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Abstract

We prove some new concentration inequalities for self-bounding functions using the
entropy method. As an application, we recover Talagrand’s convex distance inequality.
The new Bernstein-like inequalities for self-bounding functions are derived thanks to
a careful analysis of the so-called Herbst argument. The latter involves comparison
results between solutions of differential inequalities that may be interesting in their
own right.
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1 Introduction

Let X1, . . . , Xn be independent random variables, taking values in some measurable space
X and let f : X n → R be a real-valued function of n variables. We are interested in
concentration of the random variable Z = f(X1, . . . , Xn) around its expected value. Well-
known concentration inequalities establish quantitative bounds for the probability that Z
deviates significantly from its mean under smoothness conditions on the function f, see, for
example, Ledoux [9], McDiarmid [12] for surveys.

However, some simple conditions different from smoothness have been shown to guarantee
concentration. Throughout the text, for each i ≤ n, fi denotes a measurable function from
X n−1 to R. The following condition used by Boucheron, Lugosi, and Massart [2] generalizes
the notion of a configuration function introduced by Talagrand [21].

Definition 1 A function f : X n → R is called self-bounding if for all x = (x1, . . . , xn) ∈
X n,

0 ≤ f(x)− fi(x
(i)) ≤ 1 ,

and
n∑

i=1

(
f(x)− fi(x

(i))
)
≤ f(x)

where x(i) = (x1, . . . , xi−1, xi−1, . . . , xn) ∈ X n−1 is obtained by dropping the i-th component
of x.

It is shown in [2] that if f is self-bounding then Z satisfies, for all λ ∈ R, the sub-
Poissonian inequality

logE
[
eλ(Z−EZ)

]
≤

(
eλ − λ− 1

)
EZ

which implies that for every t ≥ 0,

P{Z ≥ EZ + t} ≤ exp

(
−t2

2(EZ + t/3)

)
and for all 0 < t < EZ,

P{Z ≤ EZ − t} ≤ exp

(
−t2

2EZ

)
.

An often convenient choice for fi is

fi(x
(i)) = inf

x′i∈X
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) . (1)

Throughout the paper we implicitly assume that fi is measurable. (McDiarmid and Reed
[13, Lemma 5] point out that this is not a restrictive assumption).

Several generalizations of such inequalities have been proposed in the literature, see
Boucheron, Lugosi, Massart [3], Boucheron, Bousquet, Lugosi, Massart [1], Devroye [5],
Maurer [11], McDiarmid and Reed [13]. McDiarmid and Reed further generalize the notion
of self-bounding functions.
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Definition 2 A function f : X n → R is called (a, b)-self-bounding if for some a, b > 0, for
all i = 1, . . . , n and all x ∈ X n,

0 ≤ f(x)− fi(x
(i)) ≤ 1 ,

and
n∑

i=1

(
f(x)− fi(x

(i))
)
≤ af(x) + b .

McDiarmid and Reed [13] show that under this condition, for all t > 0,

P{Z ≥ EZ + t} ≤ exp

(
−t2

2(aEZ + b+ at)

)
and

P{Z ≤ EZ − t} ≤ exp

(
−t2

2(aEZ + b+ t/3)

)
.

Maurer [11] considers a even weaker notion.

Definition 3 A function f : X n → R is called weakly (a, b)-self-bounding if all x ∈ X n,

n∑
i=1

(
f(x)− fi(x

(i))
)2 ≤ af(x) + b .

Of course, if f is (a, b)-self-bounding then it is also weakly (a, b)-self-bounding. Maurer
[11, Theorem 13] proves that if f is weakly (a, 0) self-bounding, then

P{Z ≥ EZ + t} ≤ exp

(
−t2

2aEZ + at

)
.

If, in addition, 0 ≤ f(x)− fi(x
(i)) ≤ 1, for each i ≤ n and each x ∈ X n then

P{Z ≤ EZ − t} ≤ exp

(
−t2

2 max(a, 1)EZ

)
. (2)

The purpose of this paper is to further sharpen these results. The proofs, just like for the
above-mentioned inequalities, is based on the entropy method pioneered by Ledoux [8] and
further developed, among others, by Boucheron, Lugosi, Massart [3], Boucheron, Bousquet,
Lugosi, Massart [1], Bousquet [4], Klein [6], Massart [10], Rio [16], Klein and Rio [7]. We
present some applications. In particular, we are able to recover Talagrand’s celebrated convex
distance inequality [21] for which no complete proof based on the entropy method has been
available.

