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Abstract

A prominent use of local to unity limit theory in applied work is
the construction of confidence intervals for autogressive roots through
inversion of the ADF t statistic associated with a unit root test, as sug-
gested in Stock (1991). Such confidence intervals are valid when the
true model has an autoregressive root that is local to unity (ρ = 1+ c

n )
but are invalid at the limits of the domain of definition of the local-
izing coeffi cient c because of a failure in tightness and the escape of
probability mass. Consideration of the boundary case shows that these
confidence intervals are invalid for stationary autoregression where they
manifest locational bias and width distortion. In particular, the cov-
erage probability of these intervals tends to zero as c → −∞, and
the width of the intervals exceeds the width of intervals constructed
in the usual way under stationarity. Some implications of these re-
sults for predictive regression tests are explored. It is shown that when
the regressor has autoregressive coeffi cient |ρ| < 1 and the sample
size n → ∞, the Campbell and Yogo (2006) confidence intervals for
the regression coeffi cient have zero coverage probability asymptotically
and their predictive test statistic Q erroneously indicates predictability
with probability approaching unity when the null of no predictability
holds. These results have obvious implications for empirical practice.

Keywords: Autoregressive root, Confidence belt, Confidence interval,
Coverage probability, Local to unity, Localizing coeffi cient, Predictive
regression, Tightness.
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1 Introduction

A primary reason for the introduction of local to unity limit theory was
to develop asymptotic power functions for unit root test procedures. This
theory facilitated comparisons between different test procedures. The limit
theory also provided convenient approximations to the distributions of esti-
mators and tests for models with an autoregressive parameter in the vicinity
of unity of the form ρ = 1 + c

n , giving approximations that depend on the
value of the localizing coeffi cient c. A prominent application of this theory
in empirical work is the construction of confidence intervals for autogres-
sive roots through the inversion of unit root test statistics. The approach
was suggested in Stock (1991). It has been recommended and used in later
work on confidence interval construction for autoregressive roots (Elliott
and Stock, 2001) and in predictive regression tests with persistent regres-
sors (Cavanagh, Elliott and Stock, 1995; Campbell and Yogo, 2006).

Simulations in Hansen (1999) revealed that the inversion procedure pro-
posed by Stock (1991) performed well for ρ in the immediate vicinity of
unity but poorly for stationary ρ values distant from unity. The limit the-
ory in Phillips (1987) shows that appropriately centred statistics have limits
as c→ −∞ that correspond to the stationary limit theory for fixed |ρ| < 1,
which suggests that inversion of appropriately defined test statistics should
lead to confidence intervals that correspond to those that apply for the sta-
tionary region and are based on stationary asymptotics. Mikusheva (2007)
recently confirmed this supposition by demonstrating that confidence inter-
vals obtained in this way are valid uniformly for |ρ| ≤ 1.

On the other hand, inversion procedures based on unit root tests, such as
those in Stock (1991) and Elliott and Stock (1991) are not valid uniformly for
|ρ| ≤ 1. The reason for and extent of the failure has not been explored in the
existing literature. Since these procedures are recommended in applications
and form the basis of empirical work, it is important to understand their
properties when they are applied to data with stationary regressors, as they
may very well be in predictive regressions of the type considered in Campbell
and Yogo (2006).

The present paper contributes to this literature by providing an asymp-
totic analysis of the properties of confidence intervals obtained by the inver-
sion procedure applied to unit root tests. It is shown that such confidence
intervals are invalid at the limits of the domain of definition of the local-
izing coeffi cient. In particular, consideration of the boundary case shows
that these confidence intervals manifest severe locational bias and width
distortion. The asymptotic coverage probability of the intervals is zero in
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the stationary case as c → −∞ even though the intervals are wider than
those constructed in the usual way under stationarity. Similar consequences
are shown to follow when these procedures are used in predictive regression
tests of the type considered in Campbell and Yogo (2006). In particular,
the commonly used Q test is biased towards accepting predictability and
associated confidence intervals for the regressor coeffi cient asympototically
have zero coverage probability in the stationary regressor case. These re-
sults have potentially important empirical consequences for practical work
given that degrees of persistence in predictive regressors are determined very
imprecisely and tests are needed that are robust for a wide range of such
regressors. Some alternative approaches that do achieve robustness are dis-
cussed in the paper.

2 Boundary Behavior in Confidence Intervals based
on Unit Root Test Inversion

It will be suffi cient for our purpose to consider the simple AR(1) model

xt = ρxt−1 + ut, with ut ∼ iid
(
0, σ2

)
, (1)

initialized at x0 = 0, with least squares regression estimate ρ̂ of ρ and unit
root t test tρ̂ = ρ̂−1

σρ̂
, with σ2

ρ̂ = σ̂2/
∑n

t=1 x
2
t−1 and σ̂

2 = n−1
∑n

t=1 (xt − ρ̂xt−1)2 .

In the local to unity case ρ = ρn = 1 + c
n , and we have the following limit

theory for any fixed localizing coeffi cient c (Phillips, 1987)

tρ̂ =
n (ρ̂− ρn) + n (ρn − 1){
σ̂2/

(
n−2

∑n
t=1 x

2
t−1

)}1/2
=⇒

∫
JcdW(∫

J(r)2dr
)1/2 +c

(∫
Jc(r)

2dr

)1/2

:= τ c,

(2)
where Jc(r) =

∫ r
0 e

c(r−s)dW (s) is a linear diffusion,W is standard Brownian
motion, and all integrals are over the interval [0, 1] .

2.1 Confidence belt asymptotics

The method of confidence belts suggested in Stock (1991) proceeds as fol-
lows: compute a unit root test statistic such as tρ̂ and use the known as-
ymptotic distribution of that statistic under the alternative, as given in (2)
above, to construct a confidence interval for c by inversion of the test. The
confidence belts provide a graphical method of performing this operation
and can be tabulated and complemented with interpolation to achieve a
reasonable degree of accuracy for implementation in practice. Since (2) is
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the appropriate asymptotic distribution of tρ̂ under the local alternative
ρn = 1 + c

n to a unit root for all c, it may not be immediately obvious why
the procedure fails to deliver confidence intervals with good properties for
stationary ρ. The fact that it is not so obvious perhaps explains why the
matter seems to have passed unnoticed and unanalyzed for so many years
except for a brief observation on poor simulation performance in Hansen
(1999) and Mikusheva’s (2007, p. 1422) remark to the effect that a modified
version of this inversion procedure produces uniform confidence intervals.

