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On Computing the Discriminant of
an Algebraic Number Field

By Theresa P. Vaughan

Abstract. Let/(x) be a monic irreducible polynomial in Z[x], and r a root of f(x) in C. Let K
be the field Q(r) and St the ring of integers in K. Then for some k e Z, discr = k2 disc Si. In
this paper we give constructive methods for (a) deciding if a prime p divides k, and (b) úp \ k,
finding a polynomial g(x) e Z[x] so that g(x) * 0 (mod p) but g(r)/p e Ä.

1. Introduction. Let/(jc) be a monic irreducible polynomial with integral coeffi-
cients, and r a root of f(x) in C. Let K be the field Q(r) and ¿% the ring of algebraic
integers in K. It is well-known that

7V(/'(r)) = discr = odisea?
for some integer k. While N(f'(r)) can be found by straightforward (if tedious)
computation, the value of k is quite another story. According to [2, p. 77] for
example, to determine k, one would have to test a finite number (which may be very
large) of elements of K to see if they are integral.

In this paper, we reduce some of the difficulties involved in finding k to more
manageable size; our methods do not require a search process. Consider the
following problems:

(I) Given a prime p with p21 disc r, how can one tell whether or not p \ /c?
(II) Suppose p | k. Then, it is known there exists an element ß G K, ß = g(r) for

g(x) g Z[x] and g(x) * 0 (mod p) such that ß/p G ai. Construct such an element
ß-
A reasonable solution to these problems is furnished by Theorems 5.4, 5.7 and 5.9; it
may be summarized as follows:

Suppose that/(x) has degree n, and that/?21discr. Factorf(x) mod p:

f(x) = flf,(xY'       (/,(*) irreducible).i-i
If all the e¡ = 1, then p i k. If any e, > 1, then let C be the companion matrix of
f(x) and compute f(C) (mod p2). This matrix represents a homogeneous system of
linear equations mod p2; if this system has a nontrivial solution mod p2, then p | k
and Theorem 5.9 enables the construction of a ß as in (II) above. If for each e, > 1,
the system of equations has no nontrivial solution, then p + k. The actual labor
involved, amounts to the computation and row-reduction (mod p2) of no more than
r n X n matrices.
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570 THERESA P. VAUGHAN

In Section 2, we give the notation we need from number theory. In Section 3, we
give our matrix-theoretic notation, and define one of our basic tools: an Abelian
group, associated with an « X « integral matrix A :

R(A)= (jeQ':0<pJ <l,Av& Z")

whose operation is addition modulo 1 on the coordinates of vectors.
In Section 4, we consider the companion matrix C of f(x) as a linear transforma-

tion of Z"p (p prime); we then find that the /^-component of a group R(g(C)) for
g(x) g Z[x], has a particularly nice sort of basis, which then determines (among
other things) the arrangement of powers of p on the diagonal of the Smith form for
g(C).

In Section 5, we use the machinery developed in Section 4 to answer (I) and (II)
above; in Section 6 we give some results which are helpful in computations, and two
examples.

Finally, in Section 7, we list some unanswered questions and conjectures.

2. Notation (number-theoretic). Let f(x) g Z[x] be monic and irreducible of
degree n:

f(x) = xn- a„_xx"-1 - an_2x"-2 --axx - a0       (a, g Z)

and let r be a root of f(x) in C. Let K be the field Q(r) and £ft the ring of algebraic
integers in K. Let a1,a2,...,an be the embeddings of K in C. If a g K, then the
norm and trace of a are defined by jV(cx) = n,"=1 a ¡(a); Tr(a) = £"=1 a,(a).

If {«!, a2,...,a„) c« and if ^ = {E(n_in,a,,\n¡ g Z} then [ax, a2,.. .,an) is
said to be an integral basis for á?. Then the discriminant of 0t is given by the square
of the determinant of (a;(a •));

2
disc^ = |a,(ay)|   G Z.

Since r is a root of/(x), the set {l,r,r2,... .r"-1} is a basis for Amover Q, but not
necessarily an integral basis for !%, that is, it is possible that Z[r] + é% (of course
Z[r] ç á? always).

Define the discriminant of r as
2

discr = ^(r-7'-1)! ;

one has disc r = k2 disc @t for some k G Z; also disc r = J/(f'(j)).
It is well-known that if p + k, then the factorization of the ideal (p) in @t, into

prime ideals, may be determined as follows: Write

(i) /u) = n/,ur '(mod p)
and let P¡ be the ideal (/,(r), p). Then (p) = Y\'=xPf' is the prime factorization of

On the other hand, if p \ k, then there exists ß g á?of the form
n-i

/?=!>/     («,gz),
; = 0
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COMPUTING THE DISCRIMINANT OF AN ALGEBRAIC NUMBER FIELD 571

where not all the n¡ = 0 (mod/?) and (l/p)ß g 01; the factorization (1) does not
yield the prime factorization of ( p ).

As we shall see, however, the factorization (1) may still yield partial information.
Our methods rely heavily on matrix representations, described in the next section.

3. Notation (matrix-theoretic). Let C be the companion matrix iorf(x):
0 0     ••■     0      a0
1 0     •••     0      ax
0     1     •••     0      a-,C

0 1 '«-i
The minimum and characteristic polynomials of C are both equal to f(x), and C

represents the Q-linear map on K " multiplication by r" in the basis {1, r, r2, ...,r"-1}
for K over Q. That is, if a, ß g K and

n -1 « -1

«- 2>/;       ß = ra= E V       (c,.,6,gQ),
i-O i=0

thenC- col(c0,...,c„_1) = col(b0,...,bn_x).
One has Q(r) = Q[C] and Z[r] = Z[C] via the usual correspondence g(r) = g(C).