For any real number a ∈ R, we denote by a+ = max(a, 0) and a− = max(−a, 0) the
positive and negative parts of a. The main result of the paper is the following.
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Theorem 1 Let X = (X1, ..., Xn) be a vector of independent random variables, each taking
values in a measurable set X and let f : X n → R be a non-negative measurable function
such that Z = f(X) has finite mean.

For a, b ≥ 0, define c = (3a− 1)/6.
If f is (a, b)-self-bounding, then for all λ ≥ 0,

logE
[
eλ(Z−EZ)

]
≤ (aEZ + b)λ2

2(1− c+λ)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp

(
− t2

2 (aEZ + b+ c+t)

)
.

If f is weakly (a, b)-self-bounding and for all i ≤ n, all x ∈ X , fi(x
(i)) ≤ f(x), then for all

0 ≤ λ ≤ 2/a,

logE
[
eλ(Z−EZ)

]
≤ (aEZ + b)λ2

2(1− aλ/2)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp

(
− t2

2 (aEZ + b+ at/2)

)
.

If f is weakly (a, b)-self-bounding and f(x)− fi(x
(i)) ≤ 1 for each i ≤ n and x ∈ X n, then

for 0 < t ≤ EZ,

P {Z ≤ EZ − t} ≤ exp

(
− t2

2 (aEZ + b+ c−t)

)
.

The bounds of the theorem reflect an interesting asymmetry between the upper and
lower tail estimates. If a ≥ 1/3, the left tail is sub-Gaussian with variance proxy aEZ + b.
If a ≤ 1/3, then the upper tail is sub-Gaussian. If a = 1/3 then we get purely sub-Gaussian
estimates of both sides. Of course, if f is (a, b)-self-bounding for some a ≤ 1/3 then it is also
(1/3, b)-self-bounding, so for all values of a ≤ 1/3, we obtain sub-Gaussian bounds, though
for a < 1/3 the theorem does yield optimal constants in the denominator of the exponent.
If a ≤ 1/3 and f is weakly (a, b)-self-bounding, we thus have

P {Z ≤ EZ − t} ≤ min

(
exp

(
− t2

2(aEZ + b+ t(1− 3a)/6)

)
, exp

(
− t2

2((1/3)EZ + b)

))
.

This type of phenomenon appears already in Maurer’s bound (2) but the critical value of
a is now improved from 1 to 1/3. We have no special reason to believe that the threshold
value 1/3 is optimal but this is the best we get by our analysis.

Note that the bounds for the upper tail for weakly self-bounded random variables are
due to Maurer [11]. They are recalled here for the sake of self-reference.
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2 The convex distance inequality

In a remarkable series of papers (see [21],[19],[20]), Talagrand developed an induction method
to prove powerful concentration results. Perhaps the most widely used of these is the so-
called “convex-distance inequality.” Recall first the definition of the convex distance:

In the sequel, ‖ · ‖2 denotes the Euclidean norm. For any x = (x1, . . . , xn) ∈ X n, let

dT (x,A) = sup
α∈[0,∞)n:‖α‖2=1

dα(x,A)

denote the convex distance of x from the set A where

dα(x,A) = inf
y∈A

dα(x, y) = inf
y∈A

∑
i:xi 6=yi

|αi|

is a weighted Hamming distance of x to the set A. Talagrand’s convex distance inequality
states that if X is an X n-valued vector of independent random variables, then for any set
A ⊂ X ,

E

[
edT (X,A)2/4

]
≤ 1

P{X ∈ A}
which implies, by Markov’s inequality, that for any t > 0,

P{dT (X,A) ≥ t} ·P{X ∈ A} ≤ e−t2/4 .

Even though at the first sight it is not obvious how Talagrand’s result can be used to prove
concentration for general functions f of X, with relatively little work, the theorem may be
converted into very useful inequalities. Talagrand [19], Steele [18], and Molloy and Reed [14]
survey a large variety of applications. Pollard [15] revisits Talagrand’s orginal proof in order
to make it more transparent.

