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Abstract

In this paper, we introduce the notion of commutators for a certain
class of semirings satisfying the condition (A2) of Bandlet and Petrich.
We establish a few fundamental results of this class included Jacobian
and other identities, that become special relevant cases of ring the-
ory, and may be helpful to initiate Lie type theory of semirings (MA-
semirings).
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1 Introduction and Preliminaries

The theory of commutators plays an important role in the study of Lie algebras
[8], prime rings [14, 15] and C*-algebras [9]. It has tremendous applications in
the theory of derivations of rings and modules as well.

The purpose of this paper is to initiate the study of commutators for semir-
ings and to develop its first order theory, which is, indeed, the generalization
of the commutators of rings. In this connection, we identify the class of ad-
ditively commutative additively inverse semirings with 0 (see [7]), satisfying
the condition (A2) of Bandlet and Petrich [1]. We will call such semirings as
MA-semirings. We introduce the notion of MA-semiring in section 2, which is
useful to initiate the theory of commutators in semirings. Also some canonical
constructions of MA-semirings from given MA-semirings R are presented in
Proposition 2.6. A few identities of K.I Beidar [2] and M.A. Chebotar [4] are
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refined by using the inner derivations in MA-semirings. In section 3, we intro-
duce the notion of commutators in MA-semirings and establish fundamental
results for commutators including the Jacobian identity in the framework of
MA-semirings. The notion of derivations of rings can be naturally extended
in semirings [5, page 30]. The theory of derivations of semirings is not well
developed as compared to the theory of derivations of rings (see[3, 10, 14, 15])
due to the absence of additive inverse and the lack of some important con-
cepts included commutators. In section 4, we introduce the notion of inner
derivations and study the derivations with the help of commutators and estab-
lish fundamental identities which generalize the relevant results [3, 5] of ring
theory.

By semiring we mean a non empty set R with two binary operations ’+’
and ’.’ such that (R, +) and (R, .) are semigroups, where + is ’ commutative
and a.(b + c) = a.b + a.c, (b + c).a = b.a + c.a hold for all a, b, c ∈ R. If there
exists 0 ∈ R such that a + 0 = 0 + a = a and a0 = 0a = 0 for all a ∈ R, then
R is said to be a semiring with ’0’ (see [5]). A non empty subset I of R is
said to be ideal if u, v ∈ I, r ∈ R imply u + v ∈ I and ur, ru ∈ I. An ideal I is
said to be k -ideal if a + b ∈ I, b ∈ I imply that a ∈ I (for more detail see [5]).
An element a ∈ R is said to be additively regular if there exists unique b ∈ R
such that a + b + a = a (see [7]). In addition to this if b + a + b = b, then such
semirings are called inverse semirings first introduced by P.H. Karvellas [7].

In 1982, H. J. Bandlet and M. Petrich [1] considered additively regular
semirings which are also additively commutative, satisfying the conditions (A1)
x(x + x

′
) = x + x

′ ∀ x ∈ S; (A2) y(x + x
′
) =

(
x + x

′)
y ∀x, y ∈ S; (A3)

x+(x+x
′
)y = 1 ∀x, y ∈ S, where S is an inverse semiring. They proved some

remarkable results in this class of semirings. The theory of inverse semirings
(satisfying the conditions, (A1), (A2), (A3) of [1]) is further expanded by several
authors (see [11, 12]).

If R is an inverse semiring, then clearly Mn(R), R [x] is also an inverse
semiring for every positive integer n. The centre of R is denoted by Z(R). Now,
we recall the following proposition of ([5, page 10]) which will be extensively
used later.

Proposition 1.1.

Let R be an inverse semiring, let a, b ∈ R, then (i) (a + b)
′

= a
′
+ b

′
,

(ii) (ab)
′
= a

′
b = ab

′
, (iii) a

′′
= a, (iv) a

′
b
′
= (a

′
b)

′
= (ab)

′′
= ab, a + a

′
is

additively idempotent. For undefined terms we refer to [5].
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2 MA-semirings

We begin this section by introducing the notion of MA-semirings as a gener-
alization of rings.

