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On Computing the Minimum Distance for 
Faster than Nyquist Signaling 

DAN HAJELA 

Absfract -The degradation suffered when pulses satisfying the Nyquist 
criterion are used to transmit binary data at a rate faster than the 
Nyquist rate over the ideal band-limited (brick-wall) channel is studied. 
The minimum distance between received signals is used as a perfor- 
mance criterion. It is well-known that, when Nyquist pulses (i.e., pulses 
satisfying the Nyquist criterion) are sent at the Nyquist rate, the mini- 
mum distance between signal points is the same as the pulse energy. The 
main result is to show that the minimum distance between received 
signals is the same as the pulse energy for rates of transmission about 
25 percent beyond the Nyquist rate, which is the best possible result. In 
fact, one can even identify the precise error event and signaling rate that 
causes the minimum distance to be no longer equal to the pulse energy. 
The mathematical formulation of the problem is to find the smallest 
value of 6, 0 < 6 < 0.5, for which the best L ,  approximation to the 
constant 1 on the interval ( -  6.6) is 1, when using a linear combination 
of the functions e x p ( i 2 ~ n O )  to approximate, n t 0, and restricting the 
coefficients to be 0, & 1. The smallest value of 6 is 0.401 . . . . 

I .  INTRODUCTION 

E ARE CONCERNED with the problem of deter- W mining the minimum distance between received 
signals, when data is sent faster than the Nyquist rate (the 
intersymbol interference free rate) over the ideal band- 
limited (brick-wall) channel using Nyquist pulses. The 
main result is to show that there is no degradation in the 
minimum distance for rates up to about 25 percent be- 
yond the Nyquist rate, despite the presence of intersym- 
bo1 interference. Furthermore, this is the best possible 
result, and the precise error event that causes degrada- 
tion is identified. This problem is motivated by a number 
of considerations. 

It has been known since the 1920's that Nyquist pulses 
can be used to send data at the Nyquist rate without 
intersymbol interference (ISI) over band-limited channels. 
This fact has played a major role in the design and 
implementation of data transmission over the telephone 
network. It is a natural question to ask as to the degrada- 
tion suffered in the presence of intersymbol interference 
when Nyquist pulses are used to send data at a rate faster 
than the Nyquist rate. The minimum distance dmin be- 
tween signal points is used as a performance criterion. 
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The effects of intersymbol interference are a major 
problem for many data communication channels, the 
voiceband telephone channel being the main example. In 
this connection Forney's bound [ 11 and subsequent refine- 
ments [2], [71, [9], [lo] have shown that, for large signal- 
to-noise ratios and when maximum likelihood sequence 
detection (MLSD) is employed, the computation of the 
minimum distance is fundamental in obtaining lower 
bounds on the bit error rate. However, computation of 
dmin is rather difficult for many problems. This is particu- 
larly true for the problem under consideration in this 
paper, since the IS1 is not finite (in fact, it is not even L ,  
summable), and in this case previous results in the litera- 
ture [7], [8] are upper bounds on d,,,, obtained by mini- 
mizing the detection distance over a small set of error 
events. 

Finally, it seems probable that the techniques of this 
paper can be used to compute the minimum distance for 
other channels that have a sharp drop at their band 
edges. The mathematical formulation of the problem is as 
follows [7]. In the classical case, Nyquist pulses 

sin ( r t /  7') 
d t ) =  .rr t /T 

are used to send data without intersymbol interference 
over a channel of bandwidth 1/2T. Thus we send pulse 
trains 

n2 

n = n ,  

where a, = k 1 independently in the binary case, to which 
we shall restrict ourselves. Now we wish to use pulses, 

and send such pulses at intervals R = 26T with 0 < 6 < 
1/2. We are interested in the minimum distance between 
received signals. Let E be the pulse energy. It is easily 
seen that the minimum distance satisfies [7], 
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where 