The eigenvalues of g(C) ave {a,(g(r))}, \g(C)\ = JT(g(r)) and Tr(g(C)) = Tr(g(r)).
Since f(x) is irreducible over Q, any matrix X = g(C) (g(x) g Q[x]) is singular if
and only if it is 0; also if XC = CX then X = g(C) and conversely.

We shall need the Smith form S(X) of an integral matrix X g ZnXn with \X\ # 0.
For each such X, there exist matrices P, Q in ZnXn with \P\ = ±1 and \Q\ = ±1 and
positive integers d¡ with ¿,-1 í/,-+1 for /' = 1,2,...,« - 1 such that

~dx
d-,

PXQ =

0

= S(X).

The d¡ are called the invariant factors of X If /jr- || d¡ (that is, />r' | dt and /j', + 1 + d,-)
for a prime/?, then we put

Sp(X) = diag(p\pr2,...,pr»),

and call this the /7-Smith form of X.
Finally, we shall require the following group associated with X g ZkX„, |A"| =£ 0

(see [1] for a detailed discussion).
R(X) = [v = co\(vx,v2,...,v„) eQ":0< u, < 1 and ATi g Z"}.

The operation is addition modulo 1 on the coordinates of vectors. It is proved in [1]
that R(X) is an Abelian group with invariant factors dx,...,dn; that is, R(X) =
C(dx)® ••• e C(d„). The order of R(X) is \X\. The /7-component of R(X)
(elements whose order is a power of p) for a prime/), is the set of all v g R(X) such
that

Ifä
X.

v = —a   where t > 0 and a g Z".
P'

0 (mod /?), thenp' is the order of v in Ä( A'), and we say that v is ap'-point for
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572 THERESA P. VAUGHAN

4. Preliminary Results. This section is mostly concerned with the properties of the
/^-component Rp(X) of the group R(X), for X = g(C) g Z[C] (where p is a prime
dividing \X[). From now on, unless otherwise indicated, all polynomials are in Z[x],
all matrices are in Z[C], p is a prime, and we shall freely employ the following abuse
of notation: If ä g Z", we say also â G Zp, meaning the reduced form of ä modulo
p; if â g Q" we say a g R(X), meaning the reduced form of a modulo 1.

Any integral matrix le ZnXn may be regarded as a linear transformation of the
vector space Z'p, and we use the notation ker^ X, lmp X, p-rank, /7-nullity, etc., in this
setting.

Let p be a fixed prime, and g(x) e. Z[x], X = g(C). For convenience, we state the
following well-known facts and observations as a theorem. (For details see, e.g., [3].)

4.1. Theorem, (a) \X\ = 0 (mod p) if and only if X is singular on Zp; (b) \X\ = 0
(mod p) if and only if gcd(f(x), g(x)) =h 1 (mod p); (c) dim^er^ X) = p-nullity of
X = number of invariant factors of X divisible by p; (d) dimilm^ X) = p-rank
X = n — (p-nullity); (e) Every C-invariant subspace W ofZ'p has a cyclic vector v for
C, that is, W has a basis of the form {v,Cv,C2v,.. .,Ck~1v} where k = dim W; (i) If
W is a C-invariant subspace of Zp, then W = kerp k(C), where k(x) G Z[x] and
k(x)h(x) = f(x) (mod p) for some h(x); dim W = degree k(x); the minimum
polynomial for the restriction C\W is k(x); and W = lmph(C); (g) Let f(x) =
l\rj=ifj(xY' (mod/)), where f¡(x) is irreducible over Zp of degree k¡; and put
Wl' = kexpfi(C),.Ife,>l,then

W} c W2 c • • • c Wf' = Wf<'= ■ ■ ■.
If X = g(C), where

gcd(f(x),g(x))=nf(x)\i = i
then ker  X is the direct sum of subspaces:

ker^ x = iv{' e w{2 e • • • e 1*7'.

Proof. Parts (a)-(d) are obvious; parts (e)-(g) follow from the fact that the
minimum and characteristic polynomials of C are equal.   D

4.2. Definition. Let X = g(C) and let V =h {0} be a subset of ker^ X. The
V-component of R ( X) is the set

RV(X) = [v^Rp(X):v = (l//)')ä,äe Z", a * 0 (mod p) and a g v).

Before the main theorem, we need a few lemmas.

4.3. Lemma. Let X = g(C), g(x) g Z[x]. If there is a vector ä & 0, â G ker^, X,
then for some t > 0, (l/p')â G Rp(X). Conversely, if(l/p')a G Rp(X), where a * 0
and t > 0, then à g ker^, X.

Proof. Xä = 0 (mod p) if and only if Xä = p'b for some t > 0, b g Z"; hence if
and only if X(l/p')a = b G Z", that is, (l/p')â~ g Rp( X).    □

4.4. Lemma. The following are equivalent:

(a)    ker„ Xn Wt* {0} ;       (b)    W, ç kerp X;
(c)    (l/p)W,QRp(X);        (d)   fi(x)\g(x)(modp).
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Proof. Since /,(x) is irreducible mod p, Wl■ = kexpf¡(C) has no proper nontrivial
C-invariant subspaces by Theorem 4.1(f); hence (a) «-» (b). The implications (b) «-» (d)
also follow from Theorem 4.1(f), and (b) «-» (c) from Lemma 4.3.    D

4.5. Lemma. Let A, B, X, Y, Z g Z[C] and suppose that V is a subset of kerp Z. If
RV(Z) ç Rp(X) andRy(Z) ç Rp(Y), then RV(Z) C Rp(AX + BY).