Definition 2.1. A non empty set R with binary operations + and . is called
an MA-semiring if the following statements are satisfied:
(1) (R, +, .) is an additively commutative inverse semiring with zero element.
(2) Satisfying the condition (A2) of H.J. Bandlet and M. Petrich [1]. That is
a + a

′ ∈ Z(R) for all a ∈ R.
Now, we mention a few examples of MA-semirings.

Example 2.2. Let R be a commutative ring and S be a subsemiring of the
semiring of all ideals of R with respect to ordinary addition and product of
ideals. Set R1 = {(a, I) : a ∈ R, I ∈ S} and define operations ⊕ and � on
R1 by setting (a, I) ⊕ (b, J) = (a + b, I + J) and (a, I) � (b, J) = (ab, IJ) for
all I, J ∈ S. If (a, I) ∈ R1, we define pseudo inverse of the element of R1 as
(a, I)

′
= (−a, I). Then R1 is an MA-semiring.

Lemma 2.3. Every additively idempotent and multiplicative semiring is triv-
ially an MA-semiring; so as any commutative ring and hence their cartesian
product is also such.

The following example reflects that every inverse semiring may not be MA-
semiring.

Example 2.4. Let R = N◦ = {0, 1, 2, ...} in which addition ⊕ and multi-
plication � are defined as, x ⊕ y = sup(x, y) and x � y = inf(x, y) for all
x, y ∈ R. It can be observed that M2(R), the set of all 2 × 2 matrices over R,
is an inverse semiring with A

′
= A for all A ∈ M2(R) under usual addition and

multiplication of matrices but not an MA-semiring. If we take A =

[
2 1
0 0

]
,

B =

[
0 5
0 4

]
and C =

[
2 5
6 7

]
from M2(R). Then it can be easily seen that

(A+A
′
)C �= C(A+A

′
) and hence axiom (A2) of H.J. Bandlet and M. Petrich

[1] is not satisfied. This shows that M2(R) is not an MA-semiring while R is
an MA-semiring. Thus in general, if R is an MA-semiring Mn(R) may not be
an MA-semiring for n > 1.

Example 2.5. Let R be a non commutative ring and S be an MA-semiring
and M2(R × S) be the collection of 2 × 2 matrices. Take the subset R2 ⊆
M2(R × S) defined as
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R1 =

{[
0 0
(r, a) (s, a)

]
: r, s ∈ R, a ∈ S

}
and for A =

[
0 0
(r, a) (s, a)

]

taking additive pseudo inverse as A
′
=

[
0 0
(r, a) (s, a)

]′

=

[
0 0(−r, a

′) (−s, a
′)

]

then under the matrix addition and multiplication R2 is an MA-semiring,
which indeed is non commutative since R is non commutative.

Proposition 2.6. Let R, S be MA-semirings, R [x] the set of all polynomials
over R, then R × S and R [x] are MA-semirings.

Definition 2.7. Let R be MA-semiring. A subsemiring S is said to be MA-
subsemiring, if a ∈ S implies that a

′ ∈ S.

Proposition 2.8. Let R be an MA-semiring, Mn(R) be the set of all n × n
matrices over R, Dig(n, R) be the set of all diagonal matrices over R, then the
following statements hold.

(i) (Mn(R), +) is an inverse semiring.

(ii) Dig(n, R) is an MA-semiring.
From Example 2.4, it follows that Mn(R) need not be always an MA-semiring.
The part of Proposition 2.6, by Definition 2.7, can be refined in the following
way.

Proposition 2.9. If S is an MA-subsemiring of an MA-semiring R, then
S [x] is an MA-subsemiring of an MA-semiring R [x] .

Definition 2.10. Let R be an MA-semiring. An ideal I of R is said to be
MA-ideal if it is MA-subsemiring.