1 r = ( eke2rlkeln 2 0, ek = 0, -t 1; e,, = 1 . 
k = 0 

We denote this normalized distance d,,, / 2 d E  by Z(6). 
Note that when we are signaling at the Nyquist rate, 

the minimum distance between signal points is equal to 
the pulse energy, that is 1(1/2) = 1. It was conjectured in 
[7] that there was no degradation for rates somewhat 
faster than the Nyquist rate. Precisely, it was conjectured 
that there is a 6,) < 1/2 with Z(6) = 1 for 6,, I 6 I 1/2. 
This conjecture was first proved in [3] (the conference 
proceedings version of this paper appeared earlier in 

Based on numerical computation [71, the conjecture 
that was advanced was that Z(6) = 1 for v I 6 I 1/2 where 
v = 0.401 . . . and is obtained by (l . l) ,  where N O ) =  
Cy=,,( - 1)'e"''': 

[ill). 

in an early version of [61 and which were previously 
mentioned, to now reach the same conclusion as in parts 
1) and 2) of Theorem 1 .l .  

Z 

Thus it was conjectured that the particular seventh degree 
polynomial R(8) was the unique error event responsible 
for degradation in the minimum distance. Motivated by 
our results [3], it was shown in [6] that Z(6) = 1 for 
0.4105 2 6  10.5. Here we prove this conjecture in a 
stronger form (see Theorem 1.1 and the comment follow- 
ing it), based on our previous technique [3], the tech- 
niques in [6], and some new ideas. Thus we show the 
following best possible result. 

Theorem 1.1: Let v be the solution of (1.1). Then Z(6) 
= 1 for all v 2 6 2 0.5. In fact, for 

7 

R ( e )  = ( - 1)'e2"JH 
J = 0 

and for arbitrary 
n 

P ( e ) = i +  e k = 0 , & 1 ,  

with P ( 0 )  being neither 1 nor N O ) ,  the following asser- 
tions are true: 

1) for all v I 6 I 0.5, (1/26)/!, IP(e)12 d0 > 1; 
2) for all v < 6 I 0.5, (1/26)/!, IR(e)12 de > 1; 
3) there are e > O  and 6,, < v (where values can be 

given for 6,) and E) such that for all 6,) I 6 I 0.5 
and any P ( 0 )  # R(0)  or 1, (1/26)/'?, IP(O)l2 dB 2 
1 + E. 

Assertion 3) follows from an examination of the proof 
given here of 1) and 2) of Theorem 1.1. However, for the 
remainder of this paper, we shall concentrate on proving 
the first two parts of Theorem 1.1. The results in this 
paper were presented at the SITA 1987 Conference Pro- 
ceedings [4]. 

Added in Proofi Using a different argument, Henry 
Landau and Jim Maza have extended upon their results 

k = l  

This means e2rr" .  
For 0 < 6 I 1 /2 and a = 1,2,. . . , c(a, 6) = 

For a function g ( x ) ,  
g(x> = /"g(t)e(-  a ) d t .  
For a function g(x), 

N e )  = Cy=,,( - l) 'e2rr'H. 
v satisfies (1.1) and v = 0.401 . . . . 
In this paper a polynomial means a 
trigonometric polynomial of the form 
1 + Ieke2r'ko with ek = 0, f 1, and 
n 2 1. 
Complex conjugate of a complex num- 
ber z. 

((- 1 > " / 2 6 ) / l , [ ~ o ~ 2 ~ ~ e / ( i  + ~ 0 ~ 2 ~ e ) ] d e .  

1lg112 = (/",lg(t)I2 d t P 2 .  