Proof. Let v g Rv(Z). By assumption, both Xv and Yv are in Z" and hence so is
(AX+ BY)U; thenû G Rp(AX + BY).   D

For the next theorem, we use the notation of Theorem 4.1(g).

4.6. Theorem. Let X g Z[C] be such that kerp X = W'' for some i, 1 < i < r. Put
W= W¡,t = t„ k = k¡.

(a) There exist positive integers sx < s2 < • • • < s, such that the p-Smith form of X
has the form:

Sp(X) = diag(l,l,...,l,ps>,...,ps>,...,ps---- ps<).

k k
(b) For each i = 1,2,...,?,

s,_,+i = max{s: (l/ps)ä ^ Rp(X),a ^ W - W~1},

and if V = W - W'\ then Ry(X) contains k independent ps,,+'-points.
(c) Rp(X) does not contain any elements of order higher than ps'.
(d) R w( X) contains k independent ps,-points.

Proof, (a) There exist unimodular integral matrices P, Q (not necessarily in Z[C])
so that PXQ = S(X), the Smith form of X. Then X and S(X) have the same
/^-nullity tk = m, so the/>-Smith form is

Sp(X) = diag(l,l,...,l,pr',pr\...,pr"),

where the r, are positive integers, 0 < rx < r2 < • ■ • ^ rm.
As is shown in [1], a basis for R(X) consists of the columns of the matrix

Q ■ S(X)_1 (reduced modulo 1, of course); hence, a basis for Rp(X) is given by the
last m columns of Q • S^X)'1, namely

(l/p'i)ß,--+i,-.(l/P,-)ß.
(where Q¡ is the ith column of Q). By Lemma 4.3, [Q¡; i = n — m + l,...,n} ç
ker^, X and since Q is unimodular, these vectors are independent in Zp. Thus, this set
is a basis for ker^ X.

Suppose now that Qn g W - WJ~l (1 <7 < i; W^0 = {0}). Then Q„ is a cyclic
vector for H/-/, that is, the set

{C'(Qn):i = 0,...,jk-l}

is a basis for W7, and, in particular, for 0 < /' <jk, C'(Qn) * 0 (mod p). Since
Xe Z[C], and(l/pr«)Qne Rp(X),weha\e

X((l/pr~)C'(Qn)) = aX((l/p^)Q„) G z„,

so that all these vectors are//--points for X.
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Since the set {(l/pr')Q„_„,+,; i — 1,2,...,m} is a basis for Rp(X), we have the
equality (in Q"):

m

(W".)C'(ß„)= T.n„{l/pr-)Qn-m + u + m       («„GZandrñGZ").
« = i

From this
m

C-(Q„)= Hnu(pr--^)Qn_m+u + pr-m.
u=l

We have jk vectors C'(Qn), independent mod p, written as linear combinations
(mod p) of those ß„_m + „ such that rm — ru = 0; hence, the number of these must be
at least jk. Since the rl are in increasing order, we have the lasty'/c ^ k of the r¡ = rm.

The same argument now shows that if any of Q„-jk + i,---,Q„ were in some
W" — W"'1, then we would have the last uk of the r¡ = rm. Thus, suppose that all of
Qn-jk+i'- ■ >Qn are m WJ. We ha\ejk independent vectors in a space of dimension
jk, so they are a basis for WJ. It follows from the independence of the set [QA that
none of ß„_m+1,.. ■ ,ß„-,* are m W7 (we are assuming now that j < t; of course, if
j = i, we are done).

Suppose that Q„_jk g W« - W'\ a > j. Put r = rm_jk. The set {C(ß„_,*):
« = 0,1,...,(a — y)/c - 1} is an independent set in W - Wj, and as before, we
have a set of //-points:

(l/pr)C"(Qn_jk) G Rp(X);        u = 0,...,(a - j)k - 1.
Then we can write

m — jk

(l/pr)C(Qn_jk)=   E ns(l/pr>)Qn_m+s
S = l

m

+      E      n,(l/p'-)Qm_m+, + m
s = m —jk + 1

(ns G Z and m G Z"), and from this
m —jk m

(•)  c"(ßn_,,)= E «J(^-r')ßn-m+i+    E    «i(i/^"'-r)ß„-m+J + Jp^-
5 = 1 i = m —jk + 1

The middle term on the right must be integral, since all the other terms are. But the
Qi are columns of a unimodular matrix, so this implies that all coefficients of the
middle term are integral: pr™~r divides ns,s = m - jk + l,...,m.

Next we have (in Z"p)f(C)J(WJ) = {0} while f(C)J(rVa) is a space of dimension
(a - j)k, namely W~j. Applying f(C)J to (*), we have

m— jk

f,(C)J{Cu(Qn_jk))=   E nsp'-'-Qn_m+Amodp),
5=1

since Qs g W' for s > n - jk. Now, as before, we must have at least (a - j)k of the
values r - rs = 0, since the set

{f,(C)J{C"{Qn.Jk)): u = 0,1,...,(- -j)k - l}
is independent mod p. By the ordering of the r¡, the last (a - j)k of the integers
rx,... ,rm_jk are equal to r = rm_Jk. Continuing this process, we eventually arrive at
(a), as required.
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(b) Let jx,... ,js be the indices i so that s¡ ¥= s¡+x (1 < s < t); js = t. Then the
/?-Smith form is divided into 5 segments of like powers of p, where the /th segment
has length k(j¡ — j,_x). Group the last m columns of Q correspondingly, into 5 sets
Ax,... ,AS; e.g., As consists of the last k(js —js_x) columns of Q. It is seen in the
proof of (a) that s, < si+x is only possible in case Ai+lU ■ ■ ■ U As is a basis for Wj
where /' = js — j¡. Thus, As is a basis for Wj<, As_x is an independent set of
cardinality k(js_x) in W" - Wh, where a =js_x + js and b = js; and so on.