Proposition 2.11. Every k-ideal of an MA-semiring R is an MA-subsemiring
and hence is an MA-ideal of R.

Proof. Let I be a k-ideal. Let a ∈ I, as R is MA-semiring, a
′ ∈ R such that

a + a
′
+ a = a ∈ I. This implies that a

′
+ 2a ∈ I, 2a ∈ I. As I is k-ideal,

therefore, a
′ ∈ I. Hence a + a

′ ∈ I, a + a
′ ∈ Z(R). Since Z(I) = I ∩ Z(R),

therefore, a + a
′ ∈ Z(I) and so I is an MA-semiring.

Proposition 2.12. Let R be an MA-semiring and I be an MA-ideal of R.
Then I[x] is an MA-ideal of R [x] .

Proof. By Proposition 2.9, it follows that I [x] is MA-subsemiring of R [x] .
As I is an ideal of R, therefore I [x] is an ideal of R [x] , that is I [x] is an
MA-ideal of R [x] .
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Let X be a non empty set, R be a semiring, Map(X, R) be the set of all
mappings from X in to R, define +, . pointwise addition and multiplication
respectively. Then (Map(X, R), +, .) form a semiring. However, if R is an
MA-semiring, then one can establish the following proposition.

Proposition 2.13. Let X be a non empty set, x ∈ X and R be an MA-
semiring. Then the following statements hold.

(i) (Map(X, R), +, .) is an MA-semiring.
(ii) If Ix = {f ∈ Map(X, R) : f(x) = 0} , then Ix is a k-ideal and hence

MA-ideal of Map(X, R).
(iii) If S ⊆ X, Is = {f ∈ Map(X, R) : f(x) = 0 ∀x ∈ S} , then Is =

⋂
x∈S

and Is is an MA-ideal of Map(X, R).

Proposition 2.14. If R is an MA-semiring, then Z(R) is an MA-semiring.

Proof. It is well known that Z(R) is subsemiring of R. Let a ∈ Z(R),
then ax = xa implies that (ax)

′
= (xa)

′
that is a

′
x = xa

′
implying that

a
′ ∈ Z(R) and hence Z(R) is an MA-semiring.

If I is a k-ideal of an MA-semiring R, then by Proposition 2.11 I is an
MA-ideal of R. As Z(I) = Z(R) ∩ I. Therefore by Proposition 2.13, Z(I) is
MA-semiring. This leads to the following.

Corollary 2.15. If I is a k-ideal of MA-semiring R, then Z(I) is an MA-
semiring.

3 Commutators

In this section, we introduce the notion of commutators for MA-semirings,
which is, indeed, a generalization of commutators of rings.

Definition 3.1. If R is an MA-semiring, define commutator as a mapping
[., .] : R×R → R by [x, y] = xy + (yx)

′
= xy + y

′
x = xy + yx

′
for all x, y ∈ R.

Then [x, y] is called a commutator of x, y.

Theorem 3.2. If R is an MA-semiring, then for all x, y, z ∈ R, the following
identities are valid.

(i)[x, yz] = [x, y]z + y[x, z] ,(Jacobian Identity)
(ii)[xy, z] = x[y, z] + [x, z]y,(Jacobian Identity)
(iii)[x + y, z] = [x, z] + [y, z]
(iv)[x, 0] = [0, x] = 0
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(v)([x, y])
′
= [y, x] =

[
x, y

′]
=

[
x

′
, y

]
(vi)[[x, y], z] = [x, y]z + z[y, x]

(vii)[nx, y] = n[x, y], for any positive integer n.

Proof. (i) Take the left hand side of (i), then by Definition 3.1.

[x, yz] = x(yz) + (yz)x
′
= x(yz) + yz(x

′
+ x + x

′
)

= x(yz) + yz(x
′
) + yz(x + x

′
) = x(yz) + yz(x

′
) + y(x + x

′
)z

= (xy + yx
′
)z + y(xz + zx

′
) = [x, y] z + y [x, z].

