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Abstract. We study conflict-free colorings, where the underlying set systems arise in
geometry. Our main result is a general framework for conflict-free coloring of regions with
low union complexity. A coloring of regions is conflict-free if for any covered point in the
plane, there exists a region that covers it with a unique color (i.e., no other region covering
this point has the same color). For example, we show that we can conflict-free color any
family of n pseudo-discs with O(log n) colors.

1. Introduction

In this paper we study coloring problems related to frequency-assignment problems in
cellular networks. In a geometric setting the problems are of the following two types:

CF-coloring of regions: Given a finite family S of n regions of some fixed type (such
as discs, pseudo-discs, axis-parallel rectangles, etc.), what is the minimum integer
k, such that one can assign a color to each region of S, using a total of at most k
colors, such that the resulting coloring has the following property: For each point
p ∈⋃b∈S b there is at least one region b ∈ S that contains p in its interior, whose
color is unique among all regions in S that contain p in their interior (in this case
we say that p is being “served” by that color). We refer to such a coloring as a
conflict-free coloring of S (CF-coloring in short).

∗ A preliminary version of this paper appeared in Proc. 19th Annual ACM Symposium on Computational
Geometery, San Diego, CA, June 8–10, 2003, pages 114–123. Work on this paper by the first author was
partially supported by NSF CAREER Award CCR-0132901. Work on this paper by the second author was
done while he was a Ph.D. student under the supervision of Prof. Micha Sharir.
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CF-coloring of a range space: A given set P of n points in Rd and a setR of ranges
(for example, the set of all discs in the plane) define a so-called range space
(P,R). Given such a range space, what is the minimum integer k, such that one
can color the points of P by k colors, so that for any r ∈ R with P ∩ r �= ∅, there
is at least one point q ∈ P ∩ r that is assigned a unique color among all colors
assigned to points of P∩r (in this case we say that r is “served” by that color). We
refer to such a coloring as a conflict-free coloring of (P,R) (CF-coloring in short).

The study of such problems, which was originated in [ELRS] and [Sm], was moti-
vated by the problem of frequency-assignment in cellular networks. Specifically, cellular
networks are heterogeneous networks with two different types of nodes: base stations
(that act as servers) and clients. The base stations are interconnected by an external fixed
backbone network. Clients are connected only to base stations; connections between
clients and base stations are implemented by radio links. Fixed frequencies are assigned
to base stations to enable links to clients. Clients, on the other hand, continuously scan
frequencies in search of a base station with good reception. The fundamental problem
of frequency-assignment in cellular networks is to assign frequencies to base stations so
that every client, located within the receiving range of at least one station, can be served
by some base station, in the sense that the client is located within the range of the station
and no other station within its reception range has the same frequency. The goal is to
minimize the number of assigned frequencies since the frequency spectrum is limited
and costly.

Suppose we are given a set of n base stations, also referred to as antennas. Assume,
for simplicity, that the area covered by a single antenna is given as a disc in the plane.
Namely, the location of each antenna (base station) and its radius of transmission is fixed
and is given (the transmission radii of the antennas are not necessarily equal). Even et al.
[ELRS] have shown that one can find an assignment of frequencies to the antennas with
a total of at most O(log n) frequencies such that each antenna (a base station) is assigned
one of the frequencies and the resulting assignment is free of conflicts, in the preceding
sense. Furthermore, it was shown that this bound is worst-case optimal. Thus, Even et
al. have shown that any family of n discs in the plane has a CF-coloring with O(log n)
colors and that this bound is tight in the worst case. Furthermore, such a coloring can be
found in polynomial time. The approach used in [ELRS] relies strongly on the fact that
the regions under consideration are discs.

In this paper we improve and extend the results of [ELRS] combining more involved
probabilistic and geometric ideas. Our main result, which is delegated to Section 3.1,
is a general probabilistic algorithm which CF-colors any set of n “simple” regions (not
necessarily convex) whose union has “low” complexity, using a “small” number of
colors. (The quoted terms are interrelated, in a manner stated more precisely in Section
3.1.) In particular, we show that if the regions under consideration have a union of
near linear complexity, then they can be CF-colored using a polylogarithmic number
of colors. This holds for pseudo-discs [KLPS], convex α-fat shapes [ES], and (α, β)-
covered objects [Ef]. This provides the first non-trivial and near-optimal bounds for one
of the problems that motivated the work of Even et al. [ELRS]. In practice, cellular
antennas are directional, and the region of influence of an antenna is a circular sector
with a central angle of 60◦. Since such sectors are fat and convex, our results thus imply
that those regions have a CF-coloring using a polylogarithmic number of colors.
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In Section 3.2 we refine the results of Section 3.1, deriving better bounds for some
special cases. We show that any set of n axis-parallel rectangles in the plane can be
CF-colored with O(log2 n) colors. We note that the assumption that the rectangles be
axis-parallel cannot be removed, for otherwise one can construct a setR of n rectangles
in which any CF-coloring ofR needs n colors.

In Section 4 we study the problem of CF-coloring of range spaces, where the under-
lying ranges are axis-parallel rectangles in the plane, and show that any n points can
be CF-colored with O(

√
n) colors with respect to axis-parallel rectangles (recall that in

this new version we color the points of P with respect to a family of ranges, whereas
in the preceding problem we colored the given regions). Using a different approach, we
also obtain non-trivial upper bounds on the number of colors needed in any CF-coloring
of a range space consisting of n points in Rd whose ranges are axis-parallel boxes. We
also study the special case when all the given points form the regular

√
n×√n grid and

show that in this case one can color the points with O(log n) colors and that this bound
is worst-case optimal. This bound holds for any dimension. Namely, for any fixed d one
can color the points of the d-dimensional regular n1/d × · · · × n1/d grid with O(log n)
colors with respect to axis-parallel boxes. In fact, we show that the constant in the big
“O” notation does not depend on the dimension d. We note that without the assumption
that the rectangles are axis-parallel, the problem becomes uninteresting. Indeed, any
planar set P of n points in general position (i.e., no three are collinear) needs n colors
in any CF-coloring of P with respect to arbitrarily oriented rectangles.

Finally, in Section 5, we generalize the notion of CF-coloring of range spaces and of
regions to what we call k-CF-coloring. That is, in the case of coloring a range space,
we say that a range is “served” if there is a color that appears in the range (at least
once and) at most k times, for some fix prescribed parameter k. A similar generalization
of k-CF-coloring a set of regions is also studied. For example, we show that there is a
range space consisting of n points for which any CF-coloring needs n colors but there
exists a 2-CF-coloring with O(

√
n) colors (and a k-CF-coloring with O(n1/k) colors

for any fixed k ≥ 2). We also show that any range space (P,R) (not necessarily in
geometry) with a finite VC-dimension c, can be k-CF-colored with O(log|P|) colors,
for reasonably large k. This relaxation of the model is applicable in the wireless scenario
since the real interference between conflicting antennas (i.e., antennas that are assigned
the same frequency and overlap in their coverage area) is a function of the number of
such antennas. This suggests that if for any given point, there is some frequency that is
assigned to at most a “small” number of antennas that cover this point, then this point
can still be served using that frequency because the interference between a small number
of antennas is low. This feature is captured by the notion of k-CF-coloring.