Several attempts have been made to recover Talagrand’s convex distance inequality using
the entropy method (see [3, 11, 13]). However, these attempts have only been able to partially
recover Talagrand’s result. In [3] we pointed out that the Efron-Stein inequality may be used
to show that for all X and A ⊂ X n,

Var (dT (X,A)) ≤ 1 .

The same argument was used to show that Talagrand’s inequality holds (with slightly dif-
ferent constants) for sets A with P{X ∈ A} ≥ 1/2. Maurer [11] improved the constants but
still fell short of proving it for all sets.

Here we show how Theorem 1 may be used to recover the convex distance inequality with
a somewhat worse constant (10 instead of 4) in the exponent. Note that we do not use the
full power of Theorem 1. In fact, Maurer’s results may also be applied together with the
argument below.

The main observation is that the square of the convex distance is self-bounding:
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Lemma 1 For any A ∈ X n and x ∈ X n, the function f(x) = dT (x,A)2 satisfies 0 ≤
f(x)− fi(x

(i)) ≤ 1 where fi is defined as in (1). Moreover, f is weakly (4, 0)-self-bounding.

Proof. The proof is based on different formulations of the convex distance. Let M(A)
denote the set of probability measures on A. Then, using Sion’s minimax theorem, we may
re-write dT as

dT (x,A) = inf
ν∈M(A)

sup
α:‖α‖2≤1

n∑
j=1

αjEν [1xj 6=Yj
] (3)

where Y = (Y1, . . . , Yn) is distributed according to ν. By the Cauchy-Schwarz inequality,

dT (x,A)2 = inf
ν∈M(A)

n∑
j=1

(
Eν [1xj 6=Yj

]
)2

.

Rather than minimizing in the large space M(A), we may as well perform minimization
on the convex compact set of probability measures on {0, 1}n by mapping y ∈ A on
(1yj 6=Xj

)1≤j≤n. Denote this mapping by χ. Note that the mapping depends on x but we
omit this dependence to lighten notation. The set M(A) ◦ χ−1 of probability measures on
{0, 1}n coincides with M(χ(A)). It is convex and compact and therefore the infimum in
the last display is achieved at some ν̂. Then dT (X,A) is just the Euclidean norm of the
vector

(
Ebν [1xj 6=Yj

]
)

j≤n
, and therefore the supremum in (3) is achieved by the vector α̂ of

components

α̂i =
Ebν [1xi 6=Yi

]√∑n
j=1

(
Ebν [1xj 6=Yj

]
)2

.

For simplicity, assume that the infimum in the definition of fi(x
(i)) in (1) is achieved by a

proper choice of the i-th coordinate.
Clearly, f(x) − fi(x

(i)) ≥ 0 for all i. On the other hand let x
(i)
i and ν̂i denote the

coordinate value and the probability distribution on A that witness the value of fi(x
(i)), that

is,

fi(x
(i)) =

∑
j 6=i

(
Ebνi
1xj 6=Yj

)2
+

(
Ebνi
1

x
(i)
i 6=Yi

)2

.

As f(x) ≤
∑

j 6=i

(
Ebνi

[
1xj 6=Yj

])2
+

(
Ebνi

[
1

x
(i)
i 6=Yi

])2

, we have

f(x)− fi(x
(i)) ≤ (Ebνi

[1xi 6=Yi
])2 −

(
Ebνi

[
1

x
(i)
i 6=Yi

])2

≤ 1 .

It remains to prove that f is weakly (4, 0)-self-bounding. To this end, we may use once
again Sion’s minimax theorem, as in [3], to write the convex distance as

dT (x,A) = inf
ν∈M(A)

sup
α:‖α‖2≤1

n∑
j=1

αjEν [1xj 6=Yj
]

= sup
α:‖α‖2≤1

inf
ν∈M(A)

n∑
j=1

αjEν [1xj 6=Yj
] .
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Denote the pair (ν, α) at which the saddle point is achieved by (ν̂, α̂). In [3] it is shown that
for all x,

n∑
i=1

(√
f(x)−

√
fi(x(i))

)2

≤ 1 . (4)

For completeness, we recall the argument:√
fi(x(i)) = inf

ν∈M(A)
sup

α:‖α‖2≤1

n∑
j=1

αjEν [1x
(i)
j 6=Yj

] ≥ inf
ν∈M(A)

n∑
j=1

α̂jEν [1x
(i)
j 6=Yj

] .