11. OUTLINE OF THE PROOF A N D  REDUCTION TO 

ALTERNATING BLOCKS WITH GAPS 

A brief outline of the proof of Theorem 1.1 follows. 
The first step is to show that, given any P ( 0 )  as in 
Theorem 1.1 with at least two consecutive nonzero ek 
having the same sign, then 1/26/!,lP(0)12 d0 > 1 for 
0.401 I 6 I 0.5. The proof technique is to use suitable test 
functions as in [3]. It follows that, since we are interested 
in the value of Z(6) for only 0.401 I 6 I 0.5, we may 
assume that P ( 0 )  consists of blocks of alternating sign 
coefficients, with at least a gap of one between blocks. 
One can again use test functions and modify the argu- 
ment in [61 to show that one needs to consider at most 13 
blocks. It turns out that the idea in this particular argu- 
ment (and in fact the test function used) can be traced 
back to some classical work of Ingham [51 on exponential 
sums. Ingham's theorem was also used in [3]. Now let N 
be the number of blocks in P(0) .  If 4 I N 2 13, then one 
rewrites the integral (1/26>/!,,lP(0)12 dB as a quadratic 
form and lower bounds the quadratic form using the 
result in [6]. This also works for N = 3 by appropriately 
tightening the argument. For 1 I N I  2, if the length of 
any block is large enough then the integral in question 
approaches a limiting value larger than one. Finally, if the 
size of all the blocks is not too large, then an explicit 
numerical computation finishes the proof. 

In this section we prove the following theorem. 

Theorem 2.1: Let P(O)= 1 + C ; = , e h e ( k e )  with Eh = 

0, & 1. If there are two consecutive (nonzero) eL with the 
same sign, then 

for 0.401 I 6 I 0.5. 
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The import of this theorem is that to prove Theorem 
1.1, it suffices to consider only those polynomials P ( 0 )  
such that P ( 0 )  consists of blocks of alternating sign coeffi- 
cients, with at least a gap of one between blocks. This is 
by Theorem 2.1 and because we are interested in the 
values of 1(6)  only for 0.401 I 6 I 0.5 (recall from (1.1) 
that v = 0.401 . . . ). The idea of the proof is that we may 
integrate P ( 0 )  (after multiplying it, if needed, by a suit- 
able exponential to put it into a more tractable form) 
against a suitable test function h(0) ,  over which we have 
control, and after applying the Cauchy-Schwartz inequal- 
ity, we hope to get a useful lower bound on 

Proog Without loss of generality, assume that the 
first consecutive ek with the same signs are + 1, by 
multiplying P if needed by - 1 since this does not alter 
IP(. These two E,: are, therefore, preceded by a coefficient 
of either 0 or - 1. By multiplying P by any suitable 
exponential e ( a 0 )  and calling the result Q, we may there- 
fore lower-bound (1/26)J!8,(QI* dB since (PI = IQ\. The 
exponential 4 0 0 )  with which we want to multiply P is 
chosen so that (simply causing a shift in the exponentials 
in P )  the 1 + 4 0 )  in Q (see (2.1) and (2.2)) corresponds to 
the first consecutive E k  in P with the same sign, which we 
assumed to be + 1. Here, 

(1/26)p,#~e)1~ do. 

Q ( O ) = l + e ( o ) +  G,e(ke) (2.1) 
Ik (  t 2 

or 

Q ( O ) = l + e ( O > - e ( - O ) +  G,e(kO) (2.2) 

and 6, = 0, 1 (of course, only finitely many 6, = f 1 in 
(2.1) and (2.2)). By [3, Lemma 6 and Theorem 4(b)] for 
Q(0) as in (2.1), for 0.38 . . . I 6 I 0.5 

I h l r 2  

Actually, the polynomials in [3, Lemma 61 had a hypothe- 
sis requiring that there was a gap between consecutive 
negative k in (2.1); however, this hypothesis was never 
used in the proof of [3, Lemma 61 but only in a later 
theorem. 