2. Preliminaries

We briefly introduce some notations and tools used in this paper. In the following, P
denotes a set of n points in Rd , and R denotes a set of ranges (for example, the set
of all discs in the plane). A range space S is a pair (X,R), where X is a (finite or
infinite) set and R is a (finite or infinite) family of subsets of X . If A is a subset of X
then �R(A) = {r ∩ A : r ∈ R} is the projection of R on A. In this paper we focus
on range spaces that arise naturally in combinatorial and computational geometry. One
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such example is the space S = (Rd ,H), whereH is the set of all half-spaces in Rd . For
a finite set of points P in Rd and a (finite or infinite) collection R of ranges, we abuse
the notation slightly and refer to the pair (P,R) as a range space, referring in fact to the
range space (P,�R(P)).

The “Delaunay” graph G = G(P,R) is the graph whose vertex set is P and whose
edges are all pairs (u, v) for which there exists a range r ∈ R such that r ∩ P = {u, v}.
We denote a range realizing an edge (u, v) ∈ G by ruv . WhenR is the set of all discs in
the plane and P is a finite set of points with no four of them co-circular, the “Delaunay”
graph of the range space (P,R) coincides with the classical definition of the Delaunay
triangulation of P .

A coloring f : P → {1, . . . , k} is a conflict-free coloring of (P,R) (CF-coloring
in short), if for any r ∈ R, such that P ∩ r �= ∅, there exists a color i , for which there
is a point p ∈ P ∩ r , such that f (p) = i , and no other point of P ∩ r is assigned the
color i . Any range r for which this property holds (regardless of whether the coloring is
conflict free) is said to be served by the coloring. We refer to the minimum number of
colors needed to CF-color (P,R) as the conflict-free chromatic number of (P,R) (or
CF-chromatic number).

For a set R of ranges in Rd , let kopt(n,R) denote the maximum number of colors
needed for the given setR, over all sets of n points in Rd .

A range space (P,R) is called monotone if for any P1 ⊂ P and for each r ∈ R with
|r ∩ P1| > 2 there exists a range r ′ ∈ R such that |r ′ ∩ P1| = 2, and r ′ ∩ P1 ⊂ r ∩ P1. It
is easy to verify that this property holds whenR is the set of all axis-parallel rectangles
in the plane.1

Even et al. have shown that the problem of CF-coloring a family S of n discs in the
plane can be reduced to that of CF-coloring a range space (P,R) where P is a set of n
points in R3 andR is the set of all half-spaces.

A natural approach (used in [ELRS]) for CF-coloring of a monotone range space
(P,R) is to pick a large independent set L1 in G(P,R), color all the points of L1 by a
single color, and repeat this process on (P\L1,R). We summarize this approach in the
following algorithm:

Algorithm 1. CFcolor(P,R): CF-color a set P with respect to a
set of rangesR.

1: i ← 0: i denotes an unused color
2: P1 ← P
3: whilePi+1 �= ∅
4: Increment: i ← i + 1
5: Find an independent set P ′i ⊂ Pi of G(Pi ,R):

We elaborate subsequently on the implementation of this step.
6: Color: f (x)← i,∀x ∈ P ′i
7: Prune: Pi+1 ← Pi\P ′i
8: end while

1 The interested reader might try to prove this property for the case where R is the set of all discs in the
plane.
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Let Li ⊂ P denote the set of points in P colored with i by Algorithm 1. We refer to Li

as the i th layer of (P,R).

Lemma 2.1 [ELRS]. The coloring of a monotone range space (P,R) by Algorithm 1
is a valid CF-coloring of (P,R).

Proof. Consider a range r ∈ R, such that |P ∩ r | ≥ 2. Let i be the maximal color
assigned to points of P lying in r . Let Pi ⊂ P be the set of input points at the beginning
of the i th iteration, i.e., the set just before color i has been assigned. Note that Li ⊂ Pi

and Li ∩ r = Pi ∩ r (since i is the maximal color in r ). Clearly, if |r ∩ Li | = 1 then r is
served and we are done.

Thus, we only have to consider the case |r ∩ Li | > 1. However, by the monotonicity
property (applied to the subset Pi ), it follows that there exists a range r ′ such that: (i)
|r ′ ∩ Pi | = 2, and (ii) r ′ ∩ Pi ⊂ r ∩ Pi = r ∩ Li .

This means that the two points of r ′ ∩ Li form an edge in the graph G(Pi ,R). This
however contradicts the fact that Li is independent in G(Pi ,R), and thereby completes
the proof of the lemma.

To realize the usefulness of Lemma 2.1, consider the following result in [ELRS]: Let
P be a set of n points and let R be the set of all discs in the plane. Then the chromatic
number of (P,R) is O(log n). The proof follows immediately from the fact that (P,R)
is monotone and Lemma 2.1, as G(P,R) is just the Delaunay graph of P , which is
planar (see e.g., [BKOS]), and as such it has an independent set of size at least n/4 (by
the four colors theorem). It follows, that P has a decomposition into O(log n) layers
and hence the chromatic number of (P,R) is O(log n). (It was also shown in [ELRS]
that there exists a set P of n points in the plane for which any CF-coloring of (P,R)
needs �(log n) colors, and therefore this bound is worst case tight. Recently Pach and
Tóth [PT] have shown that any set P of n points in the plane needs �(log n) colors in
any CF-coloring of (P,R).)

We summarize this technique in the following lemma.

Lemma 2.2. Let R be a set of ranges in Rd , so that for any finite set P , the range
space (P,R) is monotone.

(i) If the Delaunay graph G(P,R) contains an independent set of size at least α|P|,
for some fixed 0 < α < 1, then kopt(n,R) ≤ log n/log(1/(1− α)).

(ii) If G(P,R) contains an independent set of size �(|P|1−ε), for some fixed 0 <
ε < 1, then kopt(n,R) = O(nε).

Proof. The assumption in part (i) of the lemma implies that in the i th iteration of
Algorithm 1 we color at least α|Pi | points of Pi with the color i . This means that if we
start with a set of n points, the number of iterations is at most log n/log(1/(1 − α)).
Similarly, part (ii) of the lemma follows by observing that the number of iterations needed
by Algorithm 1 is bounded by O(nε).

We need the following technical definition and lemma, for subsequent sections.
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Definition 2.3. For a finite set V , a k-uniform hypergraph H on V is a pair of the form
(V, E), where E is a set of subsets of V , such that each set in E is of size k (those are the
hyperedges of H ). The degree of a vertex v ∈ V is the number of sets (i.e., hyperedges)
of E that contain v.

A set A ⊆ V is called an independent set if no hyperedge of E is contained in A.

Lemma 2.4.

(i) Let G be a simple graph on n vertices with average degree δ. Then G contains
an independent set of size �(n/δ).

(ii) Let H be a k-uniform hypergraph with n vertices and average degree δ. Then H
contains an independent set of size �(n/δ1/(k−1)).

Both facts are easy exercises in graph theory (see, e.g., [AS]).

3. CF-Coloring of Regions

In this section we consider the problem of CF-coloring of regions, and present one of
the main results of this paper. We introduce a general approach that yields near-optimal
bounds on the CF-chromatic number of any finite collection of regions with “low”
(usually near-linear) union complexity. Our approach can also be applied to a general
geometric range space (not necessarily monotone) whose Delaunay graph has “low”
complexity.