The proof of (ii) is similar to the proof of (i). The identities (iii) to (vii) can
be proved by using more or less similar technique.

Corollary 3.3. If R is a ring, then the following statements are valid for all
x, y, z ∈ R.

(1) [x, x] = 0; (2) [x + y, z] = [x, z] + [y, z]; (3) [x, y + z] = [x, y] + [x, z];

(4) [xy, z] = x[y, z] + [x, z]y; (5) [x, yz] = [x, y]z + y[x, z]

Lemma 3.4. Let R be an MA-semiring. For each x ∈ R, denote x + x
′
by

x0. Then (i) x0 + x0 = x0 = x
′
0, (ii) x + x0 = x, (iii) (xy)0 = x0y = xy0 =

x0y0 = y0x0 = (yx)0 for all x, y ∈ R.
Proof. We only establish (xy)0 = x0y = xy0. The proofs of other identities
are quite obvious. Indeed, x0y0 = (x + x

′
)(y + y

′
) = xy + xy

′
+ x

′
y + x

′
y

′
=

xy + xy
′
+ x

′
y + xy = xy + xy

′
+ xy + x

′
y = (x + x

′
+ x)y + x

′
y = xy + x

′
y =

(x + x
′
)y = x0y. Similarly we can show that (xy)0 = xy0, as x0, y0 ∈ Z(R).

Thus (xy)0 = x0y = xy0.

Now, we prove the Jacobian theorem which may be useful in the develop-
ment of Lie type theory of semirings.

Theorem 3.5. Let R be an MA-semiring, then [x, [y, z]]+[y, [z, x]] = [[x, y], z]
holds for all x, y, z ∈ R.

Proof. By Theorem 3.2 (v), we have [x, [y, z]] = [[y, z], x]
′
= [y, z]

′
x+x[z, y]

′
=

[z, y]x+x[y, z] for all x, y, z ∈ R. Thus [x, [y, z]]+ [y, [z, x]] = [z, y]x+x[y, z]+
[x, z]y + y[z, x]

= (zy+y
′
z)x+x(yz+z

′
y)+(xz+z

′
x)y+y(zx+x

′
z) = (xyz+yx

′
z+zyx+

z
′
xy)+(y

′
zx+yzx)+(xz

′
y+xzy) = (xyz+yx

′
z+zyx+z

′
xy)+y0zx+xz0y =

[x, y]z+z[y, x] = [[x, y], z], as by Lemma 2.3, zyx+y0zx = zyx+(zyx)0 = zyx
and xyz + xz0y = xyz + (xyz)0 = xyz.

Remark 3.6. As we have already shown in Example 2.4 that if R is an MA-
semiring, then M2(R) may not be an MA-semiring. Also we note that the
validity of (i) and (ii) of theorem 3.2 in the context of Example 2.4, depending
upon the particular selection of the matrices. It may hold or may not. However,
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in general, the Jacobian identity is not hold.

The parts (i) and (ii) of theorem 3.2 may valid for some particular case. But

if we take A =

[
1 5
1 4

]
, B =

[
2 1
1 1

]
, and C =

[
2 5
6 7

]
, then [A, BC] �=

[A, B]C + B[A, C] and also (A + A
′
) /∈ Z(M2(R)).

Proposition 3.7. Let R be an MA-semiring, then for all x, y, z ∈ R the
following identities hold:

(i) [xy, z] + [yz, x] + [zx, y] = [x, [y, z]] + [y, [z, x]] + [z, [x, y]]

(ii) [xyz, u] = xy [z, u] + x [y, u] z + [x, u] yz.

Proof.(i) In view of Theorem 3.2, (i) becomes x [y, z] + [y, z]
′
x + y [z, x] +

[z, x]
′
y + z [x, y] + [x, y]

′
z = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] .