Let ν̃ denote the distribution on A that achieves the infimum in the latter expression. Then
we have √

f(x) = inf
ν

n∑
j=1

α̂jEν

[
1xj 6=Yj

]
≤

n∑
j=1

α̂jEν̃

[
1xj 6=Yj

]
.

Hence,

√
f(x)−

√
fi(x(i)) ≤

n∑
j=1

α̂jEν̃ [1xj 6=Yj
− 1

x
(i)
j 6=Yj

] = α̂iEν̃

[
1xi 6=Yi

− 1
x
(i)
i 6=Yi

]
≤ α̂i ,

so (√
f(x)−

√
fi(x(i))

)2

≤ α̂2
i ,

from which (4) follows. Finally,

n∑
i=1

(
f(x)− fi(x

(i))
)2

=
n∑

i=1

(√
f(x)−

√
fi(x(i))

)2 (√
f(x) +

√
fi(x(i))

)2

≤
n∑

i=1

α̂2
i 4f(x)

≤ 4f(x) .

2

Now the convex distance inequality follows easily:

Corollary 1

P{X ∈ A}E
[
edT (X,A)2/10

]
≤ 1 .

Proof. First recall that A = {X : dT (X,A) = 0} . Observe now that combining Lemma 1
and Theorem 1, and choosing t = E [d2

T (X,A)], we have

P{X ∈ A} = P
{
dT (X,A)2 ≤ E

[
d2

T (X,A)
]
− t

}
≤ exp

(
−E[dT (X,A)2]

8

)
.
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On the other hand, for 0 ≤ λ ≤ 1/2, from Theorem 1 again,

logE
[
eλ(Z−EZ)

]
≤ λ2 2EZ

1− 2λ
.

Choosing λ = 1/10 leads to the desired result. 2

3 The square of a regular function

Let g : X n → R
+ be a function of n variables and assume that there exists a constant v > 0

and there are measurable functions gi : X n−1 → R
+ such that for all x ∈ X n, g(x) ≥ gi(x

(i)),

n∑
i=1

(
g(x)− gi(x

(i))
)2 ≤ v .

We call such a function v-regular. If X = (X1, . . . , Xn) ∈ X n is a vector of independent
X -valued random variables, then by the Efron-Stein inequality, Var(g(X)) ≤ v. Also, it is
shown in [8, 3] that for all t > 0,

P {g(X) ≥ Eg(X) + t} ≤ e−t2/(2v) .

For the lower tail, Maurer [11] showed that if, in addition, g(x)− gi(x
(i)) ≤ 1 for all i and x,

then
P {g(X) ≤ Eg(X)− t} ≤ e−t2/(2(v+t/3)) .

However, in many situations one expects a purely sub-Gaussian behavior of the lower tail,
something Maurer’s inequality fails to capture. Here we show how Theorem 1 may be used
to derive purely sub-Gaussian lower-tail bounds under an additional “bounded differences”
condition for the square of g.

Corollary 2 Let g : X n → R
+ be a v-regular function such that for all x ∈ X n and

i = 1, . . . , n, g(x)2 − gi(x
(i))2 ≤ 1. Then

P
{
g(X)2 ≤ E

[
g(X)2

]
− t

}
≤ exp

(
−t2

8vE [g(X)2] + t(4v − 1/3)−

)
.

In particular, if v ≥ 1/12,

P {g(X) ≤ Eg(X)− t} ≤ exp

(
−t2

8v

)
.

Proof. Introduce f(x) = g(x)2 and fi(x
(i)) = gi(x

(i))2. Then

0 ≤ f(x)− fi(x
(i)) ≤ 1 .
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Moreover,

n∑
i=1

(
f(x)− fi(x

(i))
)2

=
n∑

i=1

(
g(x)− gi(x

(i))
)2 (

g(x) + gi(x
(i))

)2

≤ 4g(x)2

n∑
i=1

(
g(x)− gi(x

(i))
)2

≤ 4vf(x)

and therefore f is (4v, 0) self-bounding. This means that the third inequality of Theorem 1
is applicable and this is how the first inequality is obtained.