To explain the failure we need to develop the asymptotics in (2) further,
focusing on a more detailed analysis of behavior at the lower limit of the
domain of definition, viz. c→ −∞, which effectively captures the stationary
case as shown in Phillips (1987). Upon simple manipulation of the limit (2)
we have

τ c =
(−2c)1/2 ∫ Jc(r)dW (r)(

(−2c)
∫
Jc(r)2dr

)1/2 − |c|1/221/2

(
(−2c)

∫
Jc(r)

2dr

)1/2

. (3)

Phillips (1987) proved that the (centred) first component of (3) satisfies

λc :=

∫
Jc(r)dW (r)(∫
Jc(r)2dr

)1/2 ⇒ N (0, 1) as c→ −∞,

and gave the following results

Jc(1)2 = 1 + 2c

∫
Jc(r)

2dr + 2

∫
Jc(r)dW (r), (4)

(−2c)1/2
∫
Jc(r)dW (r) ⇒ ξ = N (0, 1) , (5)

(−2c)1/2 Jc(1) ⇒ η = N (0, 1) , (6)

which are useful in developing the theory below. Importantly, (3) and (5)
imply that the sequence τ c (unlike the sequence λc) is not tight as c→ −∞.
The failure of tightness leads to an escape of probability mass in the limit
and this has material consequences in terms of the properties of induced
confidence intervals and tests of predictability that are founded on unit root
test statistics like (2).

In what follows it is convenient to use a suitably extended probabil-
ity space where the convergences (5)-(6) may be treated as convergence in
probability. Using an expansion of the moment generating function given in
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Phillips (1987) we may then write in expansion form

(−2c)1/2
∫
Jc(r)dW (r) = ξ +Op

(
|c|−1/2

)
, (7)

from which
∫
Jc(r)dW (r) = ξ

(−2c)1/2
+Op

(
|c|−1

)
. By straightforward com-

putation

E
[{

(−2c)1/2
∫
Jc(r)dW (r)

}{
(−2c)1/2 Jc(1)

}]
= E

[{
(−2c)

∫ 1

0

∫ 1

0
Jc(r)e

c(1−s)dW (s)dW (r)

}]
= (−2c)

∫ 1

0
E [Jc(r)] e

c(1−r)dr = 0,

for all c, so that the limit variates ξ and η that appear in (5)-(6) are inde-
pendent. In this expanded probability space we have

(−2c)

∫
Jc(r)

2dr = 1 + 2

∫
Jc(r)dW (r)− Jc(1)2

= 1 + 2
ξ

(−2c)1/2

{
1 +Op

(
|c|−1/2

)}
− η2

−2c

{
1 +Op

(
|c|−1/2

)}
. (8)

As shown in the Appendix, using (8) and binomial expansion for large |c| in
(3) produces the following asymptotic representation of the t ratio τ c

τ c =

{
1

2
ξ − |c|

1/2

21/2
− 1

23/2 |c|1/2
− ϕ

25/2 |c|1/2
+O

(
1

|c|

)}{
1 +Op

(
|c|−1/2

)}
,

(9)
where

ϕ = 3
(
ξ2 − 1

)
−
(
η2 − 1

)
is a weighted linear combination of chi-squared variates, each with unit de-
gree of freedom, and centred to have zero mean. Importantly, note that

there is a non-random term − |c|
1/2

21/2
− 1

23/2|c|1/2
in (9) and the leading distrib-

utional term is no longer ξ ≡ N (0, 1) but 1
2ξ = N

(
0, 1

4

)
. This change arises

because we are dealing with an expansion of the miscentred test statistic
tρ̂ = ρ̂−1

σρ̂
not the correctly centred t ratio tρ̂,ρ := ρ̂−ρn

σρ̂
⇒ ξ.

The random variable ξ occurs not only in the limit of the numerator (5)
but also in the expansion of the denominator standard error σρ̂ (as is appar-
ent from (4)), thereby contributing to the dependence between numerator

5



and denominator of the limit variate in the near integrated case. Hence, we
end up with a bias term in the approximating (normal) distribution based
on the first three terms of (9):

τ c ∼ N
(
−|c|

1/2

21/2
− 1

23/2 |c|1/2
,
1

4

)
+Op

(
1

|c|1/2

)
. (10)

The distribution (9) delivers approximate percentiles of τ c based on the local
to unity limit theory of τ c when |c| is large. These percentile functions are
needed in the inversion process and produce the confidence belts used in the
confidence interval construction.

Fig. 1: Confidence belts (at levels 2.5% and 97.5%) based on local to unity
(ρ = 1 + c

n) limit theory for the t ratio tρ̂ = ρ̂−1
σρ̂
, shown against fitted

regression curves of the form f (c) = α0 + α1 |c|1/2 + α2 |c|−1/2 , as
suggested by the asymptotic functional form of the belts given in (13).

To illustrate, the 21
2% and 971

2% confidence belts produced from τ c when
the generating mechanism is a local to unity process are shown in Fig. 1 over
the very large region−450 < c < −15. These confidence belts were computed
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using 100,000 replications and a grid of 20,000 values of c using the model
(1) with Gaussian errors and a sample size of n = 1, 000. They can be used
to execute the inversion of the t ratio τ c to produce an induced confidence
interval for c for any given value of the test statistic tρ̂, as suggested in
Stock (1991), where the graphs and tables are given over a smaller region
−40 < c < 5 that nests the origin. (Table 1 of the implementation paper of
Campbell and Yogo (2005) gives the belts and implied confidence sets for c
over the slightly wider region−67 < c < 5.) In addition to the two confidence
belts, Fig. 1 also shows least squares regression curves α̃0 + α̃2 |c|1/2 +

α̃3 |c|−1/2 , showing the good conformity of this asymptotic functional form
to the two belts over the broad region −450 < c < −15.

2.2 Induced confidence intervals for c and ρ

Using confidence belts obtained numerically in the manner just described,
Stock (1991) suggested that a 100 (1− α) % confidence set can be con-
structed as S (τ) =

{
c : fL,α/2 (c) ≤ τ ≤ fU,α/2 (c)

}
where fL,α/2 (c) and

fU,α/2 (c) are the lower α/2 and upper 1−α/2 percentiles of τ c as a function
of c. Taking fL,α/2 (c) and fU,α/2 (c) to be strictly increasing in c, Stock
(1991) numerically inverted the test critical values in the belts to yield the
confidence interval {

c : f−1
U,α/2 (τ̂) ≤ c ≤ f−1

L,α/2 (τ̂)
}

(11)

for c, where (11) is calculated for some given observed t ratio τ̂ . Importantly,
the confidence interval (11) is based on the limit theory for the t ratio τ c
under the assumption of model (1) with a local to unity coeffficient of the
explicit form ρ = 1+ c

n . Associated with (11) we have the implied confidence
interval for ρ, viz,{

ρ = 1 +
c

n
: f−1

U,α/2 (τ̂) ≤ c ≤ f−1
L,α/2 (τ̂)

}
. (12)

If this confidence interval were uniformly valid in the sense of Miku-
sheva (2007) then it would apply for all c, including the limiting case where
c→ −∞. But uniformity fails because the distribution on which this confi-
dence interval is based is the local to unity asymptotic theory for a unit root
test, which is miscentred as c→ −∞. This distribution produces the limits
f−1
U,α/2 (τ̂) and f−1