Now let Q ( 0 )  be as in (2.2). Consider the coefficients 6, 
in (2.2) for k I - 2. Let 6 -,- I be the first coefficient that 
is zero, for some 1 2 1 .  Then 6 _ , = ( - 1 ) '  for 21k1l. 
This is because we get Q by multiplying P by a suitable 
exponential, so that the 1 + 4 0 )  in Q corresponds to the 
first consecutive ek in P with the same sign (which we 
assumed to be + 1) and thus any consecutive signs in Q to 
the left of 1 + 4 0 )  alternate. Let T ( 0 )  = e(O>Q(0). Then, 

T ( 8 )  = 1 + e ( 0 )  + 
I 

( -  l),e( ( k  + l ) 0 )  
A - 1  

+ c Lxe(kO)+ c Lh4kO) 
h r l i 3  h S - 1  

with tk = 0, f 1 and 12 1. Let, 

sin ~x (32x - 50) - 
2 5 ~  ( x3  - 3 ~ '  + 2 ~ )  

One can check (see the Appendix) that (2.3) holds: 

1 I I  I I 

k = l  I 

Call the right side of (2.3) n(l ,  6). Since IT(0)l= (P(O)(  and 
because it is readily checked (see the Appendix) that 
n(1, 6) > 1 for all 12 1 and 0.401 I 6 5 0.5, the result fol- 
lows. 0 

111. BOUNDING THE NUMBER OF 

ALTERNATING BLOCKS 

By the previous section, if we are interested in the 
values of 1(6)  for 0.401 i 6 I 0.5, we may restrict our- 
selves to polynomials P ( 0 )  where P ( 0 )  consists of blocks 
of alternating sign coefficients, with at least a gap of one 
between blocks. For the remainder of this section, let 
P ( 0 )  be such a polynomial. The next theorem bounds the 
number of blocks in such a polynomial. 

Theorem 3.1: Let P ( 0 )  be as before, and let N be the 
number of blocks in it. If N 2 14, then 

for 0.401 _< 6 _< 0.5. 

The basic idea of the proof, as in the previous sect-ion, 
uses test functions, but this time in a slightly different 
way. The proof consists of modifying and strengthening 
some of the arguments in [61. It turns out that the idea in 
this particular argument, and in fact the test function 
used, can be traced back to Ingham [51. Ingham's basic 
estimate was also used in [3] .  

Proofi Let g(x)  = (1/26)e(x/2) cos ( r x / 2 6 )  for 
1x1 I 6 and g ( x )  = 0 for 1x1 > 6. Then, letting h(x) = g(x), 

2 C O S 2 6 T ( X  - 1/2) 
h( x )  = - 

r 1 - 4( 26)*( x - 1 /2)' ' 
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E k h (  n - k )  satisfies R ,  2 0.119025. Let N be the number of blocks in 

Let E X : = , (  - 1lke(kO), where E = 1, be a particular block 
in P(O). Then E ,  = E ( -  1)” and E , -  I = 0, since there is a 
gap of at least one between blocks. First suppose that 

# 0. Then, upon noting that h( - k )  = h(k  + 1) for 
k 2 1, it follows by the triangle inequality: 

I f ( a ) l = I E , h ( 0 ) + E u - l h ( l ) + E , - 2 h ( 2 )  

+ € , + I h ( - l ) +  . . ’  I 
= ( E U h ( 0 ) + E , _ 2 h ( 2 ) + E , + , h (  - 1 ) +  . . .  I 
2lh(O)l- c Ih(k)l-  c IW)l 

= l h ( l ) l - 2  c Ih(k)l  

k r 2  k s - I  

h r 2  

and 

I f (  a - 1) I = l E u - l h ( 0 )  + E,h( - 1) + E u - 2 h (  1) + . . . I 
> l h ( l ) l -  c IW)l 

= l W ) l - 2  c Ih(k)l  

k # 0, 1 

k r 2  

2 0.802(2( N - 1)(0.041472) 

+ 2( 0.1 19025)) 