The second inequality follows from the first by noting that as Eg(X) ≤
√
Eg(X)2,

P {g(X) ≤ Eg(X)− t} ≤ P

{
g(X)

√
Eg(X)2 ≤ Eg(X)2 − t

√
Eg(X)2

}
≤ P

{
g(X)2 ≤ Eg(X)2 − t

√
Eg(X)2

}
and now the first inequality may be applied. 2

For a more concrete class of applications, consider a convex function g defined on a
bounded hyper-rectangle, say [0, 1]n. If X = (X1, . . . , Xn) are independent random variables
taking values in [0, 1], then Talagrand [19] shows that

P{|g(X)−Mg(X)| > t} ≤ 4e−t2/(4L2)

where Mg(X) denotes the median of the random variable g(X) and L is the Lipschitz
constant of g. (In fact, this inequality holds under the weaker assumption that the level
sets {x : g(x) ≤ t} are convex.) Ledoux [8] used the entropy method to prove the one-sided
inequality

P{g(X)−Eg(X) > t} ≤ e−t2/(2L2)

under the condition that g is separately convex, that is, it is convex in any of its variables
when the rest of the variables are fixed at an arbitrary value. We may use Ledoux’s argument
in combination with the corollary above.

Let g : [0, 1]n → R be a non-negative separately convex function. Without loss of general-
ity we may assume that g is differentiable on [0, 1]n because otherwise one may approximate
g by a smooth function in a standard way. Then, denoting

gi(x
(i)) = inf

x′i∈X
g(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) ,

by separate convexity,

g(x)− gi(x
(i)) ≤

∣∣∣∣ ∂g∂xi

(x)

∣∣∣∣ .
8



Thus, for every x ∈ [0, 1]n,
n∑

i=1

(
g(x)− gi(x

(i))
)2 ≤ L2 .

This means that g is L2-regular and therefore Corollary 2 applies as long as g(x)2− gi(x
(i))2

takes its values in an interval of length 1.

4 Proofs

Our starting point is a so-called modified logarithmic Sobolev inequality that goes back (at
least) to [10]. This inequality is at the basis of several concentration inequalities proved by
the entropy method, see [2, 3, 17, 16, 4, 11, 13].

Theorem 2 (a modified logarithmic sobolev inequality.) Let X = (X1, X2, . . . , Xn)
be a vector of independent random variables, each taking values in some measurable space X .
Let f : X n → R be measurable and let Z = f(X). Let X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn)
and let Zi denote a measurable function of X(i). Introduce ψ(x) = ex − x− 1. Then for any
λ ∈ R,

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤

n∑
i=1

E
[
eλZψ (−λ(Z − Zi))

]
.

The entropy method converts the modified logarithmic Sobolev inequality into a dif-
ferential inequality involving the logarithm of the moment generating function of Z. A
more-or-less standard way of proceeding is as follows.

If λ ≥ 0 and f is (a, b)-self-bounding, then, using Z − Zi ≤ 1 and the fact that for all
x ∈ [0, 1], ψ(−λx) ≤ xψ(−λ),

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤ ψ(−λ)E

[
eλZ

n∑
i=1

(Z − Zi)

]
≤ ψ(−λ)E

[
(aZ + b) eλZ

]
.

For any λ ∈ R, define G(λ) = logE
[
e(λZ−EZ)

]
. Then the previous inequality may be written

as the differential inequality

[λ− aψ (−λ)]G′(λ)−G(λ) ≤ vψ(−λ), (5)

where v = aEZ + b.
On the other hand, if λ ≤ 0 and f is weakly (a, b)-self-bounding, then since ψ(x)/x2 is

non-decreasing over R+, ψ(−λ(Z − Zi)) ≤ ψ(−λ)(Z − Zi)
2 so

λE
[
ZeλZ

]
−E

[
eλZ

]
logE

[
eλZ

]
≤ ψ(−λ)E

[
eλZ

n∑
i=1

(Z − Zi)
2

]
≤ ψ(−λ)E

[
(aZ + b)eλZ

]
.