L,α/2 (τ̂) in (11) and these are obtained by reading off the val-
ues of c that correspond to the observed τ̂ in the calculated confidence belts
(computed using the local to unity limit theory, as we have done in Fig. 1).
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This process amounts to solving an equation for c based on the form of the
confidence belts, for some given τ̂ . As the argument above leading to (10)
shows, the distribution that produces the confidence belts is approximately

normal with mean − |c|
1/2

21/2
− 1

23/2|c|1/2
and variance 1

4 . This distribution di-

verges as c → −∞ and the divergence is mirrored in the behavior of the
confidence belts shown in Fig. 1. The reason for the divergence is that the
unit root test statistic tρ̂ is miscentred and has a divergent component —the
second term of (3). This miscentering ensures, of course, that the unit root
test has full power of unity in the limit as c → −∞ (Phillips, 1987). But
it also means that the sequence of distributions is not tight and that the
stationary case (when c → −∞) relies on a divergent distribution. More-
over, the manner of the divergence is nonlinear, as reflected in the mean of
the approximating distribution (10) which is nonlinear in c. This failure in
tightness and the nonlinearity in c ends up distorting the form and location
of the induced confidence intervals obtained from the confidence belts for
large c. This phenomenon will become clearer in the argument that follows.

The confidence belts have the explicit asymptotic form{
fL,α/2 (c) , fU,α/2 (c)

}
=

{
−|c|

1/2

21/2
− 1

23/2 |c|1/2
− zα/2

√
1

4
,−|c|

1/2

21/2
− 1

23/2 |c|1/2
+ zα/2

√
1

4

}

=

{
−|c|

1/2

21/2
− 1

23/2 |c|1/2
−
zα/2

2
,−|c|

1/2

21/2
− 1

23/2 |c|1/2
+
zα/2

2

}
, (13)

where zα/2 is the 1 − α/2 percentile of the standard normal distribution
N (0, 1) . Note that this interval has length 2 × zα/2

2 = 1.96 for a 95%
interval and this length conforms with the vertical distance between the
belts shown in Fig. 1. We can proceed to derive the length of the in-
duced confidence intervals of c (and for ρ) and the coverage probability

P
{
f−1
U,α/2 (τ̂) ≤ c ≤ f−1

L,α/2 (τ̂)
}
of the interval when the true ρ is fixed and

stationary, i.e., |ρ| < 1, by considering the corresponding limits of these
quantities at the boundary of the local to unity limit theory when c→ −∞.

The asymptotic approximation ((10) that is used in constructing the
confidence interval by inversion can be written as

τ c = −|c|
1/2

21/2
− 1

23/2 |c|1/2
− Z

2
+Op

(
1

|c|1/2

)
, with Z ≡ N (0, 1) . (14)
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More specifically for the lower limit with percentile α/2 (the curve furthest
from the origin in Fig. 1 in the 2.5% case)

fL,α/2 (τ̂) ∼ −|c|
1/2

21/2
− 1

23/2 |c|1/2
− ZU

2
,

and for the upper limit with percentile 1 − α/2 (the curve closest to the
origin in Fig. 1 in the 97.5% case)

fU,α/2 (τ̂) ∼ −|c|
1/2

21/2
− 1

23/2 |c|1/2
− ZL

2
,

where ZU = zα/2 and ZL = −zα/2 are the upper and lower symmetric α/2
percentiles of Z. Inverting equation (14) for c we find that

|c|1/2 +
1

2 |c|1/2
= −21/2

{
τ c +

Z
2

}
+Op

(
1

|c|1/2

)
. (15)

Solving (14) for τ c = τ̂ at these percentiles we have the following expressions1

for the lower and upper limits cL = f−1
U,α/2 (τ̂) and cU = f−1

L,α/2 (τ̂) :

|cL|1/2 +
1

2 |cL|1/2
= 21/2

{
−τ̂ − ZL

2

}
+Op

(
1

|c|1/2

)
,

|cU |1/2 +
1

2 |cU |1/2
= 21/2

{
−τ̂ − ZU

2

}
+Op

(
1

|c|1/2

)
.

Hence

|cL|+
1

4 |cL|
+ 1 ' 2

{
−τ̂ − ZL

2

}2

, |cU |+
1

4 |cU |
+ 1 ' 2

{
−τ̂ − ZU

2

}2

,

so that, up to an error of O
(
|c|−1/2

)
and using the fact that c = − |c| for

all large |c| , we have2

cL = −2

{
τ̂2 + ZLτ̂ +

Z2
L

4

}
− 1 = −2

(
τ̂2 + ZLτ̂

)
− Z

2
L

2
− 1, (16)

cU = −2

{
τ̂2 + ZU τ̂ +

Z2
U

4

}
− 1 = −2

(
τ̂2 + ZU τ̂

)
− Z

2
U

2
− 1. (17)

1Note that for large |c| we have c = − |c| and τ̂ < 0. Also −ZL > −ZU and so
−τ̂ − ZL

2
> −τ̂ − ZU

2
.

2For large |c| , τ̂ < 0, and ZL = −zδ/2 < 0 while ZU = zδ/2 > 0. So τ̂2+τZL > τ̂2+τZU
and cL < cU.
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The length of the CI for c is therefore

|cL − cU | = 2

∣∣∣∣(ZU −ZL) τ̂ +
1

4

(
Z2
U −Z2

L

)∣∣∣∣ , (18)

whose behavior depends on that of the t ratio τ̂ .

2.3 Properties in the stationary case

We are interested in the properties of this confidence interval construction
at the limits of the domain of definition of the local to unity model cor-
responding to the stationary case. In that case, under a model with fixed
|ρ| < 1 we have the following limits for the correctly centred statistics

√
n (ρ̂− ρ)√

1− ρ2
⇒ N (0, 1) , tρ̂,ρ =

ρ̂− ρ
σρ̂

⇒ N (0, 1) ,

which results hold for all fixed |ρ| < 1 as well as uniformly over all |ρ| < 1
for which n (ρ− 1)→ 0, as shown in Giraitis and Phillips (2006). Next, take
a probability space for which the convergences apply in probability, so that
for fixed |ρ| < 1

tρ̂,ρ =
ρ̂− ρ
σρ̂

= ζ + op (1) , ζ ≡ N (0, 1) , (19)

and then

tρ̂ =
ρ̂− 1

σρ̂
=
ρ̂− ρ+ (ρ− 1)

σρ̂
= tρ̂,ρ +

√
n (ρ− 1){

σ̂2/
(

1
n

∑n
t=1 x

2
t−1

)}1/2

= {ζ + op (1)}+

√
n (ρ− 1)

{(1− ρ2) + op (1)}1/2

= −
√
n

(
1− ρ
1 + ρ

)1/2

+ ζ + op (1) = −
√
n

(
1− ρ
1 + ρ

)1/2

+Op (1) .(20)

Setting

τ̂ = tρ̂ = −
√
n

(
1− ρ
1 + ρ

)1/2

+ ζ + op (1) (21)

in (18) we have

|cL − cU | = 2

∣∣∣∣∣(ZU −ZL)

(
−
√
n

(
1− ρ
1 + ρ

)1/2

+ ζ + op (1)