= 0.066521088( N - 1) +0.1909161 

21 
for N 2 14. 0 

IV. THE CASE OF THREE OR MORE 
ALTERNATING BLOCKS 

Since we are interested in the values of f ( 6 )  only for 
0.401 I 6 I 0.5, by the results of the last section we need 
only consider polynomials that consist of at most 13 
blocks, separated by gaps, with the blocks consisting of 
alternating coefficients. Let N be the number of blocks in 
the polynomial. In this section 3 I N I 13. The basic idea 
is to rewrite the integral (1/26)/?ci,lP(e)12 de as a 
quadratic form and then lower-bound the quadratic form 
by using a “telescoping” argument as in [61. For 4 I N I 13 
we can use the result from [61. For N = 3  one has to 
tighten the argument in [6]. 

To be precise, let P ( 0 )  have N blocks. Because 

h ( -  Z ) , ( l - (  - Z ) , , + l )  
( - l ) V =  

l + z  k = LI 

we may conclude as in [6]: 2 0.144. . . 
for 6 2 0.401 by numerical computation. Then, for 6 2 
0.401, 

I f ( ~ ) 1 ~ + ~ f ( u - 1 ) 1 ~ ~ 2 ( 0 . 1 4 4 ) ~  =0.041472. 

1 1 ci IQ(0)12 -1’ 26 -6 IP(e) l2L ie=- - /  26 -ciI1+e(0)l  2 de 

with Q having at most 2 N nonzero coefficients consisting 
of -t 1, with each pair of consecutive nonzero coefficients 
coming from a block. We only get & 1,0 coefficients 

On the other hand, if = 0, then 

- -  
because of the gaps between blocks. Because 11 + e(e)12 I 
4, it suffices to show that 

and so for 6 2 0.401, If(u)12 2 0.06290. . . by numerical 
computation. In either case the contribution from the left 
side of the block, which we denote L ,  satisfies L 2 
0.041472. Similarly, upon noting that E,,  # 0, E,,+ I = 0, we 

For 4 2 N I 13 the result follows at once from [6]. In fact 
from 16, (29)l (taking E = 0.2032 there), we have that for 
6 2 (1 -0.2032)/2 = 0.3984. In particular, part a)  of Theo- 
rem 4.1 follows. 
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Theorem 4.1: a) For 4 I N I 13 and for Q as in (4.1) arises from row j , .  For row jj, one can again use the 
foregoing facts to see that it contributes at least --j*p(e) 1 l 2  de 2 4 

26 ~ (1  - $) - $(2s*( 1) + s*(2)) .  (4.4) 
for 0.3984 I 6 I 0.5. b) For N = 3, (4.1) holds for 0.40072 
- < 6 I 0.5. Here 2s*(l)+s*(2) is a worst case upper bound to the 

possible contribution of the lobes (other than the main 
lobe) from the pairs q ,,,, q,,; q,4, q,,. In the same way the 
bound (4.4) also holds for row j,. Finally, from [6,(28)] we 
see that the first row of M (i.e., j , )  and the last row of M 
(i.e., j ,) each contribute at least 

Proof b) We may write as in [61 that 

1 
26/_6jQ12de=qTW (4.2) 

with qT= (q , ,q2 ,  . . . ), qi being 0, & 1 and M being the 
real symmetric Toeplitz matrix whose first row is 

E s i n r e  sin nTE 1, -- . . . f( -1)n+I-, . . . ) 
7 7  = (  p T E  P n r c  

where E = 1 - p and p = 26. We now refine the technique 
in [6] to lower-bound the contribution of each row of M 
to (4.2). 

Let sinc(x) = sin ~ x / ~ x .  The values of sinc(x) for 
n s x  < n  +1  are called the positive nth lobe and for 
- n - 1 < x I - n the negative nth lobe. The values of 
sinc(x) for 1x1 2 1 are called the main lobe. The maxi- 
mum of Isinc(x)l in the nth lobe is denoted s*(n) as in [61. 
We need to lower-bound the inner product of a row j of 
M with q ,  if q, # 0. There are six nonzero 4,: first 
consider the pair of q, with one pair above them and one 
pair below them in q. Call the pair q,,, ,q,, .  Call the pair 
above them in q (going from top to bottom in q) ,  q,2, q,, 
and the pair below them q,,,q,,. 