3.1. CF-Coloring of Regions with Low Union Complexity

Let R be a family of regions in the plane, such that the complexity of the union of any
n regions of R is at most U(n). In the following, we assume that U(n) is a near-linear
function. This holds for pseudo-discs [KLPS] and (α, β)-covered objects [Ef]. See below
for more precise statements of those bounds.

Definition 3.1. For a set S of n regions of R, a subset Ŝ ⊆ S is admissible (with
respect to S) if any p ∈⋃ Ŝ satisfies one of the following two conditions:

1. There is only one region of Ŝ that covers p.
2. There exists r ∈ S\Ŝ, such that p ∈ r .

See Fig. 1.

Remark. Note, that an admissible set is also an independent set in the corresponding
Delaunay graph G = G(S, ES), where ES = {e | e ∈ �S , |e| = 2} and�S = {�S(p) |
p ∈ R2},�S(p) = {r | r ∈ S, p ∈ r}. Indeed, in the graph G every two regions r1, r2

that cover a common point, which is not covered by any other region, are connected
by an edge in G. Thus, it cannot be that both r1 and r2 belong to an admissible set.
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Fig. 1. A set S of discs and an admissible subset Ŝ (depicted shaded).

Interestingly, there may exist an independent set in G(S, ES) which is not admissible;
see Fig. 2.2 As a matter of fact, the range space (S,�S) is not necessarily monotone,
and thus coloring the range space (S,�S) using Algorithm 1 is not necessarily valid, as
testified by the example shown in Fig. 2.

Assume that we are given an algorithm A that computes, for any set of regions S, a
non-empty admissible set A(S). We can now use the algorithm A to CF-color the given
regions: (i) Compute an admissible set Ŝ = A(S), and assign to all the regions in Ŝ the
color 1. (ii) Color the remaining regions in S\Ŝ recursively, where in the i th stage we
assign the color i to the regions in the admissible set. We denote the resulting coloring
by CA(S).

1

2

3

4 5

6

Fig. 2. The range space depicted is (V, EV ), where V is the set of circles {1, 2, 3, 4, 5, 6} and every face
of the arrangement A(V ) induces a subset in �V , which is the subset of circles of V covering this face.
Clearly, the range {1, 2, 3} ∈ �V but the ranges {1, 2}, {2, 3}, {3, 1} are not in�V since there is no face in the
arrangement that is covered only by those pairs of circles. Thus, the range space (V,�V ) is not monotone. In
particular, the set {1, 2, 3} is independent in the graph G(V, EV ) while it is not admissible, and as such the
coloring depicted, which is clearly illegal (in the conflict-free sense), is one that Algorithm 1 might output.

2 We are indebted to Shai Zaban for suggesting this example.
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Lemma 3.2. Given a set of regions S, the coloring CA(S) is a valid CF-coloring of S.

Proof. The proof is similar to that of Lemma 2.1.

Remark. As a matter of fact, the coloring CA(S) has the stronger property that every
point p in

⋃
S is served by the maximal color among the colors of regions that contain p.

Lemma 3.3. LetRbe a set of n regions and letU(m)denote the maximum complexity of
the union of any m regions ofR. LetA(R)denote the arrangement of the boundary curves
of the regions inR. Then the number of faces of the arrangementA(R) that are contained
inside at most k regions ofR (denoted by F≤k(R)) is bounded by O

(
k2U(n/k)+ n

)
.

Proof. We may assume that the regions ofR are in general position, in the sense that no
three distinct boundaries pass through a common point. This can be enforced by a slight
perturbation of the curves, which does not decrease F≤k(R). Let S≤k(R) be the set of
vertices of the arrangementA(R) that lie in the interior of at most k regions ofR. By the
probabilistic analysis of Clarkson and Shor [CS], we have |S≤k(R)| = O

(
k2U(n/k)

)
.

We charge a face f contained in at most k regions to its lowest vertex, if ∂ f has vertices.
Thus, the only faces unaccountable for by this charging scheme are the faces that have no
vertices on their boundary. However, it is easy to check that the number of such faces is
only O(n), as we can charge such a face to the region ofR that forms its outer boundary.
Thus F≤k(R) = O(S≤k(R)+ n) = O(k2U(n/k)+ n).

In what follows, we assume that U(m) ≥ m for any m and that U(m)/m is a mono-
tonically non-decreasing function, so the bound in Lemma 3.3 is in fact O

(
k2U(n/k)

)
in this case.

Lemma 3.4. Let R be a set of n regions in the plane, so that the boundaries of any
pair of them intersect in a constant number of points, and let U(m) denote the maximum
complexity of the union of any m regions ofR. Then there exists an admissible set Ŝ ⊆ R
with respect toR, such that |Ŝ| = � (n2/U(n)

)
.

Proof. LetA = A(R) be the arrangement of the regions ofR. Place an arbitrary point
inside each face of the arrangement A and let P denote the resulting point set.

Let χ be a random coloring of the regions ofR by two colors, black and white, where
each region is colored independently by choosing black or white with equal probabilities.
A point p ∈ P is said to be unsafe if all the regions of R that contain p are colored
black. Let PU be the set of unsafe points of P . Let RB be the set of all regions of R
which are colored black by χ . We construct a graph G overRB, connecting two regions
r, r ′ ∈ RB by an edge if there is an unsafe point p ∈ PU that is contained inside both r
and r ′.

Let e(G) and v(G) denote, respectively, the number of edges and vertices in G. We
claim that, with constant probability, v(G) ≥ n/3 and e(G) = O(U(n)).

Clearly, the condition |RB| = v(G) ≥ n/3 holds with high probability (which tends
to 1 when n increases) by the Chernoff inequality (see [AS]). As for the second claim,
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for a point p ∈ P , let d(p) denote the number of regions ofR that contain it. Clearly, the
probability that p is unsafe is 1/2d(p). If p is unsafe, there are

(d(p)
2

)
pairs of regions of

RB whose intersections contain p, so p induces
(d(p)

2

)
edges in G. Let X p be the random

variable having value 0 if p is safe, and
(d(p)

2

)
if p is unsafe. Clearly, e(G) ≤∑p∈P X p.

Thus, using linearity of expectation and Lemma 3.3, we have

E[e(G)] ≤
∑
p∈P

E[X p] =
∑

p∈P

d(p)>1

(d(p)
2

)
2d(p)

=O

 n∑
i=2

∑
p∈P

d(p)=i

i2

2i

=O

(
n∑

i=2

i2U(n/ i) · i2

2i

)

= O

(
n∑

i=2

i4

2i
U(n)

)
=O (U(n)) .

Thus, by the Markov inequality, it follows that there is a constant c, such that

Pr[e(G) ≥ c · U(n)] ≤ 1
4 .

It follows that, with constant probability, G has at least n/3 vertices, and its average
degree is at most 6c ·U(n)/n. Thus, by Lemma 2.4(i), G contains an independent set of
size�(n2/U(n)). LetR′ be this independent set. It is easy to verify thatR′ is admissible
with respect toR. Indeed, let f be a face ofA(R) that is contained in at least two regions
r1, r2 ∈ R′, and let p be its representing point. Then p must be safe, so p, and thus f ,
is contained also in a white region, which clearly does not belong toR′.