)
+

1

4

(
Z2
U −Z2

L

)∣∣∣∣∣ .
(22)
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The length of the confidence interval [ρL, ρU ] for ρ that is implied by inver-
sion from an assumed local to unity model ρ = 1+ c

n is |ρL − ρU | =
∣∣ cL−cU

n

∣∣.
When the true ρ is fixed and |ρ| < 1 we deduce from (22) that

|ρL − ρU | = 2

∣∣∣∣∣(ZU −ZL)

(
− 1√

n

(
1− ρ
1 + ρ

)1/2

+
ζ

n
+ op

(
n−1

))
+

1

4n

(
Z2
U −Z2

L

)∣∣∣∣∣
=

2√
n

(
1− ρ
1 + ρ

)1/2

|ZU −ZL|

×
∣∣∣∣∣1−

(
1 + ρ

1− ρ

)1/2 [ ζ√
n

+
1

4
√
n

(
Z2
U −Z2

L

)]
+ op

(
n−1/2

)∣∣∣∣∣
=

2√
n

(
1− ρ
1 + ρ

)1/2

|ZU −ZL|
{

1 +Op

(
1√
n

)}
.

Hence, the implied confidence interval for ρ has the following average length
up to an error of Op

(
n−1

)
2√
n

(
1− ρ
1 + ρ

)1/2

|ZU −ZL| =
4√
n

(
1− ρ
1 + ρ

)1/2

zα/2, (23)

when ZL = −zα/2 and ZU = zα/2 for a central confidence interval.
Under the assumed stationary (true) model with |ρ| < 1 the standard

confidence interval based on tρ̂,ρ is

{
ρ̂± zα/2σρ̂

}
=

{
ρ̂± zα/2

(
1− ρ2

n
+Op

(
1

n3/2

))1/2
}
, (24)

whose average length up to an error of Op
(
n−1

)
is

2zα/2

(
1− ρ2

n

)1/2

= 2zα/2
(1− ρ)1/2 (1 + ρ)1/2

√
n

=
2√
n

(
1− ρ
1 + ρ

)1/2

(1 + ρ) zα/2 ≤
4√
n

(
1− ρ
1 + ρ

)1/2

zα/2. (25)

It follows that the implied confidence interval obtained by inversion of the
local to unity confidence belts for a localizing parameter c based on the
unit root test statistic tρ̂ = ρ̂−1

σρ̂
is not equivalent to that of the standard

confidence interval that applies in the stationary case when c→ −∞. Hence,
this confidence interval is not uniform over ρ.
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As is apparent from the inequality (25), the implied confidence interval
from inversion of local to unity limit theory has length that is greater than
that of the standard interval. The length exceeds that of the standard
interval by the factor 2/ (1 + ρ) , which exceeds 2 for ρ < 0. As ρ → 1,
on the other hand, the ratio approaches unity and the lengths of the two
confidence intervals are the same, as the limit theory in Phillips (1987) and
Giraitis and Phillips (2006) predicts. In effect, the lower boundary of the
local to unity domain as c → −∞ corresponds to the upper boundary (of
the mildly integrated region) for which n (1− ρ)→∞.

Next consider the coverage probability of these intervals. From (16) and
(17), the interval for c is

[cL, cU ] =

[
−2
(
τ̂2 + ZLτ̂

)
−
(
Z2
L

2
+ 1

)
,−2

(
τ̂2 + ZU τ̂

)
−
(
Z2
U

2
+ 1

)]
,

(26)
which implies the following confidence interval for ρ

[ρL, ρU ] =

[
1− 2

n

(
τ̂2 + ZLτ̂

)
− 1

n

(
Z2
L

2
+ 1

)
, 1− 2

n

(
τ̂2 + ZU τ̂

)
− 1

n

(
Z2
U

2
+ 1

)]
.

(27)
The required coverage probability is P {ρ ∈ [ρL, ρU ]} .We find the form taken
by this probability in the stationary case |ρ| < 1. From (20), we know that
τ̂ has the limit behavior τ̂ = −

√
nA

1/2
ρ + ζ + op (1) , where Aρ = 1−ρ

1+ρ . Hence

τ̂2 + Z τ̂ =
{
−
√
nA1/2

ρ + ζ
}2

+ Z
{
−
√
nA1/2

ρ + ζ
}

+ op (1)

= nAρ − (2ζ + Z)
√
nA1/2

ρ +Op (1) .

Then, up to Op
(
n−1/2

)
, the interval (27) has the form

[ρL, ρU ] =

[
1− 2Aρ +

2ζ + ZL√
n

A1/2
ρ , 1− 2Aρ +

2ζ + ZU√
n

A1/2
ρ

]
, (28)

and we can compute the coverage probability using the distribution of ζ =
N (0, 1) . Setting ZL = −zα/2 and ZU = zα/2 for the usual symmetric inter-
val, we have

Pζ {ρ ∈ [ρL, ρU ]}

= Pζ
{

1− 2Aρ +
2ζ − zα/2√

n
A1/2
ρ ≤ ρ ≤ 1− 2Aρ +

2ζ + zα/2√
n

A1/2
ρ

}
= Pζ

{
2ζ − zα/2√

n
A1/2
ρ ≤ ρ+ 2Aρ − 1 ≤

2ζ + zα/2√
n

A1/2
ρ

}
12



Now

ρ+ 2Aρ − 1 =
ρ2 − 2ρ+ 1

1 + ρ
= (1− ρ)Aρ.

So we find that

Pζ
{

2ζ − zα/2√
n

A1/2
ρ ≤ (1− ρ)Aρ ≤

2ζ + zα/2√
n

A1/2
ρ

}
= Pζ

{
2ζ − zα/2 ≤

√
n (1− ρ)A1/2

ρ ≤ 2ζ + zα/2

}
= Pζ

{√
n

2
(1− ρ)A1/2

ρ −
zα/2

2
≤ ζ ≤

√
n

2
(1− ρ)A1/2

ρ +
zα/2

2

}
→ 0, if

√
n (1− ρ)→∞ as n→∞. (29)

It follows that Stock’s (1991) confidence interval based on inverting a unit
root test using local to unity limit theory has zero coverage probability as-
ymptotically as c → −∞ whenever

√
n (1− ρ) → ∞. In particular, the

probability that the true value of ρ lies to the right of the interval [ρL, ρU ] is

Pζ
{
ζ ≤

√
n

2 (1− ρ)A
1/2
ρ +

zα/2
2

}
, which tends to unity whenever

√
n (1− ρ)→

∞. These asymptotics explain the simulation findings in Hansen (1999),
where the Stock confidence intervals were shown to be “poor for ρ = 0.6
with an error that increases with the sample size”and with the true value
lying to the right of the confidence interval in 100% of the simulations when
n = 240 and ρ = 0.6, precisely as predicted in (29).