If v g W" - W~l for some a, then there exists some / so that v is in the span of
AjU • • • U As, but not of Aj+X U • ■ • u As. The span oí A¡U ■ ■ ■ U As contains
Wh - Wh~\ where b=j,+  ■■■ + js. Then

f(c)b'a(wh- Wh~l)= Wa - w"-1.

As in the proof of (a), since RWA X) has a basis of elements all of whose orders are
>ps>, then so does RW«(X). Put V = W - W~l; then RV(X) must contain k
independent p '--points.

We must now show that RV(X) contains no elements of higher order. Let pr¡
denote the power of p corresponding to column Qt of Q. Suppose that 5 > s¡, that
(l/ps)v g Ä/7(Ar)andt;isinthespanof^1. u • • • U ^l^ut not of Ai+X U • • • U As.
We can write

(l/p')v = E n,(l/p«)Qt +  E w,(l//»")ßi + ™
ri *^si ri> si

(m„ n, g Z and w g Z"). Then
v= I1ni(ps-r')Qi+  Zrni{l/pr'-s)Qi + psm.

r, < 5; rf > 5,

As before, we must have pr,~s dividing each m¡. But s > s¡ implies ps~r¡ > p for all
r¡ < s¡; thus mod p, we have y in the span of those Q¡ with corresponding ri ^ s, that
is, in the span of Ai+l U • ■ • U ^4,, a contradiction.

Statements (c) and (d) follow from the fact that W is always in the span of As.
This completes the proof.
The next two results indicate how a knowledge of the group R( X) may be helpful

in factorization questions.

4.7. Theorem. Let A, B g Z„x„ be nonsingular. Then Rp(A) ç Rp(B) if and only
if there is some integer k such that (k, p) = 1 and an integral matrix Y so that
kB = YA.

Proof. R(A) is generated by the columns oí A1 reduced modulo 1. We can write
A~l = (l/dn)D where dn is the largest invariant factor of A and D is integral.
Suppose pr || dn. Then Rp(A) is generated by the columns of (l/pr)D, reduced
modulo 1. Put dn = kpr. Clearly, Rp(A) ç Rp(B) if and only if B((l/pr)D) = Y is
integral, and the result follows.   D

4.8. Theorem. Let f¡(x) be an irreducible factor of f(x) mod p, of degree ki = k,
with f(x)e' || f(x). Put A = f(C) and W = kerp(,4). Suppose that Rp(A) = RW(A)
does not contain any p2-points. Then,

(a)Rp(A) = (l/p)Wand\A\ = pka with (a, p) = 1.
(b)Rp(A') = (l/p)Wfort = 1,2,... ,e.
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(c) If B = h(C) * 0 (mod p) and if W ç ker^ B, then there exist integers a with
(a, p) = 1 and t > 0, andan integral polynomial k(x) such that

WC\kexpk(C)= {0}    and   aB = A'k(C).

(d) In (c), if B has a p2-point for W, then t > et■ + 1.

Proof, (a) By Lemma 4.4, (l/p)W ç Ä (.,4); by assumption, A has no /?2-points
for W, hence (l/p)W = RW(A) = Ä,^). Then, by Theorem 4.6, the/>-Smith form
of A has dim W = k entries on its diagonal equal to p, and the rest equal 1. Then
|^41 = pka for some integer a with (a, p) = 1.

(b) By Theorem 4.1(f) the dimension of ker A' for 1 < t < e¡ is tk (the degree of
fi(x)'); so ifc is the /^-nullity of A'. But |/1'| = pk'a' and so the /»-Smith form of A'
must have tk entries equal p and the rest equal 1. Then, A' has no />2-points, and (b)
follows as in (a).

(c) This follows from a finite number of applications of Theorem 4.7, since
whenever W Q kerp B, then by (a), Rp(A) ç Rp(B).

(d) Let B be as in (c) above, and suppose 1 < t < e¡. Put Bx = k(C), and suppose
that there is a/?2-point for B in W, say (l/p2)v, v * 0 (mod p). Since W n ker^fij
= {0}, then Bxv * 0 (mod/;) and since fit = k(C) and If is a C-invariant sub-
space, then Bxv g W. Then, we have

aB(l/p2)v = A'(l/p2)Bxv G Z",

contradicting the fact that for 1 < f < e„ /4' has no/?2-points in W. Thus, í > e, + 1
as required.    D

We conclude this section with

4.9. Theorem. Let A = g(C) g Z[C] with invariant factors dx, d2,... ,d„. Suppose
A ¥= 0, so that A is nonsingular. Then adj A = dxd2 ■ ■ ■ d„_xB, where B = h(C) G
Z[C] and 5*0 (mod p) for every prime p dividing dn.

Proof. Let the characteristic polynomial for^l be a0 + axx +  ■ ■ ■ + x". Then

A'1 = (1/MI) adj ,4 = (-l/a^A"-1 + a„_xA"^2 +  ■■■+ axl).
We have a0 = ( — 1)"\A\, ±\A\ = dxd2 ■ ■ ■ d„, and dn is the smallest positive integer
such that dnA~l is integral. Then

adj/i = ±(A"-1 +  ••■ + aj) = 0 (mod dxd2 ■■■ d„_x).