9



This again leads to the differential inequality (5) but this time for λ ≤ 0.
When a = 1, this differential inequality can be solved exactly (see [2]), and one obtains

G(λ) ≤ vψ(λ) .

The right-hand side is just the logarithm of the moment generating function of a Poisson(v)
random variable.

However, when a 6= 1, it is not obvious what kind of bounds for G should be expected.
If a > 1, then λ − aψ(−λ) becomes negative when λ is large enough. Since both G′(λ)
and G(λ) are non-negative when λ is non-negative, (5) becomes trivial for large values of
λ. Hence, at least when a > 1, there is no hope to derive Poissonian bounds from (5) for
positive values of λ (i.e., for the upper tail).

Note that using the fact that ψ(−λ) ≤ λ2/2 for λ ≥ 0, (5) implies that for λ ∈ [0, 2/a),(
1

λ
− a

2

)
G′(λ)− 1

λ2
G(λ) ≤ v

2
.

Observe that the left-hand side is just the derivative of (1/λ− a/2)G(λ). Using the fact
that G(0) = G′(0) = 0, and that G′(λ) ≥ 0 for λ > 0, integrating this differential inequality
leads to

G(λ) ≤ vGa/2(λ) =
vλ2

2(1− aλ/2)
for λ ∈ [0, 2/a) ,

which, by Markov’s inequality and optimization of λ, leads to a first Bernstein-like upper
tail inequality. Note that this is enough to derive the bounds for the upper tail of weakly
self-bounded random variables. But we want to prove something more.

The following lemma is the key in the proof of the theorem. It shows that if f satisfies
a self-bounding property, then on the relevant interval, the logarithmic moment generating
function of Z −EZ is upper bounded by v times a function Gγ defined by

Gγ(λ) =
λ2

2(1− γλ)
for every λ such that γλ < 1

where γ ∈ R is a real-valued parameter. In the lemma below we mean c−1
+ = ∞ (resp.

c−1
− = ∞) when c+ = 0 (resp. c− = 0).

Lemma 2 Let a, v > 0 and let G be a solution of the differential inequality

[λ− aψ (−λ)]H ′ (λ)−H (λ) ≤ vψ (−λ) .

Define c = (a− 1/3)/2. Then, for every λ ∈
(
0, c−1

+

)
G(λ) ≤ vGc+(λ)

and for every λ ∈ (−θ, 0)
G(λ) ≤ vG−c−(λ)

where θ = c−1
− (1−

√
1− 6c−) if c− > 0 and θ = a−1 whenever c− = 0.

10



This lemma is proved in the next section. First we show how it implies out main result:

Proof of Theorem 1. The upper-tail inequality for (a, b)-self-bounding functions follows
from Lemma 2 and Markov’s inequality by routine calculations, exactly as in the proof of
Bernstein’s inequality when c+ > 0 and it is straightforward when c+ = 0.

The bound for the upper tail of weakly (a, b)-self-bounding functions is due to Maurer
[11]. The derivation of the bound for the lower tail requires some more care. Indeed, we
have to check that the condition λ > −θ is harmless. Since θ < c−1

− , by continuity, for every
positive t,

sup
u∈(0,θ)

(
tu− u2v

2 (1− c−u)

)
= sup

u∈(0,θ]

(
tu− u2v

2 (1− c−u)

)
.

Note that we are only interested in values of t that are smaller than EZ ≤ v/a. Now the
supremum of

u→ tu− u2v

2 (1− c−u)

on the interval
(
0, c−1

−
)

is achieved either at ut = t/v (if c− = 0) or at ut = c−1
−

(
1− (1 + (2tc−/v))

−1/2
)

(if c− > 0).
It is time to take into account the restriction t ≤ v/a. In the first case, when ut = t/v,

this implies that ut ≤ a−1 = θ, while in the second case, since a = (1− 6c−) /3 it implies
that 1 + (2tc−/v) ≤ (1− 6c−)−1 and therefore ut ≤ c−1

− (1−
√

1− 6c−) = θ. In both cases
ut ≤ θ which means that for every t ≤ v/a

sup
u∈(0,θ]

(
tu− u2v

2 (1− c−u)

)
= sup

u∈(0,c−1
− )

(
tu− u2v

2 (1− c−u)

)
and the result follows. 2

5 Proof of Lemma 2

The entropy method consists in deriving differential inequalities for the logarithmic moment
generating functions and solving those differential inequalities. In many circumstances, the
differential inequality can be solved exactly as in [10, 2]. The next lemma allows one to deal
with a large family of solvable differential inequalities. Lemma 4 will allow us to use this
lemma to cope with more difficult cases and this will lead to the proof of Lemma2.