To obtain a lower bound to the inner product of a row j 
(where q, # 0) with q, consider the sum of the individual 
terms in the inner product corresponding to a particular 
lobe. We recall the following from [6]. 

1) The main lobe contributes at least l - ( ~ / p )  with 
the 1 coming from the diagonal term q,?. 

2) An upper bound to the possible contribution of 
half of any lobe (other than the main lobe), say the 
positive nth lobe, is s*(n), and thus for the whole 
lobe is 2s*(n). 

3) The bound s*(n) additionally holds for the whole 
nth lobe if there is a single point in one of the 
halves of the nth lobe. 

4) s*(1) = 0.21723 . * . , s*(2) = 0.12836 . . . , s*(n) = 

2 / ~ ( 2 n  + 2) for n 2 3 with sufficient accuracy. 

It follows that the contribution of row j,, is at least 

(1 - E )  - f ( s * ( l ) + s * ( 2 ) + s * ( l ) + s * ( 2 ) ) .  (4.3) 
P 

Here the (1 -(E/P)) comes from the main lobe while the 
rest of (4.3) represents a worst case upper bound to the 
possible contributions of other lobes from the pair q,?, q,, 
lying to the left of the peak of the main lobe and q,,,q,, 
lying to the right. The same contribution as in (4.3) also 

E 

1- - (2s* (1 )+2s*(2 )+s* (3 ) ) .  (4.5) 
P 

Adding up all the contributions from (4.3)-(4.5) one ob- 
tains s, where s is 

E 
6-  - ( 1 2 ~ * ( 1 ) + 1 0 ~ * ( 2 ) + 2 ~ * ( 3 ) + 4 ) .  (4.6) 

P 
From (4.6) we see that s 2 4 and thus so is qTMq for 

0 

By the results so far, to prove Theorem 1.1, it remains 
to consider polynomials which consist of one or two 
blocks, with gaps between the blocks and with the blocks 
consisting of alternating sign coefficients. This is done in 
the next two sections. 

26 = p 2 0.801435, which proves the result. 

V. THE CASE OF ONE ALTERNATING BLOCK 

The key to treating polynomials consisting of one or 
two alternating blocks is the following lemma in which the 
proof is in the Appendix. (Recall the notation c (a ,6 )  
from Section I .>  

Lemma 5.1: For any a 2 1, 0 < 6 < 1/2, 

and thus 

max I c (a ,6 ) I15 .036 /~ .  (5.2) 
0.4 5 s 5 0.4105 

The basic idea of the proof is that (5.2) allows us to show 
that (1/26)l!8,1P(~)12 dB approaches a limiting value 
larger than one, if the length of the block of alternating 
coefficients that makes up P(0)  is large enough. On the 
other hand, if the length of the block is not too large, 
then a numerical computation finishes the proof. 

To see this note that 
tan .rr6 

2776 (5.3) min ~ 2 1.22457. 
0.4 5 6 2 0.5 

Let P(0 )  = CL=,,(- l>'e(ke) be the polynomial consisting 
of one alternating block. Since 

IP(e)12 = (1 +( - I) 'COS(I + 1 ) 2 ~ e ) / i  + c o s ~ T ~  

by summing the geometric series that represents P(O), 

tan T L ~  
c ( I + 1 , 6 )  =-- 

2T6  (5.4) 
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By (5.41, (5.3), and (5.2) it follows that for 12 22 and 
0.4 I 6 I 0.4105, (1/26)/?,IP(0)12 de 2 1. Since it is 
shown in [6] that (l/26)/!,lP(fl)12 dB 2 1 for 0.4105 I 6 
10.5 and any P ,  numerical computation for 1111 21 
now proves the following that settles the single block case. 