1 1

4

2

rho

rho_bar

Fig. 2: Plot of ρ̄ = 3ρ−1
ρ+1 (solid green) and 45o line (dashed black).
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The induced confidence interval (28) is centred on

ρ̄ = 1− 2Aρ =
3ρ− 1

ρ+ 1
(30)

and the interval shrinks to the pseudo true value ρ̄ as n→∞. Observe that
ρ − ρ̄ = (ρ−1)2

ρ+1 > 0, so that ρ̄ < ρ for all |ρ| < 1 and ρ̄ equals ρ if and only
if ρ = 1 (see Fig. 2). Note that when the true ρ = 0, ρ̄ = −1 and when
ρ = 0.5, ρ̄ = 1/3. So the bias in ρ is substantial for much of the stationary
region.

3 Hansen and Mikusheva Constructions

Hansen (1999) and Mikusheva (2007) suggested to construct confidence in-
tervals by performing test inversion with a properly centred t-ratio statistic
(Hansen) or a general test function involving a centred numerator and sepa-
rate denominator components (Mikusheva). These suggestions mirror earlier
work by Andrews (1993), under Gaussianity, and bootstrap test inversion
methods in the statistical literature (Carpenter, 1999). In place of (2), these
approaches effectively amount to working with the statistic

tρ̂,ρ =
n (ρ̂− ρ){

σ̂2/
(
n−2

∑n
t=1 x

2
t−1

)}1/2
=⇒

∫
JcdW(∫

J(r)2dr
)1/2 := λc, (31)

or a coeffi cient based version of the test instead.
Proceeding in the same way as above for large |c|, we find

λc =
ξ
{

1 +Op

(
|c|−1/2

)}
{

1 +
(

2 ξ

(−2c)1/2
− η2

−2c

){
1 +Op

(
|c|−1/2

)}}1/2

= ξ

{
1− ξ

(−2c)1/2
+Op

(
1

c

)}{
1 +Op

(
|c|−1/2

)}
=

{
ξ − 1

(−2c)1/2
− ξ2 − 1

(−2c)1/2
+Op

(
1

c

)}{
1 +Op

(
|c|−1/2

)}
,

in place of (9) and

λc ∼ N
(
− 1

21/2 |c|1/2
, 1

)
+Op

(
1

|c|1/2

)
= N (0, 1) +Op

(
1

|c|1/2

)
.
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in place of (10). The induced confidence interval for c upon inversion of tρ̂,ρ
is, up to an error of Op

(
|c|−1/2

)
{
fL,α/2 (tρ̂,ρ) , fU,α/2 (tρ̂,ρ)

}
=

{
− 1

21/2 |c|1/2
− zα/2,−

1

21/2 |c|1/2
+ zα/2

}
∼

{
−zα/2,+zα/2

}
, as c→ −∞.

In view of the centred form of the t ratio tρ̂,ρ in (31), the corresponding
induced interval for ρ when c → −∞ is simply

{
ρ̂− zα/2σρ̂, ρ̂+ zα/2σρ̂

}
,

the same as the classical stationary interval based on normal asymptotics.
The difference between using the unit root test statistic and centred

statistic for inversion can be further explained in terms of the simple rela-
tionship between the two statistics

tρ̂,ρn =
ρ̂− 1

σρ̂
+

1− ρn
σρ̂

= tρ̂ +
1− ρn
σρ̂

,

and noting the difference in the treatment of the second component in the
two approaches when ρn = 1+ c

n . When inverting the local to unity statistic
tρ̂, the limit behavior of σρ̂ under local to unity asymptotics is imposed,

effectively replacing σρ̂ =
{
σ̂2/

∑n
t=1 x

2
t−1

}1/2
by its limiting version under

these asymptotics, viz., n
(∫
Jc(r)

2dr
)1/2

, so that

1− ρn
σρ̂

∼ n (1− ρn)

(∫
Jc(r)

2dr

)1/2

= −c
(∫

Jc(r)
2dr

)1/2

,

as in (2). As the analysis above shows, it is this term that produces the
biased confidence intervals in the limit as c→ −∞. On the other hand, use
of the correctly centred statistic automatically bias-adjusts for this quantity,
as is apparent in (31).

4 Predictive Regression Tests

In predictive regressions it is now common empirical practice to allow for
unknown persistence in the regressor-predictors. Such predictors complicate
testing procedures by introducing nonstandard limit theory and dependence
on nuisance parameters like the localizing coeffi cient in a near integrated
regressor. Various approaches are now available to deal with these compli-
cations. A recent overview is given in Phillips and Lee (2012a).
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A popular procedure was implemented in Campbell and Yogo (2006,
hereafter CY), following an earlier suggestion by Cavanagh, Stock and El-
liott (1995, hereafter CSE). These procedures both use a Bonferroni method
in conjunction with Stock’s (1991) confidence interval construction for the
autoregressive coeffi cient of the regressor-predictor to produce tests of pre-
dictability that are intended to be robust to persistence. Our interest here
is in the asymptotic properties of the implied predictability tests as the sta-
tionarity region in the regressor is approached to assess whether they are
uniform over stationary and local to unity ρ.

We start with a brief outline of the two procedures. Both the Q test of
CY and the t ratio test in CSE involve t ratios computed by simple regression
in combination with Stock’s (1991) confidence interval construction. To
fix ideas we consider the standard predictive regression model (without an
intercept to simplify matters as there are no differences of any import for
our present purposes when an intercept is included)

yt = βxt−1 + u0t (32)

xt = ρnxt−1 + uxt (33)

with ρn = 1 + c
n for c ≤ 0 and mds innovations ut = (u0t, uxt) for which

EFt−1ut = 0, EFt−1
[
utu
′
t

]
=

[
σ00 σ0x

σx0 σxx

]
=: Σ,

and

n−1/2

bn·c∑
t=1

ut ⇒ B (·) =

[
B0 (·)
Bx (·)

]
,

where B is Brownian motion with variance matrix Σ.
Upon fitting (32) by least squares we have the centered decomposition

β̂ − β =

∑n
t=1 xt−1u0t∑n
t=1 x

2
t−1

=

∑n
t=1 xt−1u0.xt∑n
t=1 x

2
t−1

+

(
σ0x

σxx

) ∑n
t=1 xt−1uxt∑n
t=1 x

2
t−1

=

∑n
t=1 xt−1u0.xt∑n
t=1 x

2
t−1

+

(
σ0x

σxx

)
(ρ̂− ρn) ,

where u0.xt = u0t − σ0x
σxx

uxt. Set û0t = yt − β̂xt and σ̂2 = n−1
∑n

t=1 û
2
0t. The

centred limit theory for ρ̂ and β̂ is

n (ρ̂− ρn) =⇒
∫
Kc(r)dBx(r)∫
Kc(r)2dr

, (34)
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and

n
(
β̂ − β

)
=

1
n

∑n
t=1 xt−1u0t

1
n2
∑n

t=1 x
2
t−1

=⇒
∫
Kxc(r)dB0.x(r)∫
Kxc(r)2dr

+
σ0x

σxx

∫
Kc(r)dBx(r)∫
Kc(r)2dr

,

(35)
where Kc(r) =

∫ r
0 e

c(r−s)dBx (s) = σ
1/2
xx

∫ r
0 e

c(r−s)dWx (s) =: σ
1/2
xx Jc (r) and

Wx is standard Brownian motion. As discussed above, the corresponding
unit root t- ratio statistic is

tρ̂ =
ρ̂− 1

σρ̂
⇒
∫
Jc(r)dWx(r)(∫
Jc(r)2dr

)1/2 + c

(∫
Jc(r)