Lemma 3.5. The admissible set guaranteed by Lemma 3.4 can be computed in ran-
domized expected O(U(n) log n) time.

Proof. Note that the proof of Lemma 3.4 is constructive. Assume a model of compu-
tation as in [SA] in which computing the intersection points of any pair of regions inR,
and a few similar operations, can be performed in constant time.

To construct G, first we compute a random coloring χ of the regions of R by black
and white. Let w be the number of white regions. Next, randomly permute the regions
of R, so that all the white regions (according to χ ) appear before the black regions of
R. This can be done by randomly permuting the white regions and randomly permuting
the black regions, independently, and concatenating the two permutations. Let π denote
this permutation. Note that π is a random permutation chosen uniformly from the set of
all permutations of the elements ofR. Let ri denote the i th region ofR according to π .

We need to compute all the unsafe points (i.e., faces which are covered only by
black regions) in A(R). This can be facilitated by computing Ci , which is the vertical
decomposition of the complement of the union of the first i regions of R, for i =
1, . . . , w. Formally, Ci is the vertical decomposition of R2\(∪i

k=1rk), for i = 1, . . . , w.
We construct Cw, by using randomized incremental construction. At the i th step, we
maintain Ci , which is computed from Ci−1 by inserting into it the region ri . This involves
removing vertical trapezoids of Ci−1 that are covered by ri , splitting trapezoids that
intersect the boundary of ri , and merging trapezoids that are adjacent and have common
ceiling and floor curves. We stop as soon as we computed Cw. See [SA] and [Mu] for
further details on randomized incremental constructions.
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For every trapezoid � ∈ Ci the algorithm also maintains its “conflict-list” which is
the list of all regions of R intersecting the interior of �, for i = 1, . . . , w. Using those
conflict-lists, we compute the arrangementA� of the black regions that intersect �, for
every trapezoid� ∈ Cw. Next, we perform a traversal of this arrangement, and for every
face of A�, we generate the relevant edges in G.

Now that the graph G is available, computing the admissible set in G can be done
by a greedy independent set algorithm, which picks the vertex v of lowest degree in G,
adds it to the output set, and removes v and its neighbors from G and recurses on the
remaining subgraph. One can verify that this algorithm computes an independent set in
G of size�

(
(v(G))2/e(G)

)
, where v(G) and e(G) are the number of vertices and edges

of G, respectively. Thus, yielding the required admissible set.
We next bound the expected running time of this algorithm. It is easily seen that the

number of vertical trapezoids in Ci is O(U(i)), and by the Clarkson–Shor probabilistic
analysis [Mu, Lemma 5.5.1], the expected average length of a conflict-list ofCi is O(n/ i).
Using backward analysis (see, e.g., [SA] and [Mu]), the probability of a trapezoid of Ci

to be created in the i th iteration is O(1/ i). Putting everything together, we have that the
expected time to construct Cw is

O

(
w∑

i=1

U(i)
i
· n

i

)
= O

(
n∑

i=1

U(n)
n
· n

i

)
= O

(
n∑

i=1

U(n)
i

)
= O (U(n) log n) ,

since we assumed that U(i)/ i is a monotone non-decreasing function.
Similarly, the expected time to compute the arrangement of the black regions inside

each vertical trapezoid� ∈ Cw takes O(l2
�) time, where l� is the size of the conflict-list

of�. Using the Clarkson–Shor analysis [Mu, Lemma 5.5.1] again, it follows that the total
expected time to compute this arrangement is O(U(n)). Thus, it is now straightforward
to construct the graph G from it. Again, computing G takes

E

[∑
�∈Cw

l4
�

]
= Ew

[
O

(
U(w)

( n

w

)4
)]
= O (U(n))

time, using the Clarkson–Shor analysis [Mu, Lemma 5.5.1] for the last and final time in
this proof, and observing that w ≥ n/3 with high probability.

The greedy independent set algorithm can be implemented in linear time in the size
of the graph, and as such the running time of the algorithm is dominated by the other
stages.

Note that if the admissible set generated by the algorithm is too small, then the
algorithm is run again until it succeeds.

We now present several applications of Lemmas 3.4 and 3.5.

Definition 3.6 [KLPS]. A family R of Jordan regions in the plane is called a family
of pseudo-discs if the boundaries of each pair of them intersect at most twice.

Theorem 3.7. LetR be a family of n pseudo-discs. ThenR admits a CF-coloring with
O(log n) colors. Such a coloring can be constructed in randomized expected O(n log n)
time.
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Proof. The complexity of the union of any m regions of R is O(m) (see [KLPS]).
Plugging this fact into Lemma 3.4, we have that R contains an admissible set Ŝ with
respect toRof size�(n). Applying Lemma 3.2, and arguing as in the proof of Lemma 2.2,
we have thatR admits a CF-coloring with O(log n) colors.

Definition 3.8 [Ef]. A planar object c is (α, β)-covered if the following holds: (i) c is
simply connected, and (ii) for any point p ∈ ∂c we can place a triangle� fully inside c,
such that p is a vertex of�, each angle of� is at least α, and the length of each edge of
� is at least β times the diameter of c.

Theorem 3.9. Let C be a collection of n (α, β)-covered regions in the plane, of finite
description complexity, such that the boundaries of each pair of regions of C inter-
sect in at most s points. Then C has a CF-coloring using O(βs+2(n) log3 n log log n)
colors, where βs+2(n) = λs+2(n)/n and where λs+2(n) is the maximum length of an
s-order Davenport–Schinzel sequence from n symbols, see, e.g., [SA]. This coloring can
be computed in randomized expected O(n logO(1) n) time, in an appropriate model of
computation.

Proof. In this case, U(n) = O(λs+2(n) log2(n) log log n) by the result of Efrat [Ef].
Thus, by Lemma 3.4, C has an admissible set of size

�

(
n2

U(n)

)
= �

(
n2

λs+2(n) log2 n log log n

)
= �

(
n

βs+2(n) log2 n log log n

)
.

Applying the algorithm described in Lemma 3.2, and arguing as in Lemma 2.2, it follows
that we have a CF-coloring of C using

O(βs+2(n) log3 n log log n)

colors.

3.2. CF-Coloring of Simple Geometric Regions in the Plane

3.2.1. CF-coloring of axis-parallel rectangles

Lemma 3.10. LetR be a set of n axis-parallel rectangles, all intersecting the y-axis.
Then there is a CF-coloring of R with O(log n) colors, which can be constructed in
randomized expected O(n log n) time.

Proof. It is easy to verify that the complexity of the union of m such rectangles is
O(m). Hence, the result follows immediately from Lemmas 3.4 and 3.2.

Theorem 3.11. LetR be a set of n axis-parallel rectangles. Then there is a CF-coloring
ofR using O(log2 n) colors.
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Proof. Let � be a vertical line, such that at most n/2 rectangles of R lie fully to the
left of �, and at most n/2 rectangles of R lie fully to its right. Let R0,R1,R2 denote,
respectively, the sets of rectangles crossed by �, lying fully to its left, and lying fully to
its right. By Lemma 3.10, we can CF-color the set R0 with O(log n) colors. We color
recursively R1 and R2, using the same set of colors in both subproblems, but keeping
this set disjoint from the set used to color R0. This gives rise to a coloring of R with a
total of O(log2 n) colors, which is easily seen to be a CF-coloring.