(ii) Using the Definition 3.1 and Lemma 3.4, the right hand side becomes:
xyzu + xyu0z + xu

′
yz + xuyz + ux

′
yz = xyzu + xyzu0 + xu0yz + u

′
xyz

= xyzu+xyzu0+u0xyz+u
′
xyz = xyz(u0+u)+(u0+u

′
)xyz = xyzu+u

′
xyz =

[xyz, u] .

Proposition 3.8. Let R be an MA-semiring and x, y, z ∈ R. Then

(i) [xy, z] + [yz, x] = [y, zx]

(ii) [xyz, u] + [yzu, x] + [zux, y] = [z, uxy]

Proof. (i): By Definition 3.1 and Lemma 3.4, (i) reduces to: yzx + z
′
xy +

xyz0 = yzx+z
′
xy+z0xy = yzx+(z0+z

′
)xy = yzx+z

′
xy = yzx+zxy

′
= [y, zx]

(ii): By Definition 3.1 and Lemma 3.4, (ii) becomes. xyzu+u
′
xyz+yzux+

x
′
yzu + zuxy + y

′
zux

= u
′
xyz + xyzu0 + y0zux + zuxy = u

′
xyz + u0xyz + zuxy0 + zuxy =

(u
′
+ u0)xyz + zux(y0 + y)

= zuxy + uxyz
′
= [z, uxy] .

We define Jordan product as (x ◦ y) = xy + yx. Observe that x ◦ y = y ◦ x.
and (x + y) ◦ z = (x ◦ z) + (y ◦ z).

Proposition 3.9. Let R be an MA-semiring and x, y, z ∈ R. Then the
following Jordan identities hold:

(i) x ◦ y = y ◦ x.
(ii) (x + y) ◦ z = (x ◦ z) + (y ◦ z).
(iii) [x ◦ y, z] + [y ◦ z, x] = [y, z ◦ x] .

Proof. The proofs of (i), (ii) are obvious. Now by using the Definition 3.1
and Lemma 3.4 the left hand side of the (iii) becomes:
(x◦y)z + z

′
(x◦y)+(y◦ z)x+x

′
(y ◦ z) = yzx+yxz + z

′
xy +x

′
zy +xyz0 + z0yx

= yzx+yxz+z
′
xy+x

′
zy+z0xy+yxz0 = yzx+x

′
zy+(z0 +z

′
)xy+yx(z0 +z)
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= y(zx + xz) + (zx + xz)y
′
= y(z ◦ x) + (z ◦ x)y

′
= [y, z ◦ x] .

Proposition 3.10. Let R be an MA-semiring and x, y, z ∈ R. Then the
following Jordan identity holds x ◦ [y, z] + [x, z] ◦ y = [(x ◦ y), z] .
Proof. By using the Definition 3.1 and Lemma 3.4, we have:
x◦ [y, z]+ [x, z] ◦y = x◦ (yz + zy

′
)+(xz + zx

′
)◦y = xyz +yxz + zx

′
y + zy

′
x+

xzy0 + yzx0 = xyz + yxz + zx
′
y + zy

′
x + y0xz + x0yz = (x0 + x)yz + (y0 +

y)xz +zx
′
y +zy

′
x = (xy +yx)z +z

′
(xy+yx) = (x◦y)z +z

′
(x◦y) = [x ◦ y, z] .

Remark 3.11. If R is commutative ring, then the commutators become zero.
But it is not the case with the commutative MA-semiring. Proposition 3.7, 3.8,
3.9, 3.10 are refinements of the relevant commutator identities of ring theory
(see [2, 4]).

4 Derivations of semirings.

In this section, we develop a relationship between commutators and deriva-
tions. In this connection, we are able to generalize some results of ring theory.
Also we introduce here the notion of inner derivation in canonical fashion.

Definition 4.1 ([5]). A derivation on a semiring R is a function d : R → R
satisfying: (i)d(r1 + r2) = d(r1) + d(r2), (ii)d(r1r2) = d(r1)r2 + r1d(r2) for
all r1, r2 ∈ R.