Theorem 5.2: Let P ( 0 )  = C ~ = , ) (  - l )ke(ke) ,  and let v be 
such that ( 1 / 2 ~ ) / ~ ~ ~ E ~ = ~ ~ ( - -  l)ke(ke)12 de = 1. Then v = 

0.401 

Note that one requires only that 1 ( 6 )  = 1 for 6,) I 6 I 
1/2 for some 6,) < 1/2 (as in [3]) for the preceding 
argument to work, instead of 1(6 )  = 1 for 0.4105 I 6 I 0.5. 
The only difference is that one requires a more extensive 
numerical computation, though using the result of 131 
does not result in significant extra numerical computa- 
tion. The foregoing remarks also apply to the next sec- 
tion. 

and for v I 6 I 0.5, (1/26)l!,lP(e)12 dB 2 1. 

I 
h ( O ) + h ( l ) +  ( - 1 ) 9 I ( k + l )  

k = l  

VI. THE CASE OF Two ALTERNATING BLOCKS 

In this section P ( 0 )  consists of two alternating blocks: 

( - l ) k e (  k e )  (6.1) 

with 0 I 1, I + 2 I a I b and E = Ifr 1. We now prove the 
following theorem. 

Theorem 6.1: For P ( 0 )  as in (6.1) and for v I 6 I 0.5, 
with v as in Theorem 5.2 

I h 

P ( 0 )  = ( -  l ) k e (  k 0 )  + E 
k = O  k = a  

The basic idea of the proof of Theorem 6.1 is exactly 
the same as that of Theorem 5.2. The main difference is 
that several technical difficulties arise. It suffices to prove 
(6.2) for v I 6 I 0.4105 by [6], and we shall restrict our- 
selves to these 6. Again by using (5.2) and numerical 
computation, it is easy to see that 

max ~c(a,6))=~~(3,0.4105)~i0.480997 (6.3) 
u , v  I S 5 0.4105 

max I C (  a ,  6 )  1 I 0.0667737. (6.4) 

Let V ( 6 )  = (1/26)/!,,lP(e)12 de .  It is easily seen by sum- 
ming the geometric series in (6.1) and integrating that 

a 2 32,v I 6 I 0.4105 

tan n-6 
T6 

V ( 6 )  = ___ - c ( l +  1 , s )  - C( b + 1 - .,a) + . ( c ( a , 6 )  

- c(a - I -1 ,6)  - c ( b  + 1,s) + c ( b  - 1 , 6 ) ) .  (6.5) 

Call a term c ( m ,  6) in (6.5) “dominant” if 1 i m i 31 and 
“negligible” otherwise. Let d ,  = I, d ,  = a - I and d, = b 
- a. There are eight cases to consider corresponding to 
whether or not a given d ,  I 32 or d ,  L 33 for i = 1,2,3. 
The case d ,  i 32 for i = 1,2,3 is done numerically, and 
one checks that in this case, V ( 6 )  2 1 for v I 6 I 0.4105. 
Now assume that at least one of the A,  2 33, and let p be 
the number of dominant terms in (6.5). If p = 0, then by 

(6.9, (6.4), and (5.3), 

V (  6 )  2 2( 1.22457) - 6( 0.0667737) = 2.0484978. 

If p = 1, then by (6.5), (6.4), and (5.3), 

V (  6 )  2 2( 1.22457) - 0.480997 - 5( 0.0667737) 

= 1.6342745. 
If p = 2, then d ,  I 32, d ,  L 33, d ,  i 32, and in this case 
the dominant terms are c(l + 1,6) and c(b  + 1 - a, 6). By 
(5.4) and Theorem 5.2 we know that, for v I 6 I 0.4105, 

tan .rr6 

2T6 
c ( l  + 1,6)  L 1 

c(  b + 1 - a , 6 )  2 1. 