Again, the proof is constructive, and leads to an O(n log2 n)-randomized expected
time algorithm for computing the coloring.

3.2.2. CF-coloring of half-planes

Theorem 3.12. There exists a collectionH of n half-planes, for which�(log n) colors
are needed in any CF-coloring ofH.

Proof. We use a standard dual transformation that maps a line l to a point l∗ and a
point p to a line p∗, such that p lies above (resp., below) l if and only if the line p∗

lies above (resp., below) the point l∗. It is easily verified that any CF-coloring of a set
H = {l+1 , . . . , l+n } of n positive half-planes is equivalent to that of a CF-coloring of a
range space (P,R), where P = {l∗1 , . . . , l∗n } is the set of dual points of the boundary
lines of the half-planes inH, andR is the set of all negative half-planes. Thus, it suffices
to show that for any integer n, there exists a set P of n points in the plane such that any
CF-coloring of P with respect to negative half-planes needs at least �(log n) colors.
Such a construction can be obtained by placing n points on the parabola y = x2; see,
e.g., [ELRS].

Remark. It easily follows from the results of Even et al. [ELRS] that O(log n) colors
always suffice for CF-coloring n half-planes.

Similar constructions show that there exists a collection R of n axis-parallel rectan-
gles for which �(log n) colors are needed in any CF-coloring of R. This still leaves a
logarithmic gap with the upper bound of Theorem 3.11.

In the context of range spaces, similar constructions of a set of n points in the plane
show that in any CF-coloring of the given points, �(log n) colors are needed when the
ranges are axis-parallel rectangles.

4. CF-Coloring of Range Spaces

In this section we consider the “dual” problem of CF-coloring of points with respect to
regions rather than coloring regions with respect to points.
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Fig. 3. A point p and the neighbors of p in two opposite quadrants in the graph G(P,B2). The circled points
form an independent set in this graph.

4.1. Axis-Parallel Rectangles

In this section we deal with the problem of CF-coloring of points in the plane, where the
ranges are axis-parallel rectangles.

Theorem 4.1. For the set B2 of all axis-parallel rectangles in the plane, we have
kopt(n,B2) = O(

√
n).

Proof. Let P be a set of n points in the plane, and let G = G(P,B2) denote the
corresponding Delaunay graph. Note that the ranges that realize the edges of G can
be taken to be those rectangles that have two points of P as opposite vertices and are
otherwise disjoint from P . If there is a point p ∈ P with degree≥ 2

√
n in G, then there

are two opposite quadrants around p that contain together at least
√

n neighbors of p
in G(P,B2). See Fig. 3. Suppose, without loss of generality, that these are the upper-
right and the lower-left quadrants. The neighbors of p in each of the quadrants form a
monotone decreasing sequence. Choosing every other element in each sequence yields
an independent set in G of size at least

√
n/2. Otherwise, all the points of p have degree

< 2
√

n in G. However, in this case, Lemma 2.4(i) implies that there is an independent
set in G of size �(

√
n). By Lemma 2.2(ii), (P,B2) can be CF-colored using O(

√
n)

colors.

Remark. Noga Alon, Timothy Chan, János Pach, and Geza Tóth [PT] have indepen-
dently noticed that the result of Theorem 4.1 can be slightly improved by a polyloga-
rithmic factor, using more involved graph-theoretic arguments [AKS], [PT]. Their main
observation is that the Delaunay graph G(P,B2) has sparse neighborhoods. Namely,
for any point p, the subgraph of G induced by the set Np of the neighbors of p has
size O(|Np|). The result in [AKS] implies that if a graph G has maximum degree δ and
has “sparse neighborhoods” then G contains an independent set of size�(n((log δ)/δ)).
Choosing δ = √n log n we have: If G contains a point with degree more than δ, then
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by the above analysis G contains an independent set of size �(δ). Otherwise, by the
sparse neighborhood property of G we have that G contains an independent set of size
�(n((log δ)/δ)) = �(δ). A simple modification of the proof of Lemma 2.2(ii) im-
plies that the number of layers into which P can be decomposed is O(

√
n/
√

log n). By
Lemma 2.1, (P,B2) can be CF-colored using O(

√
n/
√

log n) colors.

Substantially improving the result of Theorem 4.1 is the main open problem that we
pose in this paper, as we currently have only a trivial lower bound of �(log n).

Using a somewhat different approach, we next give an alternative proof of Theo-
rem 4.1, which generalizes to higher dimensions.

Theorem 4.2. Let Bd be the set of all axis-parallel boxes in Rd . Then kopt(n,Bd) =
O(n1−1/2d−1

).

Note that for d = 2 we obtain the same bound as in Theorem 4.1.

Proof. Let P be a set of n points in Rd , and denote the coordinates by x1, . . . , xd . Let
P1 be the ordered sequence of the points of P according to their x1-coordinate. At the i th
stage, for i = 2, . . . , d , let Pi be the longest monotone subsequence of Pi−1, according
to their xi -coordinates. By the Erdős–Szekeres theorem (see, e.g., [W]) there exists a
monotone subsequence of Pi−1 of length �(

√|Pi−1|).
Thus, Pd is a sequence of �(n1/2d−1

) points which is monotone in all coordinates
(in each coordinate it can be either increasing or decreasing). It is easy to verify that if
we pick every other point in this sequence, we obtain an independent set in G(P,Bd)

of size |Pd |/2 = �(n1/2d−1
). We thus conclude, by Lemma 2.2(ii), that kopt(n,Bd) =

O(n1−1/2d−1
).

It is easy to construct the CF-coloring provided by Theorem 4.2 in time O(n2−1/2d−1

log n): there are O(n1−1/2d−1
) iterations, in each of which we compute (d − 1) times a

longest monotone subsequence, which can be done in O(n log n) time.
In contrast to the rather weak bounds of Theorems 4.1 and 4.2, we next show that the

special case where P is a grid admits a CF-coloring of (optimal) logarithmic size.

Definition 4.3. The grid G(n, d) is the Cartesian product {1, . . . , �n1/d�}d .

In the following, we use the fact that if two integer numbers have the same number
of trailing zeros in their binary representation, then there must be a number between
them that has a larger number of trailing zeros in its binary representation. Thus, we can
use the number of trailing zeros in the binary representation as the color assigned to an
integer, when coloring consecutive integers.

Lemma 4.4. Let I = B1 be the set of intervals on the real line and let cf(i) be the
function defined on the positive integers and returning j + 1 if 2 j is the largest power of
2 that divides i .
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Then the CF-chromatic number of (G(n, 1), I) is 1+ �log n�, it is realized by cf(·),
and this bound is tight. Furthermore, for an interval I = [i, j], the color that appears
exactly once in I ∩ G(n, 1) is the largest number in the set {cf(i), cf(i + 1), . . . , cf( j)}.

Proof. We only prove the lower bound. The other claims can be easily verified. Let
f (·) be any CF-coloring of G(n, 1) = {1, . . . , n}, using the minimum number of colors.
Let h(m) be the minimum number of colors used by f (·) for coloring an interval of
length m.