If R is an additively idempotent semiring, that is, r+r = r, then the identity
mapping I(r) = r is a derivation on R. In particular, identity mapping is a
derivation in distributive lattice.

Definition 4.2. Let R be an MA-semiring, Let a ∈ R be a fixed element of
R. Define d : R → R by d(x) = [a, x], for all x ∈ R. Then d is a derivation
and said to be an inner derivation, indeed, for all x, y ∈ R, d(xy) = [a, xy] =
x[a, y] + [a, x]y = xd(y) + d(x)y (cf. Theorem 3.2 (i)).

For convenience we prefer to write d ([x, y]) = [a, [x, y]] by [x, y]d .

Proposition 4.3. Let R be an MA-semiring, d be a derivation for all x, y ∈ R,
then d(xy) = d(x

′
y

′
)

Proof. By Proposition 1.1, we have, d(x
′
y

′
) = d(x

′
)y

′
+ x

′
d(y

′
) = (d(x))

′
y

′
+

x
′
(d(y))

′
= (d(x)y

′
)
′
+(x

′
d(y))

′
= (d(x)y)

′′
+(xd(y))

′′
= d(x)y+xd(y) = d(xy).

Proposition 4.4. Let R be an MA-semiring, a ∈ R and d be an inner
derivation d(x) = [a, x] for all x ∈ R, then for all x, y, z ∈ R [xy, z]d+[yz, x]d =
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[y, zx]d.

Proof. By using Definition 4.2, Definition 3.1 and Lemma 3.4, the left hand
side of the given expression becomes: az

′
xy + z

′
xya′ + ayzx+ yzxa

′
+ ax0yz +

x0yza
′
= az

′
xy + z

′
xya′ + ayzx + yzxa

′
+ ayzx0 + yzx0a

′ = az
′
xy + z

′
xya

′
+

ayz(x0 + x) + yz(x0 + x)a
′
= az

′
xy + z

′
xya

′
+ ayzx + yzxa

′
= a(yzx + zxy

′
)+

(yzx + zxy
′
)a

′
= a [y, zx] + [y, zx]a

′
= [a, [y, zx]] = [y, zx]d .

Proposition 4.5. Let R be an MA-semiring, a ∈ R and d be an inner
derivation determined by a, that is, d(x) = [a, x] for all x ∈ R, then for all
x, y, z, u ∈ R, the following identities hold:

(i) [xyz, u]d = (xy [z, u])d + (x [y, u] z)d + ([x, u] yz)d.
(ii) [xyz, u]d + [yzu, x]d + [zux, y]d = [z, uxy]d .

Proof. (i) By Definition 4.2, Definition 3.1 and Lemma 3.4, we have
(xy [z, u])d+(x [y, u] z)d +([x, u] yz)d = [a, xy [z, u]]+[a, x [y, u] z]+[a, [x, u] yz]
= axyzu + aux

′
yz + xyzua

′
+ ux

′
yza

′
+ axyuz0 + xyuz0a

′
+ ax0uyz + x0uyza

′

= axyzu + aux
′
yz + xyzua

′
+ ux

′
yza

′
+ axyz0u + xyz0ua

′
+ aux0yz + ux0yza

′

= axy(z0 + z)u + xy(z0 + z)ua
′
+ au(x0 + x

′
)yz + u(x0 + x

′
)yza

′

= axyzu + aux
′
yz + xyzua

′
+ ux

′
yza

′
= a(xyzu + u

′
xyz) + (xyzu + u

′
xyz)a

′

=
[
a, xyzu + u

′
xyz

]
= [a, [xyz, u]] = [xyz, u]d .