Now A = g(C), so we can write adj A = k(C) for some k(x) g Z[x]. Since C is a
companion matrix, then for i = 0,1,...,« — 1, the first column of C is
col(0,... ,0,1,0,...,) with the 1 in the (/ + l)st place. Then, the first column of
k(C) consists of the coefficients of k(x), and so all these coefficients are divisible by
dx • ■ ■ d„_x. So k(x) = dx • • • dn_xh(x) for h(x) G Z[x], and we have B = h(C).
Since dn is the smallest positive integer so that dnAl = B'i& integral, then 5*0
(mod p) for any prime/? | d„.

Example. Let n = 3 and p be a fixed prime, X = g(C), g(x) g Z[x]. If 5p(Ar) =
diag(l, 1, p') (i.e., if X has p-rank 2), then g(x) is divisible by a linear factor of f(x)
(mod p). If Sp(X) = diag(l, p', p'), then g(x) is either divisible by two linear
factors of f(x) or by an irreducible quadratic factor of f(x) (mod p). If Sp(X) =
diag(l, p", pv) and 0 < u < v, then g(x) is divisible by two linear factors of f(x)
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(mod p), and not by an irreducible quadratic factor. Of course, if S(X) =
diag(/?", pv, p'), then X = 0 mod p anyway, and g(x) is divisible by f(x) mod p.

In the next section it is shown that much stronger statements can be made from a
knowledge of Sp( X) and Rp(X).

5. Powers. Throughout this section, p is a fixed prime, and
r

(5.1) /(x)=n/,(*r(mod/>);        degf(x) = kii = i
is the factorization of f(x) into prime factors in Zp\x\. We let W' = kerp f(C)';
Wj1 = W¡; all polynomials will be assumed to have coefficients in Z (or Zp,
according to context).

5.2. Definition. If X = g(C) and H^ ç ker^ X), and if

? = max(y: (l/pJ)â g ä^(A'), ä * Omod /?},

then we say that X has power t for W¡. Now put

j] = min{/: t is the power for W¡ for some A' = g(C) where Rp(X) = Ä^(A')}.

Then we say thaty, is the least power for W¡, or for f(x).
Finally, we say that f:(x) is an honest factor (of f(x), mod p) provided the integer

/,(r) (iecall r is a root of f(x) in C) satisfies

(p) = {m,p)eiv
for some ideal V which is relatively prime to (f¡(r), p); that is, the /»-ideal for/,(r)
actually divides (p) to the exact exponent e¡.

We shall see that the least power for W, determines the honesty of f(x); that it is
possible for some/, to be honest and not others; that if all/, are honest, then (5.1)
yields the complete prime factorization for the ideal (p) in ¿ft, and finally, that a
dishonest factor may be used to construct an integer ß G <% so that ß/p g 3% also.

The hypotheses required for the results in this section may appear rather technical
and difficult of application. We remedy this situation in the next section, where it is
seen that the necessary conditions may be decided in a constructive way (which is
simpler than one might expect).

We shall need

5.3. Lemma, (a) Let u, = /,(r) g 9#. Then, the ideals («,., p) and(Uj, p) where i ¥= j,
are relatively prime.

(b) We may always suppose without loss of generality, that /(C) has the least power j
for f(x), hence Sp(f¡(C)) = diag(l,... ,pJ,... ,pj) with determinant pkJ.

Proof, (a) This follows from the fact that, for i ±j, the polynomials/(x) and
fj(x) are relatively prime in Z^x].

(b) Put W = W¡, k = k¡. Suppose g(C) has kexpg(C) = W and powers for W.
Then, we must have g(x) = q(x)f(x) + pr(x), where gcd(q(x),f(x)) = 1 (mod p);
hence, we can write

a(x)q(x) + b(x)f(x) = 1 (mod p),

a(x)g(x) = fi(x) (mod p,f(x)),
a(C)g(C)=f(C)+pk(C),
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for some k(x) G Z[x]. Since gcd(a(x), f(x)) = 1, then

Rp(a(C)g(C)) = Rp(g(C)) = Rp(f(C)+pk(C)).
Then, in the factorization (5.1), we can replace the factor f(x) by the factor
fix) + pk(x). By Theorem 4.6 we get the /»-Smith form.   D

5.4. Theorem. Iff(x) has least power 1, then it is honest.

Proof. Put A = g(C) with Rp(A) = RW(A) = (l/p)Wr Then gcd(/(x), g(x)) =
fi(x) mod p. By Theorem 4.8, \A\ = pk,a where (a, p) = 1. By Theorem 4.9, we have
adj A = pk'-lB, where B = h(C) for some h(x) g Z[x], 5*0 (mod p) and AB =
paln. Since AB = 0 (mod /») thenf(x)/fl(x) divides h(x) (mod p) and since 5*0
(mod p),f(x) + /i(x). Then, by Theorem 4.8, we have some integer b with (b, p) = 1,
and k(x) g Z[jc], so that

bB = Ae--lk(C)   and    irç n ker,/fc(C) = {0}.

Put a = g(r) and ß = k(r); by Lemma 5.3, (a, p) and (ß, /?) are relatively prime.
We have bAB = Ae'k(C) = pabln, and so in 9¿,

ae'ß = pab.

Since (ab, p) = 1, then (a, p)e' \\(p) as required.    D
The next result implies that any nonrepeated factor is honest.

5.5. Theorem. If the least power ji for Wi is > 2, then e, > 2.

Proof. Assume that A =/(C) has the least power y and put W = W^. Write
f(x) = f¡(x)h(x) + r(x), where either r(x) = 0 or 0 < deg r(x) < deg /(x).

If r(x) = 0, then/(x) = f(x) is irreducible mod p; \X\ = 0 (mod /») if and only if
X = 0 mod /? for any A = g(C), and the least powery = 1 trivially.