Consider the color appearing exactly once in the coloring f (·) of the interval I =
[1, n]. Namely, there is an i ∈ I such that f (i) �= f ( j), for all j ∈ I , j �= i . Let
Il = [1, i−1] and Ir = [i+1, n], and assume, without loss of generality, that |Ir | ≥ |Il |.
Clearly, we have h(n) = h (|I |) ≥ 1+ h (|Ir |) = h (�(n − 1)/2�)+ 1. By induction, it
is now easy to prove that h(n) ≥ �log n� + 1.

Lemma 4.5. The CF-chromatic number of (G(n, d),Bd) is at most 1+ �log n�.

Proof. For i = (i1, . . . , id) ∈ G(n, d), we define its color to be f (i) =∑d
j=1 cf(i j )−

(d− 1). Let R be any axis-parallel box, and let Nj be the set of integers in the projection
of R onto the j th axis. Note that, for j = 1, . . . , d, cf(Nj ) has a unique maximum
in this range, by Lemma 4.4. Let i ′j be the index that realizes it. Clearly, f (i′) is the
maximum value achieved by f (·) on R, where i′ = (i ′1, i ′2, . . . , i ′d). Furthermore, no
other point of R ∩ G(n, d) realizes this value. Thus f (·) provides the required CF-
coloring. To complete the proof, note that the value of f (·) is bounded from above by
d(1+ �log(�n1/d�)�)− (d − 1) ≤ 1+ �log n�.

Lemma 4.5 is tight for d = 1 and d = �log n�. For other values of d, one can show a
lower bound of �log n� − d . To see this, consider any CF-coloring of G(n, d), and let p
be the point with a unique color in the whole grid. Then there is a box that avoids p and
contains almost half of the points of G(n, d). Analyzing carefully the number of points
remaining in this box, and using induction, we obtain the asserted lower bound.

4.2. Random Point Set Inside a Square

In the following, let U denote the unit square in the plane. In this section we consider
the CF-coloring of a point-set generated by picking points uniformly and independently
out of U . The ranges considered are axis-parallel rectangles.

Lemma 4.6. Let P1, P2 ⊆ U be two random point-sets of cardinality m each, assume
that P1 was CF-colored using χ colors, and let n be a parameter such that m ≤ n. Then
P1 ∪ P2 can be CF-colored using χ + O(log3 n) colors, with high probability.

Proof. Clearly, if m = O(log3 n), then the claim trivially holds. Otherwise, let ε =
O((log n)/m). By ε-net theory [HW], P1 is an ε-net for rectangles inside the unit square
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p

p
"

Fig. 4. The region S(p, ε).

under the measure of area, with high probability. Namely, any axis-parallel rectangle of
area larger than ε, contains a point of P1.

For a point p ∈ U , let

S(p, ε) = {q | (rect(p, q)) ≤ ε}
be the set of points that form rectangles of area at most ε with p, namely q ∈ S(p, ε) iff
|qx − px | · |qy − py | ≤ ε, see Fig. 4. Furthermore,

A = area (S(p, ε)) ≤ 4

(
ε2 +

∫ 1

x=√ε

ε

x
dx

)
= O

(
ε log

1

ε

)
= O

(
log n

m
log

m

log n

)
.

Clearly, E [|S(p, ε) ∩ P2|] = Am, and by the Chernoff inequality,

Pr[|S(p, ε) ∩ P2| ≥ Am(1+ log n)] ≤
(

elog n

(1+ log n)(1+log n)

)Am

≤
(

elog n

(1+ log n)(1+log n)

)O(log n)

≤ e−c log2 n log log n ≤ n−c log n log log n,

where c is an appropriate constant.
Let G2 be the graph defined over the points of P2, connecting two points of P2, if the

diagonal rectangle they define has area smaller than ε. Consider a point p ∈ P2, clearly,
all its neighbors in G2, must lie inside S(p, ε), and by the above discussion, with high
probability, the number of neighbors of p in G2 is bounded by

ν = O(Am log n) = O

((
ε log

1

ε

)
m log n

)
= O(log3 n).

In particular, G2 can be colored using ν + 1 colors. Let f (·) be the coloring of P1 ∪
P2 resulting from coloring the points of P1 by their given colors, and coloring P2 by
additional O(log3 n) colors, as specified by the coloring of G2.
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We claim that f (·) is a CF-coloring of P1 ∪ P2. Indeed, let R ⊆ U be an arbitrary
axis-parallel rectangle. If R ∩ P1 �= ∅, then we are done, because the given coloring of
P1 is conflict free. Furthermore, if area(R) ≥ ε, then it contains a point of P1, as P1 is
an ε-net.

Thus, it must be that area(R) ≤ ε, R ∩ P1 = ∅, and R ∩ P2 �= ∅. However, by
construction of G2, all the pairs of points of R ∩ P2 are connected in G2, thus f (·)
assigns all of them unique colors.

It follows that f (·) is a CF-coloring of P1 ∪ P2 with high probability.

Theorem 4.7. Let P be a set of n points picked randomly and uniformly out of the
unit square U . Then, with high probability, for the range space formed by axis-parallel
rectangles, the set P has a CF-coloring using O(log4 n) colors.

Proof. Order P in an arbitrary order, and let Pi be the first 2i points of P . Now,
repeatedly apply Lemma 4.6 to Pi\Pi−1 and Pi−1, for i = 1, . . . , �log n�.

Observe that the property of having an empty axis-parallel rectangle is uniquely
defined by the ordering of the given points in each coordinate. It follows, that instead of
picking points randomly in the unit square, we can just generate the points by picking a
random permutation π of 1, . . . , n, and placing the i th point at (i, π(i)). One can modify
the proof of Theorem 4.7 so that it also holds in this setting. This results in an identical
result with a combinatorial proof instead of a geometric one.

5. Relaxing the Notion of CF-Coloring

In this section we generalize the notion of CF-coloring of a range space and show a rela-
tion between the problem of CF-coloring a range space and its VC-dimension. We also
generalize the notion of CF-coloring of regions. To simplify the presentation we ignore,
in this section, the issue of algorithmic construction of the coloring. Nevertheless, all
upper bounds in this section are constructive, and can be easily computed in polynomial
time.

5.1. k-CF-Coloring of a Range-Space

Definition 5.1 (k-CF-Coloring of a Range Space). Let (P,R) be a range space in Rd .
A function χ : P → {1, . . . , i} is a k-CF-coloring of (P,R) if for every r ∈ R with
r ∩ P �= ∅ there exists a color j such that 1 ≤ |{p ∈ P ∩ r |χ(p) = j}| ≤ k; that is, for
every possible non-empty range r there exists at least one color j such that j appears (at
least once and) at most k times among the colors assigned to points of P ∩ r .

Let kopt(n, k,R) denote the minimum number of colors needed for a k-CF-coloring
of (P,R), maximized over all sets P of size n.

Note that a 1-CF-coloring of a range space is just a CF-coloring.
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5.1.1. CF-coloring of balls in three dimensions

Lemma 5.2. Let R be the set of balls in three dimensions. Then kopt(n,R) = n. The
same holds for the setR of half-spaces in Rd , for d > 3.

Proof. Take P to be a set of n points on the positive portion of the moment curve
γ = {(t, t2, t3)|t ≥ 0} in R3. It is easy to verify that any pair of points p, q ∈ P are
connected in the Delaunay triangulation of P [Er], implying that there exists a ball whose
intersection with P is {p, q}. Thus, all points must be colored using different colors.