2dr

)1/2

. (36)

Defining σ̂2
00 = n−1

∑n
t=1

(
yt − β̂xt

)2
and σ2

β̂
= σ̂2

00/
∑n

t=1 x
2
t−1, the t-ratio

test on the regression coeffi cient β is

tβ̂ =
β̂ − β
σβ̂

=⇒
∫
Jc(r)dB0.x(r)(

σ00

∫
Jc(r)2dr

)1/2 +
σx0

σ
1/2
xx

∫
Jc(r)dWx(r)(

σ00

∫
Jc(r)2dr

)1/2 (37)

=

(
σ00.x

σ00

)1/2

Z +
σx0

(σxxσ00)1/2

( ∫
Jc(r)dWx(r)(∫
Jc(r)2dr

)1/2
)

(38)

= :
(
1− δ2

)1/2
Z + δηLUR (c) , (39)

where σ00.x = σ00 − σ2
x0/σxx, δ = σx0

(σxxσ00)1/2
, 1 − δ2 = σ00.x

σ00
, B0.x(r) =

B0(r)− σx0
σxx

Bx (r) , Z ≡ N (0, 1) , and

ηLUR (c) =

∫
Jc(r)dWx(r)(∫
Jc(r)2dr

)1/2 , (40)

giving a mixture limit theory in (39) that depends on c and the correlation
parameter δ. The limit variates Z and ηLUR (c) in (39) are independent in
view of the independence of B0.x and Bx. When δ = 0, we have standard
asymptotic normal inference. When δ = 1 we have strong endogeneity and
local unit root limit theory (LUR).

CSE and CY address inference when δ 6= 0 by using a Bonferroni method:
in effect, finding possible values for c (or ρ) and using the most conservative
ones to produce a robust test. The approach can be used with various test
statistics. The two methods considered below are those used in CSE and
CY.
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4.1 The t ratio test tβ̂.

The t ratio statistic tβ̂ is considered in both CSE and CY, although CY
recommend for implementation a different t-ratio test called the Q test,
which will be discussed next. The mixture limit theory of tβ̂ given in (39)
means that tests and confidence intervals need to allow for the unknown
value of c. A 100 (1− α1) % confidence interval (CI) is constructed for c
using unit root test inversion as in Stock (1991). For each c in this CI, a
100 (1− α2) % CI is constructed for β, denoted as CIβ|c (α2) . A CI for β
that is free of c is obtained as the union

CIβ (α) =
⋃

c∈CIc(α1)

CIβ|c (α2) .

More specifically, the estimate ρ̂ is used to find a confidence interval CIc(α1) =
[cL (α1) , cU (α1)] for c by inverting a t ratio ADF unit root test statistic for
ρ as in Stock (1991) or, in the case of CY, a version of this statistic that
improves effi ciency in trend removal by quasi-differencing (so-called GLS
detrending), which is unnecessary in the present case. Then (given δ or
a consistent estimate of δ) the authors use the critical value dtβ̂ ,c, 12α2

of

tβ̂ ∼ δηLUR (c) +
(
1− δ2

)1/2
Z at the percentile 1

2α2 to find the following CI
for β :

CIβ(α1, α2) =
[
dβL(α1, α2), dβU (α1, α2)

]
:=

[
min

cL(α1)≤c≤cU (α1)
dtβ̂ ,c,

1
2
α2
, max
cL(α1)≤c≤cU (α1)

dtβ̂ ,c,1−
1
2
α2

]
. (41)

It follows that as n→∞

Pr
(
tβ̂ /∈

[
dβL(α1, α2), dβU (α1, α2)

])
→ Pr

(
δηLUR (c) +

(
1− δ2

)1/2
Z /∈

[
dβL(α1, α2), dβU (α1, α2)

])
(42)

≤ α1 + α2, (by Bonferroni)

thereby achieving a test and confidence interval for β that is robust to per-
sistence, as measured by the localizing coeffi cient c or ρn.

We now consider the implications for this predictability test of the re-
sults obtained above for test inversion confidence interval construction in the
stationary case |ρ| < 1. As noted, the interval CIc(α1) = [cL (α1) , cU (α1)]
advances progressively towards −∞ as xt approaches stationarity. Although
the implied confidence interval for ρ has zero coverage probability asymp-
totically, it nonetheless still holds that c→ −∞ for all c ∈ [cL (α1) , cU (α1)]
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when ρ is stationary, as is immediately evident from setting (21) in (26).
Hence, the actual coverage probability associated with the interval CIc(α1)
tends to unity rather than 1−α1 as n tends to infinity in the stationary case.
In effect, the restriction c ∈ [cL (α1) , cU (α1)] is vacuous in the stationary
case because both limits cL (α1) and cU (α1) → −∞ and these limits are
dominated by τ̂2 not the size-determining quantities ZLτ̂ or ZU τ̂ in (26).
The probability mass α1 = P {c 6∈ [cL (α1) , cU (α1)]} therefore escapes to
zero due to the failure of tightness in the sequence of unit root test statistics
from which this interval is constructed.

Moreover, when c → −∞, we have ηLUR (c) →d ξ ≡ N (0, 1) and the
limit variate ξ is independent of Z in (39), as remarked above. Hence, for
all c ∈ [cL (α1) , cU (α1)] we actually have(

1− δ2
)1/2

Z + δηLUR (c)→d

(
1− δ2

)1/2
Z + δξ ≡ N (0, 1) (43)

when ρ is stationary and n → ∞. The confidence interval in the limit for
the stationary case then has coverage probability determined only by the
controlled level α2 of the test (39). The CSE test is therefore undersized in
the limit (here by the full probability α1 which is lost in the limit by test
inversion and failure of tightness), just as it is also (partially) undersized
for finite values of c (because of the Bonferroni bounds). Hence, the CSE
confidence interval has excess coverage probability for stationary ρ and has
longer length than the usual stationary regression interval. So the CSE
confidence intervals are not uniform with the stationary case in the limit
and they remain wider than the usual stationary intervals with their nominal
coverage level understating the actual coverage probability.

The limit statistic ηLUR (c) in (40) that is used in the CSE confidence in-
terval is properly centred; and the improperly centred unit root test statistic
that is used in the test inversion to create the induced confidence interval
for c is effective in revealing that c → −∞ when ρ is stationary. But the
critical values of the CSE test are not based on the correct limit theory (43)
in this case, so the test is conservative because of the use of the Bonferroni
bounds and the induced confidence interval correspondingly has incorrect
coverage probability in the stationary limit.