If r(x) # 0, then since f(x) | f(x) mod p, we can write r(x) = p'k(x) where
t > 1 andA:(x) * 0(p). Since deg â:(x) < deg/(x), we have W n ker^/tiC) = {0}
by Lemma 4.4. Since C is the companion matrix of f(x),

/(C) = 0 =/,(C)/!(C) +/»'/c(C),       /(C)rt(C) = -p'k(C).
There is a/77-point in RW(A), say (l/pJ)ä, and k(C)a * 0 mod /?. But then

-*(c)(i//>>-')a = Mc)/(c)(i/^)â g z"
implies y < í.

Now put g(x) = f(x) + p, and /(x) = g(x)hx(x) + pmkx(x). As above, and
using the minimality of j, we have m ^ /. Then,

fi(x)h(x)+p'k(x)-(fi(x)+p)h1(x)-p'«k1(x) = 0,
/(x)[A(x) - hx(x)} - phx(x) + p'k(x) - pmkx(x) = 0.

Since RW(A) <z Rp(pJI), it follows from Lemma 4.5 that RW(A) ç Rw(phx(C)).
The least power y for W is greater than 1, and all terms other than phx(C) have a
common/»-'-point, so phx(C) must have at least a/»2-point for If (Lemma 4.5). Then
hx(C) must have a/»-point for W, and then W ç ker^ A^C) (Lemma 4.4). From this,
fi(x) | Ax(jc) mod p (Lemma 4.4); of course h(x) = hx(x) mod /», and so/(x) | /z(x)
mod p. Then/(x) is a repeated factor of f(x) mod p, and this completes the proof.
D
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Since any nonrepeated factor is honest, it is not difficult to find examples for f(x)
with some factors honest and some not (see Section 6).

The remainder of this section is devoted to establishing the following:
There exists an integer ß = g(r) G Z[r] with g(x) * 0 (mod p)

(*) and ß/p G 9¿if and only if at least one of the least powers for
the irreducible factors/(x) of f(x) mod /», is greater than 1.

In fact, we shall show that eachf¡(x) with least power > 1, gives rise to such a ß. We
begin with a necessary condition for ß/p g ai.

5.6. Lemma. Let X = g(C) and put y = g(r) g 9t. lfy/p g 9¿, then necessarily
/1W/2W • ' • fr(x) I g(x) (mod /»).

Proof. Suppose y/p is an integer. This is to say that the characteristic polynomial
of (l/p)X has coefficients in Z. Then the characteristic polynomial of X itself must
have the form: ,i   i

\XI-X\=  ¿ZX"-yan_,       (a„=l,a,GZ).
( = 0

Then over Zp, A" is nilpotent. But X = g(C) is nilpotent over Zp if and only if
/i(x) ••• /,-(*) I g(*) mod/?.   D

We now prove half of the statement (*).

5.7. Theorem. If every f(x) (i = 1,2,...,/-) has least power /', = 1, and if ß = g(r)
G Z[r], where ß/p G ât, then g(x) = 0 mod p.

Proof. Assume to the contrary, that X = g(C), g(x) * 0 mod /», and ß = g(r)
satisfies ß/p^9t. We may assume that A¡=f¡(C) has power 1 for W¡. Put
a, = /,(r) and 5, = (o„ /»). Then,

A?A? ... A'/ = pyIn        ((y,p) = l,y^Z),

P? ■■■ PY=(p).
By Lemma 5.6 we have (ignoring factors relatively prime top)

X=A? ••• As;       (i,> 0,/ = 1,...,r).
If all í, > e„ then g(x) = 0 mod /», and if all si < e„ then \X\ < /»"; thus our

assumptions imply some si > e, and some s¡ < e¡. For simplicity, suppose sr < er
and all other s¡ ^ e,. We have

(l/p)X=(l/p)A\Ar^ ...A'/
(y/p)X= (A1? ■■■ Aer')~XA'f-'iA'f ■■■ As; = A{'-e' ■■■ As/~e'.

Now put u = yß/p g 9¿; then we have
ua'/-*' = af'-J' ••• <xs;-{-e'<

contradicting the fact that the ideals (a,, />) are pairwise relatively prime (Lemma
5.3).    D

5.8. Corollary. The conditions of Theorem 5.7 imply
(a)/» t (discr)/(disc^).
(b) The factorization (5.1) yields the prime factorization of the ideal (p); that is, with

P, = (/;(r)> /0> ^ew ''i ù aprime ideal (i = l,...,r) and
r

p=Y\p?.   a/=!
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We now complete the proof of (*) with

5.9. Theorem. Suppose f¡(x) has least power j > 2 and that A = /(C) has power j
for W¡. Define the integral matrix B by:

ad\ A =pJ(k.-1>B.

Then B = h(C) G Z[C], where h(x) * 0 (mod p) andh(r)/p G 91.

Proof. We have AB - pJ ■ y ■ ln with (y,p)=l; without loss of generality
assume y = 1. By Theorem 4.9, 5 = h(C) g Z[C] and h(x) * 0 (mod /»). Since

j > 2, then e = e, > 2 necessarily; since ^45 = 0 (mod /»), thenf(x)/f(x) | h(x) and
since 5*0 (mod p),fi(x)e \ h(x);fi(x)e~l\\ h(x) (mod /»), and we have

h(x) =f(x)e~lu(x) + pv(x),        (f(x),u(x)) = 1.

Then we can write B = Ae lX + pY, where ije Z[C]. Let the integers in 9¿
corresponding to A, 5, X, Y be denoted by a, ß, x, y. Then by Lemma 5.3, (a, p)
and (x, p) are relatively prime. Suppose that in 9t the prime factorization of ( p) is

(P) = PÏ ■■■ P!:Q[" •■• Qus>,

where the 5, are the primes dividing (a, p) and the <2, are the primes dividing (x, p).
From ß = ae~lx + py and aß = pj it is clear that Qkk divides (x, p), k = 1,... ,s.