(ii). By Definition 4.2, Definition 3.1 and Lemma 3.4, the right hand side
becomes.
[a, [xyz, u]] + [a, [yzu, x]] + [a, [zux, y]]
= au

′
xyz + azuxy +u

′
xyza

′
+ zuxya

′
+ axyzu0 +xyzu0a

′
+ ay0zux+ y0zuxa

′

= au
′
xyz + azuxy +u

′
xyza

′
+ zuxya

′
+ au0xyz +u0xyza

′
+ azuxy0 + zuxy0a

′

= a(u0 + u
′
)xyz + (u0 + u

′
)xyza

′
+ azux(y0 + y) + zux(y0 + y)a

′

= au
′
xyz + u

′
xyza

′
+ azuxy + zuxya

′
= a(zuxy + uxyz

′
) + (zuxy + uxyz

′
)a

′

= a [z, uxy] + [z, uxy] a
′
= [a, [z, uxy]] = [z, uxy]d .

The following Jordan identities hold:
Proposition 4.6. Let R be an MA-semiring, a ∈ R. Let d be an inner
derivation, that is, d(x) = [a, x] for all x ∈ R. Then for all x, y, z ∈ R,the
Jordan identities hold: (i) [x ◦ y, z]d + [y ◦ z, x]d = [y, z ◦ x]d

(ii)(x ◦ [y, z])d + ([x, z] ◦ y)d = [x ◦ y, z]d.

Proof. (i). By Definition 4.2, Definition 3.1 and Lemma 3.4, we have
[x ◦ y, z]d + [y ◦ z, x]d = [y, z ◦ x]d = [a, [x ◦ y, z]] + [a, [y ◦ z, x]]
= ayzx + ayxz + az

′
xy + ax

′
zy + yzxa

′
+ yxza

′
+ z

′
xya

′
+ x

′
zya

′
+ ax0yz +

az0yx + x0yza
′
+ z0yxa

′
= ayzx + ayxz + az

′
xy + ax

′
zy + yzxa

′
+ yxza

′
+

z
′
xya

′
+ x

′
zya

′
+ ayzx0 + ayxz0 + yzx0a

′
+ yxz0a

′
= ayz(x0 + x) + ayx(z0 +
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z) + az
′
xy + ax

′
zy + yz(x0 + x)a

′
+ yx(z0 + z)a

′
+ z

′
xya

′
+ x

′
zya

′
= ayzx +

ayxz + az
′
xy + ax

′
zy + yzxa

′
+ yxza

′
+ z

′
xya

′
+ x

′
zya

′

= a(y(zx + xz) + (zx + xz)y
′
) + (y(zx + xz) + (zx + xz)y

′
)a

′

= a(y(z ◦ x) + (z ◦ x)y
′
) + (y(z ◦ x) + (z ◦ x)y

′
)a

′

= a [y, z ◦ x] + [y, z ◦ x] a
′
= [a, [y, z ◦ x]] = [y, z ◦ x]d .

(ii). By Definition 4.2, Definition 3.1 and Lemma 3.4
(x ◦ [y, z])d + ([x, z] ◦ y)d = (x ◦ (yz + zy

′
))d + ((xz + zx

′
) ◦ y)d

= (x(yz + zy
′
) + (yz + zy

′
)x)d + ((xz + zx

′
)y + y(xz + zx

′
))d

= axyz + azx
′
y + azy

′
x + xyza

′
+ ayxz + zx

′
ya

′
+ yxza

′
+ zy

′
xa

′
+ ayzx0 +

xzy0a
′
+ yzx0a

′
+ axzy0

= axyz + azx
′
y + azy

′
x + xyza

′
+ ayxz + zx

′
ya

′
+ yxza

′
+ zy

′
xa

′
+ ax0yz +

y0xza
′
+ x0yza

′
+ ay0xz

= azx
′
y +azy

′
x+ zx

′
ya

′
+ zy

′
xa

′
+a(x0 +x)yz +(x0 +x)yza

′
+a(y0 +y)xz +

(y0 + y)xza
′

= azx
′
y + azy

′
x + zx

′
ya

′
+ zy

′
xa

′
+ axyz + xyza

′
+ ayxz + yxza

′

= a(xy + yx)z + az
′
(xy + yx) + (xy + yx)za

′
+ z

′
(xy + yx)a

′

=
[
a, (xy + yx)z + z

′
(xy + yx)

]
=

[
a, (x ◦ y)z + z

′
(x ◦ y)

]
= [a, [x ◦ y, z]] =

[x ◦ y, z]d.

