W. COOLEY & J. W. TUKEY, "An algorithm for the machine calculation of complex
Fourier series," Math. Comp., v. 19, 1965, pp. 297-301.

3. C. M. FIDUCCIA & Y. ZALCSTEIN, Algebras Having Linear Multiplicative Complexities,
Technical Report 46, Dept. of Computer Science, State University of New York, Stony Brook,
August 1975.

4. A. L. TOOM, "The complexity of a scheme of functional elements simulating the multi-
plication of integers," Dokl Akad. Nauk SSSR, v. 150, 1963, pp. 496-498 = Soviet Math. Dokl,
V. 4, 1963, pp. 714-716.

5. C. M. RADER, "Discrete Fourier transforms when the number of data samples is prime,"
Proc. IEEE, v. 5, no. 6, June 1968, pp. 1107-1108.

6. I. J. GOOD, "The interaction of algorithm and practical Fourier series," /. Roy. Statist.
Soc. Ser. B, v. 20, 1958, pp. 361-372; Addendum, v. 22, 1960, pp. 372-375.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