Now suppose (a) ç 5"' • • • 5,a' (a, maximal) and consider a^x + pya = pJ. We
have

(aex) ç Pf1 ' • • P"°\        ( Py<*) = ^i^"1 • • • P','+a'-

If e • a, < í, + a¡, then ea, =y'/,, and (j - l)t¡ < a¡. Since y > 1, then t¡ < a,, and
we get P/< |(a). If ea¡ > t¡ + a,, then a, = (y - 1)/, > /,, and again P/' |(a). If
ea, = /, + a,, then (e - l)a, = t¡ and P/' Ka*""1). In all cases we have

P/'|(oe_1)    and     Qf'\{x)

and hence, ae~xx = 0 mod />. Then ß = aclx + py = pz for some z in ^"; ß//j g 9¿
as required.    D

5.10. Corollary. The conditions of Theorem 5.9 imply that p | (disc r)/(disc 9¿).

6. Computational Methods and Examples. Given the factorization

f(x)=t\f(xY'(mod p),
¡ = i

we wish to know whether a factor/(x) is honest or not. It is if e¡ = 1, but if e, > 1,
the general results of Section 5 do not look very helpful. Using these results,
however, we can prove some things which, while not perhaps of great theoretical
interest, are yet very convenient for computational purposes. We begin with

6.1. Theorem. Letj be the least power for the irreducible factor f¡(x) off(x) mod p.
Suppose also that e¡ > 1. Thenj > 2 if and only if Rp(f-(C)) contains a p2-point.

Proof. We have e¡> 1, and from Theorem 4.8, if kexpA = W precisely, for some
A, and if the least power for If were equal to 1, then A could not have any/»2-points
for W. Hence, if A does have such points, the least power for W must be at least 2.
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On the other hand, if the least power for W is > 2, then every matrix A G Z[C] with
kexpA = W must have />2-points for W; in particular this applies to A = /(C).    D

Procedure. (The procedure described below is not too difficult if n and p axe not
"too large".) (a) Compute /(C), working mod/»2; (b) Still working mod/»2,
row-reduce/(C), usually to at least a row-echelon form; (c) If the corresponding
system of linear equations has a nontrivial solution vector mod p2, then this gives a
/»2-point for/(C), and if there is no solution mod p2, then/(C) has no/»2-points.

One could also deduce this information from the/»-Smith form of/(C), or from
its determinant, but these things require more work than row-reduction as above. We
give some examples below. The next theorems are occasionally helpful.

6.2. Theorem. Let f¡(x) be an irreducible factor off(x), and j =y, the least power
for f¡(x). Thenj > 2 if and only if whenever

f(x) = g(x)h(x) + r(x)    (inZ[x]),

g(x)=f(x)(modp),

r(x) = 0    or   0 ^ degr(x) < degg(x),

we have r(x) = 0 (mod p2).

Proof. See the first part of the proof of Theorem 5.5.   D
Example. Take/» = 3,f(x) = x3 - 19. We can write/(jc) = (x — l)(x2 + x + 1)

- 18; 18 = 0 (mod9) is suspicious and one must investigate further. If /» = 3,
f(x) = x3 - 4, we write/(x) = (x - l)(x2 + x + 1) - 3; since 3*0 (mod 9) this
factorization is honest.

This theorem has a simple corollary which is also useful.

6.3. Corollary. Suppose that for some prime p, we have p2 \a0, p\ ax (where
f(x) = x" - an_xx"~l - ■ ■ ■ - a^x - a0); put fx(x) = x. Then (mod p) the least
power for fx(x) is > 2, and p |(discr/disc ¿i#).    D

6.4. Theorem. With notation as above, y > 2 // and only if there exist matrices X
and Y in Z[C] such that kexp X = kerpY = W,= W but

Rw(X)<tRw(Y)    and   RW(Y) £ *„,(*)•

In fact, j > 2 if and only ifRW(X) contains even one point not in RW(Y) or vice versa.

Proof. Suppose the contrary. Let A = /(C) have the least powery for W, and put
5 = A + pln. Then kexpB = kexpA = W and 5 has power m >y for W. Suppose
R (A) c R (B). By Theorem 4.7, there exist an integer k so that (k, /») = 1 and an
integral matrix Y so that kB A ' = Y = k(In + pAl). But since A has powery for
W, we may write A~l = (l/pja)D where (a, p) = 1 and D is an integral matrix,
D * 0 (mod P). Thus k(In + pA~l) cannot be integral since/ > 2; a contradiction.
Next suppose Rp(B) Q Rp(A). The order of Rp(B) is pkm (k is the degree of/(x))
and the order of Rp(A) is pkj; since m >_/', we must have in this case m = j. Then
the argument above applies, and this completes the proof.   D

The following example, which is fairly simple and could doubtlessly be done in
many ways, serves to illustrate the methods of this paper.
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6.5. Example. Let/(x) = x4 + x3 + 9, with root r. Then/(x) is irreducible since
x4 + x3 + 1 is irreducible over Z2. We have

C =

|/'(C)| =

-36
0
0

-1

-36
0
1

0
-36
-1

= 93 X 11 X 23.