(6.6) 

(6.7) 

~- 

tan ~6 
2T6 
~- 

Thus using (6.9, (6.4), (6.61, and (6.7), 

V (  6 )  2 2 - 4( 0.0667737) = 1.7329052. 

The case p = 3 (and it is clear that this is the largest p 
can be) can be handled the same way as p = 2 (see the 
Appendix). This completes the proof of Theorem 6.1. 0 
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APPENDIX 

Proof of (2.3) 

Set h ( x )  = g ( 2 6 x ) .  It is readily checked that f i  has support in 
[ - 6 , 6 ]  and 11g1I2 = (1 +(0.72)’ +(0.28)2)’/2 = (1.5968)’/2. By the 
Cauchy-Schwartz inequality, the inversion theorem, the triangle 
inequality and Plancherel’s theorem therefore: 

\ I / 2  
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v ( 1 , S )  = 

29s 

/ 

1 + g(26)+ ( -  lyg(26(k + 1)) 
k = l  

Proof that n(l,S) > I for ull I > I und 0.401 5 6 I 0.5. 
For 1 = 1,2,4,5 let 

Now, 

For $ 1  2 51 and 6 2 0.401, 261kl 2 40.902 and so from (2.4), 
Jg(26k)J I 0.710617491/k2 and thus 

*ak 
a(6) I 2(0.710617491)j 7 = 0.0284247. (2.5) 

so x 

Now, by numerical computation, for 6 2 0.401, v(l,6) > 
v(2,6) 2 1.326 . . . , ~ ( 4 , s )  = 1.293388 . . . , ~ ( 5 , s )  = 1.32 . . . and 
thus by (2.51, n ( / , S )  > 1 for I = 1,2,4,5. For 12 5, by the triangle 
inequality and numerical computation n(1, 6)  2 4 5 ,  6 )  - 
((g(146)1/(1.5968)”*)> 1 for 6 2 0.401. Finally, for 1 = 3, let 

V ( 3 , S )  = (1 + g(26)  - g(46) + - g(86)I 

- c lg(26k)l- c lg(26k)l 
6 5 k 5 700 - 700 5 k 5 - 1 

and d6)= Elr,B7011g(26k)l. Then v(3,6)21.265532128... and 
a(6) < 0.001824652 (by again using (2.4)), for 6 2 0.401. Then 
n(3,6) 2 (1.263707. . . )/(1.26364. . > 1 for 6 2 0.401. Thus 

0 n ( l , 6 )  > 1 for all 12 1 and 0.401 I 6 I .5. 

Proof of Lemma 5.1 

Equation (5.2) is obvious from (5.1). Let g ( O ) =  1/(1 + 
cosZd) ,  which is increasing on [0,6]. By the mean value 
theorem for integrals, and since (cos2rraO)g(O) is an even 
function. 

for some 5 E (0,6). Sincc 

(5.1 ) is proved. 0 

Proof in the Case p = 3 

The two cases that arise arc d ,  2 33, d2 I 32, d, I 32, and 
d ,  I 32, d,  I 32, d,  2 33. Clearly, one can go from one case to 
the other by conjugating P and by multiplying by a suitable 
exponential, so we need consider only d ,  I 32, d, I 32, d, 2 33. 
In this case the dominant terms are c(a,6), c(a - 1 - 1,6) and 
c ( l+  1,6). Then, by (5.41, Theorem 5.2, and (6.5), 

tan ~6 

2rr6 (6.8) -- c(1+1,6)21  

tan n-6 
__- c (a - l -1 ,6 )21 ,  i f c = 1  (6.9) 

2T6 
or 

tan rr6 
-_ c ( a , 6 ) 2 1 ,  i f E = - l .  (6.10) 2T6 

Thus by ( 6 3 ,  (6.31, (6.4), (6.8)-(6.10) one has 
V ( 6 )  2 2-0.480997-3(0.0667737) = 1.3186819. 
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