The second claim follows by lifting P into the standard paraboloid in R4 by the map
(x, y, z) �→ (x, y, z, x2 + y2 + z2). A ball in R3 is mapped to a half-space in R4 so that
a point p lies in the ball if and only if its image lies in the half-space. It follows that n
colors are necessary in any CF-coloring of the image of P . This clearly extends to any
dimension d ≥ 4.

Theorem 5.3. Let R be the set of all balls in R3. Then kopt(n, k,R) = O(n1/k), for
any fixed constant k ≥ 1.

Proof. The proof technique is a generalization of the ideas introduced in Section 2.
Indeed, let P be any set of n points in R3, and construct a (k + 1)-uniform hypergraph
H = (P, E), where E is the collection of all subsets of P of size k+ 1 that are realizable
by a range in R. By the Clarkson–Shor technique, it is easy to see that |E | = O(n2),
where the constant of proportionality depends on k. Thus, the average degree of H is
O(n) and therefore, by Lemma 2.4(ii), there exists an independent set P ′ ⊂ P of size
�(n1−1/k). (Note that independence means that any ball that contains at least k+1 points
of P ′, must also contain a point from P\P ′; this equivalence follows by an appropriate
extension of the monotonicity property of balls.) We can color all points of P ′ by a
single color, say 1, and iterate on P\P ′, similar to Algorithm 1. Thus, the total number
of colors we use is O(n1/k). It is easy to see (similar to Lemma 2.1) that this coloring is
a valid k-CF-coloring of (P,R).

5.2. k-CF-Coloring of Range Spaces with Finite VC-Dimension

Definition 5.4. Let S = (X,R) be a range space. The Vapnik–Chervonenkis dimension
(or VC-dimension) of S, denoted by VC(S), is the maximal cardinality of a subset P ′ ⊂ P
such that {P ′ ∩ r |r ∈ R} = 2P ′ (such a subset is said to be shattered). If there are
arbitrarily large shattered subsets in X, then VC(S) is defined to be∞. See [AS] and
[PA] for discussion of VC-dimension and its applications.

There are many range spaces with finite VC-dimension that arise naturally in combina-
torial and computational geometry. One such example is the range space S = (Rd ,Hd),
where Hd is the family of all (open) half-spaces in Rd . Any set of d + 1 affinely inde-
pendent points is shattered in this space, and, by Radon’s theorem, no set of d+2 points
is shattered. Therefore VC(S) = d + 1. As a matter of fact, all range spaces used in this
paper have finite VC-dimension.
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Since all the range spaces studied in this paper have finite VC-dimension, and since
some of them can be CF-colored only with n colors, there is no direct relationship
between a finite VC-dimension of a range space and the existence of a CF-coloring of
that range space with a small number of colors. In this subsection we show that such a
relationship does exist, if we consider k-CF-coloring with a reasonably large k.

We first introduce a general framework for k-CF-coloring of a range space S =
(X,R).

Definition 5.5. A subset X ′ ⊂ X is k-admissible with respect to S if for any range
r ∈ R with |r ∩ X ′| > k we have r ∩ (X\X ′) �= ∅.

Note that, assuming a monotonicity property of the ranges inR (i.e., if a subset S is
realizable by a range, then its has a subset of size k which is realizable by some range
in R), a k-admissible set is simply an independent set in the hypergraph (X, E), where
E is the set of all hyperedges consisting of k + 1 elements of X that can be realized by
a range inR.

Assume that we are given an algorithm A that computes, for any range space S =
(X,R), a non-empty k-admissible set X ′ = A(S). We can now use the algorithm A
to k-CF-color the given range space: (i) Compute an admissible set X ′ = A(S), and
assign to all the elements in X ′ the color 1. (ii) Color the remaining elements in X\X ′
recursively, where in the i th stage we assign the color i to the points in the resulting
k-admissible set. We denote the resulting coloring by CA(S).

The proof of the following lemma is similar to that of Lemma 2.1, and is omitted.

Lemma 5.6. Given a range space S = (X,R), the coloring CA(S) is a valid k-CF-
coloring of S.

Lemma 5.7. Let S = (X,R),with |X | = n, be a finite range space with VC-dimension
d. For any k ≥ d there exists a k-admissible set X ′ ⊂ X with respect to S of size
�(n1−(d−1)/k).

Proof. Any coloring of X is valid as far as the small ranges ofR are concerned; namely,
those are the ranges that contain at most k points. Thus, letR′ be the set of ranges ofR
of size larger than k. By Sauer’s lemma [Sa] we have that |R′| ≤ |R| ≤ nd .

Next, we randomly color X by black and white, where an element is being colored
in black with probability p, where p would be specified shortly. Let I be the set of
points of X colored in black. If a range r ∈ R′ is colored only in black, we remove one
of the points of r from I . Let I ′ be the resulting set. Clearly, I ′ is a k-admissible set
for (X,R).

Furthermore, by linearity of expectation, the expected size of I ′ is at least

pn −
∑
r∈R′

p|r | ≥ pn −
∑
r∈R′

pk+1 ≥ pn − pk+1nd .

Setting p = ((k + 1)nd−1)−1/k , we have that the expected size of I ′ is at least pn −
pk+1nd = pn(1− 1/(k + 1)) = �(n1−(d−1)/k), as required.
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For the case of geometric range spaces, one might be able to get better bounds than
the one guaranteed by Lemma 5.7. See Theorem 5.3 for such an example.

Theorem 5.8. Let S = (X,R), with |X | = n, be a finite range space with VC-
dimension d . Then for k ≥ d log n there exists a k-CF-coloring of S with O(log n)
colors.

Proof. By Lemma 5.7 the range space S contains a k-admissible set of size at least
n/2. Plugging this fact to the algorithm suggested by Lemma 5.6 completes the proof of
the theorem.

As remarked above, Theorem 5.8 applies to all the range spaces studied in this paper.
Note also that Lemma 5.7 gives us a tradeoff between the number of colors and the
threshold size of the coloring. As such, the bound of Theorem 5.8 is just one of a family
of such bounds implied by Lemma 5.7.

5.3. k-CF-Coloring of Regions

Definition 5.9 (k-CF-Coloring of Regions). LetR be a collection of regions in Rd . A
function χ : R→ {1, . . . , i} is a k-CF-coloring ofR if for every point p ∈ ⋃R there
exists a color j such that 1 ≤ |{r ∈ R|p ∈ r, χ(r) = j}| ≤ k; that is, for every possible
point p in the union of R there exists at least one color j such that j appears (at least
once and) at most k times among the colors assigned to the regions ofR that contain p.

As above, we note that a 1-CF-coloring of a set of regions R is just a CF-coloring
ofR.

Consider a CF-coloring of a set of balls in R3. Note that the union of a set of n balls
can have �(n2) complexity and one cannot apply the technique developed in Section
3.1 to obtain non-trivial bounds on the number of colors needed for a 1-CF-coloring of
such a set of balls, or other regions with high union complexity. However, as we will
show in this section, one can obtain non-trivial bounds on the number of colors needed
for k-CF-coloring a set of regions in R3 with near-quadratic union complexity, for any
k ≥ 2. The approach that we use generalizes to any fixed dimension.