Fig. 3 shows actual coverage probabilities at a nominal asymptotic level
of 90% of the CSE confidence intervals for the predictive regression co-
effi cient β for regressors xt with AR coeffi cient ρ ∈ {0.01, 0.02, ..., 0.99} ,
n = 200, and endogeneity coeffi cient r0x ∈ {−0.99,−0.9,−0.6,−.04} where
r0x = δ = σx0/ (σxxσxx)1/2 . The results are based on 400, 000 replications
and use model (32) and the confidence belts shown in Fig. 1 for the in-
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version of the unit root t statistic tρ̂. Additional background computations
were needed to tabulate the distribution (43) on a detailed grid of potential
values of the localizing coeffi cient c.

Fig. 3: Coverage probabilities of CSE and stationary confidence intervals
for the predictive regression coeffi cient β plotted against the autoregressive
coeffi cient ρ of xt, shown for various values of the endogeneity coeffi cient
r0x. The nominal asymptotic level is 90%, sample size is n = 200, and the

number of replications is 400, 000.

Evidently the coverage probability for the CSE intervals is close to 95%
for stationary ρ, as predicted by the asymptotic theory. For ρ close to unity,
the coverage probability decreases towards 90% but still reflects undersizing
from the use of Bonferroni bounds. The CSE intervals have coverage closest
to nominal coverage when ρ is close to unity and there is strong endogeneity
(δ = −0.99,−09) in the regression, whereas coverage is close to 95% when
δ = −0.4 in that case, again corroborating the asymptotics. Fig. 3 also
shows the coverage probability of the usual stationary interval, which is close
to the nominal 90% for all values of ρ < 0.99 but shows some undercoverage
for ρ = 0.99.
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4.2 The Q test

CY(2006) recommend a different t ratio test, called the Q test, that is based
on the augmented regression equation (c.f. Phillips and Hansen, 1990)

yt = βxt−1 +
σ0x

σxx
(xt − ρxt−1) + u0.xt.

Specifically, the Q test employs the following coeffi cient estimator (condi-
tional on ρ and with no need to fit an intercept here)

β̂ (ρ) =

∑n
t=1 xt−1

[
yt − σ̂x0

σ̂xx
(xt − ρxt−1)

]
∑n

t=1 x
2
t−1

,

where σ̂x0 and σ̂xx are obtained in the usual way from the least squares
residuals in regressions of (32) and (33). The induced confidence interval
for β is based on the t statistic tβ̂(ρ) for β̂ (ρ) and an asymptotic normal
distribution for tβ̂(ρ) (which is effectively the first term of (38)), together
with the confidence interval [ρL, ρU ] for ρ that is calculated using the unit
root test inversion process (based on the statistic tρ̂ calculated from the
autoregression (33)) which produces an induced confidence interval [cL, cU ]
for c. In the numerical implementation of their test, CY bound the interval
[cL, cU ] to lie within [−50, 5] , which arbitrarily restricts the allowable range
of c (and hence ρ), inducing bias if the true value lies outside these bounds.
This restriction is relaxed for the purpose of the following discussion, which
explores the properties of the CY procedure for large |c| and stationary ρ.

The asymptotic form of the induced interval [ρL, ρU ] is given by (28) in
the stationary ρ case. From (30), the interval [ρL, ρU ] is asymptotically cen-
tred on ρ̄ and shrinks to this pseudo value as n→∞ when |ρ| < 1. It follows
that the induced Bonferroni confidence interval for β is from CY(equations
(15)-(17), pp. 38-39) and conditional3 on σ̂x0 < 0 and ρU , ρL > 0

[βL (ρU ) , βU (ρL)] =
[
β̂ (ρU )− zα2/2σβ̂(ρ), β̂ (ρL) + zα2/2σβ̂(ρ)

]
, (44)

3 If σ̂x0 > 0 and ρU , ρL > 0 the corresponding confidence interval for β should be
[βL (ρL) , βU (ρU )]. This dependence of the interval on the signs of σ̂x0, ρL, and ρU does
not appear to be mentioned in CY (2006), so their stated interval only applies when
σ̂x0 < 0 and ρU , ρL > 0. CY do assume that the true covariance σx0 < 0 and for roots
ρ local to unity seem to presume that ρU , ρL > 0. Of course, σ̂x0 > 0 with probability
greater than zero even when the true covariance σx0 < 0.
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where σ2
β̂(ρ)

= σ̂2
00.x/

∑n
t=1 x

2
t−1 = σ̂2

00

(
1− δ̂2

)
/
∑n

t=1 x
2
t−1 →p 0. The in-

terval (44) correspondingly shrinks as n→∞ to

[βL (ρU ) , βU (ρL)] → β̄ := β +
σx0

σxx
(ρ− ρ̄)

= β +
σx0

σxx

(ρ− 1)2

ρ+ 1
6= β

for all |ρ| < 1 whenever σx0 6= 0. It follows that the CY confidence interval
based on the Q test has zero coverage probability in the limit for all station-
ary |ρ| < 1 whenever there is regressor endogeneity (σx0 6= 0). Observe that
the pseudo true value β̄ ≶ β according as σx0 ≶ 0 and the bias is greater the

greater is
∣∣∣ σx0σxx

∣∣∣ and the smaller is ρ.Moreover, the Q test is biased and, when
the true β = 0, the (two sided) test will erroneously indicate predictability
with probability approaching unity as n→∞.4

Fig. 4: Coverage probabilities of Campbell-Yogo and stationary confidence
intervals for the predictive regression coeffi cient β plotted against the
autoregressive coeffi cient ρ of xt, shown for various values of the

endogeneity coeffi cient r0x. The nominal asymptotic level is 90%, sample
size is n = 200, and the number of replications is 50, 000.

4One sided tests correspondingly have size unity or zero depending on the direction of
the test. For instance, if σx0 < 0 so that the probability limit β̄ < β, we would reject the
null β = 0 in a left sided test against β < 0 with probability unity in the limit or in a
right sided test against β > 0 with probability zero.
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Using the same design as in the simulations for CSE, Fig. 4 shows actual
coverage probabilities at a nominal asymptotic level of 90% of the CY con-
fidence intervals for the predictive regression coeffi cient β for regressors xt
with AR coeffi cient ρ ∈ {0.01, 0.03, ..., 0.99} , n = 200, and endogeneity co-
effi cient r0x ∈ {−0.99,−0.9,−0.6,−.04} where r0x = δ = σx0/ (σxxσxx)1/2 .
The results are based on 50, 000 replications and use model (32) and the
confidence belts shown in Fig. 1 for the inversion of the unit root t sta-
tistic tρ̂. Evidently the coverage probability monotonically declines with ρ,
with sharper declines that approach zero when there is stronger endogeneity
in the predictive regression (higher |δ0x|), thereby corroborating the limit
theory. The graphs reveal that the CY Q test is typically undersized for
ρ close to unity and seriously oversized when ρ is distant from unity. Also
shown in Fig. 3 is the coverage probability of the standard regression confi-
dence interval based on stationary xt with strong endogeneity r0x = −0.99.
The stationary interval has close to nominal 90% coverage for all values of
ρ ≤ 0.99. Note that with n = 200, ρ = 0.99 corresponds to c = −2.0, so that
this value of ρ may be regarded as being in the local to unity range.5