Definition 4.7. Let R be an MA-semiring. Then a mapping B : R×R → R
is said to be symmetric, if B(x, y) = B(y, x) for all x, y ∈ R. A mapping
f : R → R defined by f(x) = B(x, x) is called the trace of B.

Definition 4.8. Let R be an MA-semiring and d be a derivation of R in to
itself. Then Bd : R × R → R is defined by Bd(x, y) = [d(x), y] + [d(y), x].

The following proposition shows that the mapping Bd is symmetric.

Proposition 4.9. If R is an MA-semiring, then the following statements hold:

(a) If d : R → R be a derivation, then Bd is symmetric.

(b) If f is the trace of Bd, then f(x + y) = f(x) + f(y) + 2Bd(x, y).

Proof : (a) By Definition 4.7, we have Bd(x, y) = [d(x), y] + [d(y), x] =
[d(y), x] + [d(x), y] = Bd(y, x) for all x, y ∈ R. This implies that Bd is sym-
metric.

(b): As d : R → R be a derivation, therefore by Definition 4.8, we have
f(x + y) = Bd(x + y, x + y) = [d(x + y), x + y] + [d(x + y), x + y] = [d(x) +
d(y), x + y] + [d(x) + d(y), x + y] = [d(x), x] + [d(x), x] + [d(y), y] + [d(y), y] +
2([d(x), y] + [d(y), y]) = Bd(x, x) + Bd(y, y) + 2Bd(x, y).
This implies that f(x + y) = f(x) + f(y) + 2Bd(x, y). As an application of
Theorem 3.2 we can prove Proposition 4.10 and proposition 4.11.
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Proposition 4.10. Let R be an MA-semiring and d : R → R be a derivation.
Then the following identity holds:

Bd(x, z)y + xBd(y, z) = [z, d(x)]y
′
+ x

′
[z, d(y)] + [d(z), xy].

Proof. By Definition 4.8, Theorem 3.2, we have
Bd(x, z)y+xBd(y, z) = ([d(x), z]+[d(z), x])y+x([d(y), z]+[d(z), y]) = [d(x), z]y+
[d(z), x]y+x[d(y), z]+x[d(z), y] = [d(x), z

′
]y

′
+x[d(y), z]+[d(z), x]y+x[d(z), y] =

[d(x), z
′
]y

′
+ x

′
[d(y), z]

′
+ [d(z), xy] = [z, d(x)]y

′
+ x

′
[z, d(y)] + [d(z), xy].

Theorem 4.11. Let R be an MA-semiring and d : R → R be a derivation.
Then Bd(xy, z) = Bd(x, z)y + xBd(y, z) + d(x)[y, z] + [x, z]d(y).

Proof. By Definition 4.8, Theorem 3.2, we have
Bd(xy, z) = [d(xy), z]+ [d(z), xy] = [d(x)y+xd(y), z]+ [d(z), xy] = [d(x)y, z]+
[xd(y), z] + [d(z), xy] = [z, d(x)y

′
] + [z, x

′
d(y)] + [d(z), xy] = [z, d(x)]y

′
+

d(x)[z, y
′
] + [z, x

′
]d(y) + x

′
[z, d(y)] + [d(z), xy]

= [z, d(x)]y
′
+ x

′
[z, d(y)] + [d(z), xy] + d(x)[y, z] + [x, z]d(y) = Bd(x, z)y +

xBd(y, z) + d(x)[y, z] + [x, z]d(y).
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