LetR be a family of regions inR3, such that the complexity of union of any n regions
of R is at most U(n). In the following, we assume that U(n) is a monotone increasing
function of n and that U(n) = �(n2). This holds for balls with U(n) = �(n2) (see, e.g.,
[SA]).

Definition 5.10. For a set S of n regions, a subset Ŝ ⊆ S is k-admissible with respect
to S if any p ∈⋃ Ŝ satisfies one of the following two conditions:

1. There are at most k regions of Ŝ that cover p.
2. There exists r ∈ S\Ŝ, such that p ∈ r .
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Assume that we are given an algorithm A that computes, for any set S of regions in a
given family, a non-empty k-admissible set A(S) with respect to S. We can then use the
algorithm A for k-CF-coloring the given regions as follows: (i) Compute a k-admissible
set Ŝ = A(S) with respect to S, and assign to all the regions in Ŝ the color 1. (ii) Color
the remaining regions in S\Ŝ recursively, using colors ≥ 2. We denote the resulting
coloring by CA(S).

Lemma 5.11. Given a set of regions S, the coloring CA(S) is a valid k-CF-coloring
of S.

The proof is similar to that of Lemmas 2.1 and 3.2. The following result extends
Lemma 3.3 to three dimensions.

Lemma 5.12. LetR be a set of n regions inR3 of constant description complexity and
let U(m) denote the maximum complexity of the boundary of the union of any m regions
of R, with U(m) = �(m2). Then the number F≤i (R) of three-dimensional cells of the
arrangement A(R) that are contained in at most i regions ofR is O

(
i3U(n/ i)

)
.

Proof. Let S≤i (R) be the set of vertices of the arrangement A(R) (of the boundary
surfaces of the regions in R) that lie in the interior of at most i regions of R. By the
Clarkson–Shor technique [CS], we have |S≤i (R)| = O

(
i3U(n/ i)

)
. We charge a cell

contained in at most i regions to its lowest vertex, assuming it has a vertex. Thus, the
only cells unaccountable for by this charging scheme are the cells that have no vertices
on their boundary. However, it is easy to check that the number of such cells is bounded
by O(n2). Thus

F≤i (R) = O(S≤i (R)+ n2) = O(i3U(n/ i)+ n2) = O(i3U(n/ i)),

by our assumptions on U(n).

Lemma 5.13. Let R be a set of n regions in R3, and let U(m) denote the maximum
complexity of the union of any m regions of R, such that U(m) = �(m2) and U(·) is
monotone increasing. Then there exists a k-admissible set Ŝ ⊆ R with respect to R,
such that |Ŝ| = �(n1+1/k/U(n)1/k).

Proof. The proof follows closely the ideas of the proof of Lemma 3.4 with a slight
twist. Let A = A(R) be the arrangement of the (boundary surfaces of the) regions of
R. Place an arbitrary point inside each (three-dimensional) cell of the arrangement A
and let P denote the resulting point set.

Let χ be a random coloring of the regions ofR, by two colors, black and white, where
each region is colored independently by choosing black or white with equal probabilities.
A point p ∈ P is said to be unsafe if all the regions of R that contain p are colored
black. Let PU be the set of unsafe points of P . Let RB be the set of all regions of R
which are colored black by χ . We construct a (k + 1)-uniform hypergraph H overRB,
whose set of hyperedges consist of all (k + 1)-tuples of regions r1, . . . , rk+1 ∈ RB for
which there is an unsafe point p ∈ PU in

⋂k+1
j=1 rj .
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Let e(H) and v(H) denote, respectively, the number of hyperedges and vertices of
H . We claim that, with constant probability, v(H) ≥ n/3 and e(H) = O(U(n)).

Clearly, the condition |RB| = v(H) ≥ n/3 holds with high probability by the
Chernoff inequality (see, e.g., [AS]). Similar to the proof of Lemma 3.4, the probability
that p is unsafe is 1/2d(p), where d(p) is the number of regions containing p. If p is
unsafe, there are

(d(p)
k+1

)
(k + 1)-tuples of regions of RB whose intersection contains p,

so p induces
(d(p)

k+1

)
hyperedges in H . Let X p be the random variable having value 0 if

p is safe, and
(d(p)

k+1

)
if p is unsafe. Clearly, e(H) ≤ ∑p∈P X p. Thus, using linearity of

expectation and Lemma 5.12, we have

E[e(H)]≤
∑
p∈P

E[X p] =
∑

p∈P

d(p)≥k+1

(d(p)
k+1

)
2d(p)

= O

 n∑
i=k+1

∑
p∈P

depth(p)=i

i k+1

2i


= O

(
n∑

i=k+1

i3U(n/ i) · i k+1

2i

)
=O

(
n∑

i=k+1

i k+4

2i
U(n)

)
=O (U(n)).

Thus, by the Markov inequality, it follows that there is a constant c, such that

Pr[e(H) ≥ c · U(n)] ≤ 1
4 .

It follows that, with constant probability, H has at least n/3 vertices, and its average
degree is at most (k+1)3c ·U(n)/n. Thus, by Lemma 2.4(ii), H contains an independent
set of size

�

(
n

U(n)/n)1/k

)
= �

(
n1+1/k

(U(n)1/k

)
.

It is easy to verify that any such independent set is k-admissible with respect toR. This
completes the proof of the lemma.

Note that when U(n) = O(n2) we have a k-admissible set of size �(n1−1/k).

Theorem 5.14. Let R be a set of n balls in R3. For any k ≥ 2, there exists a k-CF-
coloring ofR with a total of at most O(n1/k) colors.

Proof. By Lemma 5.13 there exists a k-admissible set R′ with respect to R of size
�(n1−1/k). Plugging this fact into the algorithm suggested by Lemma 5.11 completes
the proof.

Remark. A closer inspection of the analysis of the proof of Lemma 5.13 shows that
the lemma generalizes to any dimension d ≥ 3, provided that we assume that U(m) =
�(md−1).

Theorem 5.15. LetR be a set of n regions in Rd with the property that the complexity
of the union of any m regions of R is at most U(m), where U(m) = �(md−1) and is
monotone increasing. Then there exists a k-admissible set Ŝ ⊆ R with respect to R,
such that |Ŝ| = �(n1+1/k/U(n)1/k).
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Remark. The condition that U(m) = �(nd−1) can be dropped, using a more careful
analysis based on the Clarkson–Shor technique. We omit details of this improvement.

6. Conclusions

We proved several results on CF-coloring of points and regions. There are numerous
problems for further research suggested by our results. In particular, the main open
problems we pose in this paper for further research are:

1. Substantially improve the bounds on the CF-chromatic number of points in the
plane with respect to axis-parallel rectangles.

2. Improve the bounds on the k-CF-chromatic number of points, with respect to balls,
in Rd , for d ≥ 3 and k ≥ 2.

3. Improve the bounds on the number of colors needed for k-CF-coloring of n balls
in Rd , for d ≥ 3 and k ≥ 2.

4. Develop deterministic algorithms for CF-coloring. One natural approach is to try
to use discrepancy [C], [Ma].

5. Develop a kinetic coloring framework for moving points (or regions in the dual
case).

6. Develop a dynamic coloring framework for supporting the more general case
where points (or regions in the dual case) can be inserted and deleted.
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