Lemma 3 Let f be a non-decreasing continuously differentiable function on some interval
I containing 0 such that f(0) = 0, f ′(0) > 0 and f(x) 6= 0 for every x 6= 0. Let g be a
continuous function on I and consider an infinitely many times differentiable function G on
I such that G(0) = G′(0) = 0 and for every λ ∈ I,

f(λ)G′(λ)− f ′(λ)G(λ) ≤ f 2(λ)g(λ) .

Then, for every λ ∈ I, G(λ) ≤ f(λ)
∫ λ

0
g(x)dx.

11



Note that the special case when f(λ) = λ, and g(λ) = L2/2 is the differential inequality
obtained by the Gaussian logarithmic Sobolev inequality via Herbst’s argument (see, e.g.,
Ledoux [9]) and is used to obtain Gaussian concentration inequalities. If we choose f(λ) =
eλ − 1 and g(λ) = −d(λ/eλ − 1)/dλ, we recover the differential inequality used to prove
concentration of (1, 0)-self-bounding functions in [3].

Proof. Define ρ(λ) = G(λ)/f(λ), for every λ 6= 0 and ρ(0) = 0. Using the assumptions
on G and f , we see that ρ is continuously differentiable on I with

ρ′(λ) =
f(λ)G′(λ)− f ′(λ)G(λ)

f 2(λ)
for λ 6= 0 and ρ′(0) =

G′′(0)

2f ′(0)
.

Hence f (λ)G′ (λ)− f ′ (λ)G (λ) ≤ f 2 (λ) g (λ) implies that

ρ′ (λ) ≤ g (λ)

and therefore that the function ∆(λ) =
∫ λ

0
g(x)dx − ρ(λ) is nondecreasing on I. Since

∆(0) = 0, ∆ and f have the same sign on I, which means that ∆(λ)f(λ) ≥ 0 for λ ∈ I and
the result follows. 2

Except when a = 1, the differential inequality (5) cannot be solved exactly. A round-
about is provided by the following lemma that compares the solutions of a possibly difficult
differential inequality with solutions of a differential equation.

Lemma 4 Let I be an interval containing 0 and let ρ be continuous on I. Let a ≥ 0 and
v > 0. Let H : I → R, be an infinitely many times differentiable function satisfying

λH ′(λ)−H(λ) ≤ ρ(λ) (aH ′(λ) + v)

with
aH ′(λ) + v > 0 for every λ ∈ I and H ′(0) = H(0) = 0 .

Let ρ0 : I → R be a function. Assume that G0 : I → R is infinitely many times differentiable
such that for every λ ∈ I,

aG′0(λ) + 1 > 0 and G′0(0) = G0(0) = 0 and G′′0(0) = 1 .

Assume also that G0 solves the differential equation

λG′0(λ)−G0(λ) = ρ0(λ) (aG′0(λ) + 1) .

If ρ(λ) ≤ ρ0(λ) for every λ ∈ I, then H ≤ vG0.

Proof. Let I, ρ, a, v,H,G0, ρ0 be defined as in the statement of the lemma. Combining
the assumptions on H, ρ0, ρ and G0,

λH ′(λ)−H(λ) ≤ (λG′0(λ)−G0(λ)) (aH ′(λ) + v)

aG′0(λ) + 1

12



for every λ ∈ I, or equivalently,

(λ+ aG0(λ))H ′(λ)− (1 + aG′0(λ))H(λ) ≤ v (λG′0(λ)−G0(λ)) .