C2 + C =

is X4 + C-.X3 + c2x2 + c,x + c

We have discr = k2 disc^; evidently k must be either a power of 3, or 1. Since
|C| = 32, we know 3 | A: by Theorem 6.1; and by Theorem 5.9 (l/3)adj C represents
an algebraic integer. Here, adj C = - C3 - C2, so (r3 + r2)/3 g 9¿. It is well-known
that 9t has an integral basis of the form {1, gx(x)/dx, g2(x)/d2, g3(r)/d3}, where the
g,(x) are monic polynomials of degree i, in Z[x], and d, \ dj+x. We shall find such a
basis for 9t. We have f(x) = x3(x + 1) (mod 3); by Lemma 5.6, a necessary
condition for (l/3)g(r) g ^is that x(x + 1) divide g(x) (mod 3). Hence, if g(x) =
x + a, then (l/3)g(r) G 9t, and so gx(x) = x, dx = 1. Next, if g(x) = x2 + sx + t
= (x2 + x) + (s - l)x + i, and if j - 1, í * 0 (mod 3), then (l/3)g(r) G 91; thus
for g2(r) we need only consider (r2 + r). The characteristic polynomial of the matrix

0    0-9      0
10      0-9
110        0
0     10        0  .

0, where c4_, is the sum of the principal i X /' minors
(except for sign). We find c¡ = -9, not divisible by 27, so (l/3)(r2 + r) G 91; then
g2(r) = r2 and d2 = 1. We know that c/3 is at least 3; we inquire whether it may be 9
or more. Consider

g(x) = x3 + ux2 + sx + t = (x2 + x)(x + u - 1) +(s - u + l)x + t.

We require s - u + 1 = 0 (mod 3) and t = 0 (mod 3). Since (r3 + r2)/3 g 9¿, then
g(r)/3 g 9t implies (u - l)(r2 + r)/3 g 9¿ and from the preceding case we must
have u — 1 = 0 (mod 3). Supposing g(r)/3 g 91, we may write

g(r) = (r2 + r)(r + 3a) + 3(Z»r + c)        (a, b, c g Z),

r X g(r) = (r4 + r3) + 3a(r3 + r2) + 3(¿>r2 + er),

9 + r X g(r) = 3a(r3 + r2) + 3(¿»r2 + er).

If (l/9)g(r) G 9t, then so is

(*) a(r3 + r2)/3 +(br2 + cr)/3 ^9t.

Since (r3 + r2)/3e^, then from (*) (¿»r2 + cr)/3 g 9¿. But then ¿» = c = 0
(mod 3). Reducing coefficients mod 9, we get

g(r) = (r2 + r)(r + 3a),

where a is one of 0, 1, 2. Then for the norm of g(r), we find |C2 + C| = 81 and
|C + 3a/| = 9(9a4 - 3a3 + 1), so 94 + |g(C)|. Then (l/9)g(r) í 9t, and we have
d3 = 3, g3(r) = (r3 + r2). Finally, we have discá? = 92 X 11 X 23.
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6.6. Example. Take n = 7, p = 5,

f(x) = x1 + 48x6 + 27x5 + 48x4 - 3x3 - 3x + 48

= (x3 + x + l)2(x - 2) + 25(2jc6 + x5 + 2x4 + 2).

Then f(x) is irreducible by Eisenstein's criterion, and the factorization mod 5 is
suspect. We know that in any case, the factor x — 2 (mod 5) is honest, for it is not
repeated. Put g(x) = x3 + x + 1.

In order to use Theorem 6.1, it suffices to work with matrices reduced mod 25 in
order to find 25-points for the originals. Below on the left is A = C3 + C + 77 (C is
the companion matrix of f(x)), and on the right is the reduced row echelon form of
A; both reduced mod25.

"l 0
1 1
0 1
1 0
0 1
0 0

_0 0
Any vector in the solution set of the right-hand matrix yields a 25-point for A, for
instance, we find v = (1/25) col( — 2, —1,1,2,1,0,0) and g(x) is dishonest. For
purposes of comparison, consider A + 5I7; this row-reduces to

!   - 8     -16      1
/4 !    6 4 2

!   -1        4 1
_!__2__    _3_1_0_
r -5      -5~~-5

0 !    0 0 0
!   o      o      o

and this solution set gives a 25-point for A + 5/7, namely

w = (l/25)col(8,2, -5, -1, -1,1,0).

It suffices to use the (mod 25) versions to find that Aw g (1/5)Z7 and not in Z7.
From the original factorization of f(x) we know A = g(C) has power 2, which

must then be the least power; dimker5y4 = 3, and SS(A) = diag(l,l,l,l,52,52,52).
Then adj A = 545 where 5 is integral and 5*0 (mod 5); (1/5)5 represents an
algebraic integer, and 5 divides disc(r)/disc(^).

7. Open Problems.
7.1. By Lemma 5.6, a necessary condition for (l/p)h(C) to represent an algebraic

integer is that h(C) should be nilpotent (mod /»). Given n > 3, and supposing the
factorization oif(x) is dishonest, is there ay = j(n) so that for any h(C) with index
of nilpotency y (mod p), (l/p)h(C) represents an algebraic integer? Does y = 2
always work?

7.2. If in the factorization 5.1 some/(x) is honest (but not all), is (/(r), /») a
prime ideal? If not, find a counterexample.

0    0
0    0
1
1
0
1
0

3
6
7

-1
3

6
13
8
12
12
1
5

2
1

-1
2

4      6
4      7

-1     1
3___5_"0
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7.3. Suppose some of the f¡(x) are honest and some not. The honest factors
correspond to relatively prime ideal factors of (p) and each dishonest factor gives
rise to a 5 with (l//»)5 representing an algebraic integer. Is this a new ideal factor
of (/») (at least, relatively prime to the honest ones)?

7.4. What is the relation (if any) between the least powers for the/(x) and the
power of/? dividing disc(r)/disc(^)?

7.5. If two dishonest factors have different least powers, do they give rise to
different ideal factors of (/»)? (Via Theorem 5.9, that is.)
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