5 Simple Extensions

The same results on zero coverage probability and distended length of the
induced confidence intervals apply when demeaned and detrended data are
used in the construction of unit root t- statistics. For example, in the de-
meanded case we need only note that

(−2c)1/2 J̃c (r) = (−2c)1/2 Jc (r)−(−2c)1/2
∫
Jc (s) ds = (−2c)1/2 Jc (r)+Op

(
1

|c|1/2

)
,

because (−2c)1/2 ∫ Jc (s) ds has zero mean and variance 1
−c + O

(
1
|c|2
)
→ 0

as c→ −∞. It follows that

(−2c)

∫
J̃(r)2dr = (−2c)

∫
J(r)2dr −

(
(−2c)1/2

∫
Jc (s) ds

)2

= (−2c)

∫
J(r)2dr +Op

(
1

|c|

)
,

5 In regressions with a fitted mean the autoregressive bias is well known to be greater
than in the zero intercept case that is considered here. Correspondingly, the stationary
test and confidence interval have more distortion, particularly for the strong endogenous
case in the immediate vicinity of unity (see Fig. 2 of Campbell and Yogo, 2006).
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and

(−2c)1/2
∫
J̃c(r)dW (r) = (−2c)1/2

∫
Jc(r)dW (r)− (−2c)1/2

∫
Jc (s) dsW (1)

= ξ +Op

(
|c|−1/2

)
,

so the earlier arguments continue to apply with the same error order as
c→ −∞.

The results here also hold when we use test statistics based on a local
alternative ρ̄ = 1 + c̄

n for some fixed c̄ < 0 rather than the usual unit root
statistic. The findings therefore apply to the procedure suggested in Elliott
and Stock (2001) involving inversion of a sequence of point optimal tests
based on some fixed local alternative.

6 Conclusion

Given the uncertainty over the persistence characteristics of economic and
financial data, the results presented here are relevant to much practical em-
pirical work where there is a need for robust inference. Applications of unit
root test inversion methods with local to unity asymptotics have been espe-
cially recommended for this purpose in the context of predictive regression.
But as shown here, these methods are not uniformly robust and can seri-
ously bias inference when the regressors are stationary. Inversion methods
that are robust can be constructed, as demonstrated in Hansen (1999) and
Mikusheva (2007), and these methods are mainly useful in a context where
there is dependence on a single localizing coeffi cient. Implementation of grid
procedures of this type can involve extensive tabulations that may require
billions of regressions. To illustrate the scale of the numerical work that
can be involved, the background grid computations for the tabulations of
the distribution (43) that were required for Fig. 3 involved 4 billion regres-
sions.6 An additional 160 million regressions were needed to compute the
curves shown in Fig. 3.7

Other methods, like the IVX instrumental variable method of Magdali-
nos and Phillips (2009), are also appropriate for inference in predictive

6Specifically, the computations involved 20, 000 grid points for the localizing coeffi cient
c, an additional 4 grid points for δ (r0x), and 50, 000 replications of regressions with a
sample size n = 1000. These simulations were performed in Gauss and took a week on a
machine with 8g RAM and two 2.3ghz processors.

7These computations involved 100 grid points for ρ, 4 grid points for δ (r0x), and
400, 000 replications of regressions with a sample size n = 200.
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regressions. The IVX method is particularly useful because it has wide
generality and applies to stationary, mildly integrated and local to unity
regressors (Kostakis et al, 2012). The method has the advantage of accom-
modating multiple regressors with varying degrees of persistence, as often
occurs in empirical work, as well as mildly explosive roots (Phillips and Lee,
2012b). Implementation is by straightforward linear regression (either a sin-
gle regression or a few regressions to allow for different weights in the IVX
instruments) and the use of standard statistical tables. These features make
the method convenient and robust for empirical work.

7 Appendix: derivation of equation (9)

From (3), (7) and (8) we have

τ c =
(−2c)1/2 ∫ Jc(r)dW (r)(

(−2c)
∫
Jc(r)2dr

)1/2 − |c|1/221/2

(
(−2c)

∫
Kc(r)

2dr

)1/2

=
ξ
{

1 +Op

(
|c|−1/2

)}
{

1 +
(

2 ξ

(−2c)1/2
− η2

−2c

){
1 +Op

(
|c|−1/2

)}}1/2

−|c|
1/2

21/2

{
1 +

(
2

ξ

(−2c)1/2
− η2

−2c

){
1 +Op

(
|c|−1/2

)}}1/2

= ξ

1− ξ

(−2c)1/2
+

η2

−4c
+

3

8

(
2

ξ

(−2c)1/2

)2

+ op

(
1

c

){1 +Op

(
|c|−1/2

)}

−|c|
1/2

21/2

1 +
ξ

(−2c)1/2
− η2

−4c
− 1

8

(
2

ξ

(−2c)1/2

)2

+ op

(
1

c

)
= −|c|

1/2

21/2
+

ξ
{

1− 1

2

}
− ξ2

(−2c)1/2
+
|c|1/2

21/2

(
η2

−4c

)
+
|c|1/2

21/2

1

8

(
2

ξ

(−2c)1/2

)2


×
{

1 +Op

(
|c|−1/2

)}
= −|c|

1/2

21/2
+

{
1

2
ξ − ξ2

21/2 |c|1/2
+

η2

25/2 |c|1/2
+

1

25/2

ξ2

|c|1/2

}{
1 +Op

(
|c|−1/2

)}
= −|c|

1/2

21/2
+

{
1

2
ξ − ξ2

21/2 |c|1/2

{
1− 1

4

}
+

η2

25/2 |c|1/2

}{
1 +Op

(
|c|−1/2

)}
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= −|c|
1/2

21/2
+

{
1

2
ξ − 3ξ2

25/2 |c|1/2
+

η2

25/2 |c|1/2

}{
1 +Op

(
|c|−1/2

)}
= −|c|

1/2

21/2
+

{
1

2
ξ − 3ξ2 − η2

25/2 |c|1/2

}{
1 +Op

(
|c|−1/2

)}
.

We therefore have the following asymptotic representation of the t ratio τ c
for large c

τ c = −|c|
1/2

21/2
+

{
1

2
ξ − 3ξ2 − η2

25/2 |c|1/2

}{
1 +Op

(
|c|−1/2

)}
= −|c|

1/2

21/2
+

{
1

2
ξ − 2

25/2 |c|1/2
−

3
(
ξ2 − 1

)
−
(
η2 − 1

)
25/2 |c|1/2

}{
1 +Op

(
|c|−1/2

)}
= −|c|

1/2

21/2
+

{
1

2
ξ − 1

23/2 |c|1/2
− ϕ

25/2 |c|1/2

}{
1 +Op

(
|c|−1/2

)}
,

with ϕ = 3
(
ξ2 − 1

)
−
(
η2 − 1

)
, giving the stated result.
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