Setting f(λ) = λ+ aG0(λ) for every λ ∈ I and defining g : I → R by

g(λ) =
v (λG′0(λ)−G0(λ))

(λ+ aG0(λ))2 if λ 6= 0 and g(0) =
v

2
,

our assumptions on G0 imply that g is continuous on the whole interval I so that we may
apply Lemma 3. Hence, for every λ ∈ I

H(λ) ≤ f(λ)

∫ λ

0

g(x)dx = vf(λ)

∫ λ

0

(
G0(x)

f(x)

)′

dx

and the conclusion follows since G0(x)/f(x) tends to 0 when x tends to 0. 2

Observe that the differential inequality in the statement of Lemma 2 has the same form
as the inequalities considered in Lemma 4 where ψ replaces ρ. Note also that for any γ ≥ 0,

2Gγ(λ) =
λ2

1− γλ

solves the differential inequality

λH ′(λ)−H(λ) = λ2(γH ′(λ) + 1) . (6)

So choosing γ = a and recalling that for λ ≥ 0, ψ(−λ) ≤ λ2

2
, it follows immediately from

Lemma 4, that

G(λ) ≤ λ2v

2(1− aλ)
for λ ∈ (0, 1/a) .

Since G is the logarithmic moment generating function of Z−EZ, this can be used to derive
a Bernstein-type inequality for the left tail of Z. However, the obtained constants are not
optimal, so proving Lemma 2 requires some more care.

Proof of Lemma 2. The function 2Gγ may be the unique solution of equation (6) but this
is not the only equation Gγ is the solution of. Define

ργ(λ) =
λG′γ(λ)−Gγ(λ)

1 + aG′γ(λ)
.

Then, on some interval I, Gγ is the solution of the differential equation

λH ′(λ)−H(λ) = ργ(λ)(1 + aH ′(λ)) ,

provided 1 + aG′γ remains positive on I.

13



Thus, we have to look for the smallest γ ≥ 0 such that, on the relevant interval I (with
0 ∈ I), we have both ψ(−λ) ≤ ργ(λ) and 1 + aG′γ(λ) > 0 for λ ∈ I.

Introduce

Dγ(λ) = (1−γλ)2(1+aG′γ(λ)) = (1−γλ)2+aλ

(
1− γλ

2

)
= 1+2(a/2−γ)λ−γ(a/2−γ)λ2 .

Observe that ργ(λ) = λ2/(2Dγ(λ)).
For any interval I, 1 + aG′γ(λ) > 0 for λ ∈ I holds if and only if Dγ(λ) > 0 for λ ∈ I.

Hence, if Dγ(λ) > 0 and ψ(−λ) ≤ ργ(λ), then it follows from Lemma 4 that for every λ ∈ I,
we have G(λ) ≤ vGγ(λ).

We first deal with intervals of the form I = [0, c−1
+ ) (with c−1

+ = ∞ when c+ = 0).

If a ≤ 1/3, that is, c+ = 0, Dc+(λ) = 1 + aλ > 0 and ρc+(λ) ≥ λ2

2(1+λ/3)
≥ ψ(−λ) for

λ ∈ I = [0,+∞).
If a > 1/3, then Dc+(λ) = 1 + λ/3− c+λ2/6 satisfies 0 < 1 + λ/6 ≤ Dc+(λ) ≤ 1 + λ/3 on

an interval I containing [0, c−1
+ ), and therefore ρc+(λ) ≥ ψ(−λ) on I.

Next we deal with intervals of the form I = (−θ, 0] where θ = a−1 if c− = 0, and
θ = c−1

− (1−
√

1− 6c−) otherwise. Recall that for any λ ∈ (−3, 0], ψ(−λ) ≤ λ2

2(1+λ/3)
.

If a ≥ 1/3, that is, c− = 0, D−c−(λ) = 1 + aλ > 0 for λ ∈ (a−1, 0], while

ρ−c−(λ) =
λ2

2(1 + aλ)
≥ λ2

2(1 + λ/3)
.

For a ∈ (0, 1/3), note first that 0 < c− ≤ 1/6, and that

0 < D−c−(λ) ≤ 1 +
λ

3
+
λ2

36
≤

(
1 +

λ

6

)2

for every λ ∈ (−θ, 0]. This also entails that ρ−c−(λ) ≥ ψ(−λ) for λ ∈ (−θ, 0]. 2
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